linux-brain/crypto/async_tx/async_tx.c
Thomas Gleixner a61127c213 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 335
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms and conditions of the gnu general public license
  version 2 as published by the free software foundation this program
  is distributed in the hope it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not write to the free
  software foundation inc 51 franklin st fifth floor boston ma 02110
  1301 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 111 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000436.567572064@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:37:06 +02:00

282 lines
7.0 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* core routines for the asynchronous memory transfer/transform api
*
* Copyright © 2006, Intel Corporation.
*
* Dan Williams <dan.j.williams@intel.com>
*
* with architecture considerations by:
* Neil Brown <neilb@suse.de>
* Jeff Garzik <jeff@garzik.org>
*/
#include <linux/rculist.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/async_tx.h>
#ifdef CONFIG_DMA_ENGINE
static int __init async_tx_init(void)
{
async_dmaengine_get();
printk(KERN_INFO "async_tx: api initialized (async)\n");
return 0;
}
static void __exit async_tx_exit(void)
{
async_dmaengine_put();
}
module_init(async_tx_init);
module_exit(async_tx_exit);
/**
* __async_tx_find_channel - find a channel to carry out the operation or let
* the transaction execute synchronously
* @submit: transaction dependency and submission modifiers
* @tx_type: transaction type
*/
struct dma_chan *
__async_tx_find_channel(struct async_submit_ctl *submit,
enum dma_transaction_type tx_type)
{
struct dma_async_tx_descriptor *depend_tx = submit->depend_tx;
/* see if we can keep the chain on one channel */
if (depend_tx &&
dma_has_cap(tx_type, depend_tx->chan->device->cap_mask))
return depend_tx->chan;
return async_dma_find_channel(tx_type);
}
EXPORT_SYMBOL_GPL(__async_tx_find_channel);
#endif
/**
* async_tx_channel_switch - queue an interrupt descriptor with a dependency
* pre-attached.
* @depend_tx: the operation that must finish before the new operation runs
* @tx: the new operation
*/
static void
async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx,
struct dma_async_tx_descriptor *tx)
{
struct dma_chan *chan = depend_tx->chan;
struct dma_device *device = chan->device;
struct dma_async_tx_descriptor *intr_tx = (void *) ~0;
/* first check to see if we can still append to depend_tx */
txd_lock(depend_tx);
if (txd_parent(depend_tx) && depend_tx->chan == tx->chan) {
txd_chain(depend_tx, tx);
intr_tx = NULL;
}
txd_unlock(depend_tx);
/* attached dependency, flush the parent channel */
if (!intr_tx) {
device->device_issue_pending(chan);
return;
}
/* see if we can schedule an interrupt
* otherwise poll for completion
*/
if (dma_has_cap(DMA_INTERRUPT, device->cap_mask))
intr_tx = device->device_prep_dma_interrupt(chan, 0);
else
intr_tx = NULL;
if (intr_tx) {
intr_tx->callback = NULL;
intr_tx->callback_param = NULL;
/* safe to chain outside the lock since we know we are
* not submitted yet
*/
txd_chain(intr_tx, tx);
/* check if we need to append */
txd_lock(depend_tx);
if (txd_parent(depend_tx)) {
txd_chain(depend_tx, intr_tx);
async_tx_ack(intr_tx);
intr_tx = NULL;
}
txd_unlock(depend_tx);
if (intr_tx) {
txd_clear_parent(intr_tx);
intr_tx->tx_submit(intr_tx);
async_tx_ack(intr_tx);
}
device->device_issue_pending(chan);
} else {
if (dma_wait_for_async_tx(depend_tx) != DMA_COMPLETE)
panic("%s: DMA error waiting for depend_tx\n",
__func__);
tx->tx_submit(tx);
}
}
/**
* submit_disposition - flags for routing an incoming operation
* @ASYNC_TX_SUBMITTED: we were able to append the new operation under the lock
* @ASYNC_TX_CHANNEL_SWITCH: when the lock is dropped schedule a channel switch
* @ASYNC_TX_DIRECT_SUBMIT: when the lock is dropped submit directly
*
* while holding depend_tx->lock we must avoid submitting new operations
* to prevent a circular locking dependency with drivers that already
* hold a channel lock when calling async_tx_run_dependencies.
*/
enum submit_disposition {
ASYNC_TX_SUBMITTED,
ASYNC_TX_CHANNEL_SWITCH,
ASYNC_TX_DIRECT_SUBMIT,
};
void
async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
struct async_submit_ctl *submit)
{
struct dma_async_tx_descriptor *depend_tx = submit->depend_tx;
tx->callback = submit->cb_fn;
tx->callback_param = submit->cb_param;
if (depend_tx) {
enum submit_disposition s;
/* sanity check the dependency chain:
* 1/ if ack is already set then we cannot be sure
* we are referring to the correct operation
* 2/ dependencies are 1:1 i.e. two transactions can
* not depend on the same parent
*/
BUG_ON(async_tx_test_ack(depend_tx) || txd_next(depend_tx) ||
txd_parent(tx));
/* the lock prevents async_tx_run_dependencies from missing
* the setting of ->next when ->parent != NULL
*/
txd_lock(depend_tx);
if (txd_parent(depend_tx)) {
/* we have a parent so we can not submit directly
* if we are staying on the same channel: append
* else: channel switch
*/
if (depend_tx->chan == chan) {
txd_chain(depend_tx, tx);
s = ASYNC_TX_SUBMITTED;
} else
s = ASYNC_TX_CHANNEL_SWITCH;
} else {
/* we do not have a parent so we may be able to submit
* directly if we are staying on the same channel
*/
if (depend_tx->chan == chan)
s = ASYNC_TX_DIRECT_SUBMIT;
else
s = ASYNC_TX_CHANNEL_SWITCH;
}
txd_unlock(depend_tx);
switch (s) {
case ASYNC_TX_SUBMITTED:
break;
case ASYNC_TX_CHANNEL_SWITCH:
async_tx_channel_switch(depend_tx, tx);
break;
case ASYNC_TX_DIRECT_SUBMIT:
txd_clear_parent(tx);
tx->tx_submit(tx);
break;
}
} else {
txd_clear_parent(tx);
tx->tx_submit(tx);
}
if (submit->flags & ASYNC_TX_ACK)
async_tx_ack(tx);
if (depend_tx)
async_tx_ack(depend_tx);
}
EXPORT_SYMBOL_GPL(async_tx_submit);
/**
* async_trigger_callback - schedules the callback function to be run
* @submit: submission and completion parameters
*
* honored flags: ASYNC_TX_ACK
*
* The callback is run after any dependent operations have completed.
*/
struct dma_async_tx_descriptor *
async_trigger_callback(struct async_submit_ctl *submit)
{
struct dma_chan *chan;
struct dma_device *device;
struct dma_async_tx_descriptor *tx;
struct dma_async_tx_descriptor *depend_tx = submit->depend_tx;
if (depend_tx) {
chan = depend_tx->chan;
device = chan->device;
/* see if we can schedule an interrupt
* otherwise poll for completion
*/
if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask))
device = NULL;
tx = device ? device->device_prep_dma_interrupt(chan, 0) : NULL;
} else
tx = NULL;
if (tx) {
pr_debug("%s: (async)\n", __func__);
async_tx_submit(chan, tx, submit);
} else {
pr_debug("%s: (sync)\n", __func__);
/* wait for any prerequisite operations */
async_tx_quiesce(&submit->depend_tx);
async_tx_sync_epilog(submit);
}
return tx;
}
EXPORT_SYMBOL_GPL(async_trigger_callback);
/**
* async_tx_quiesce - ensure tx is complete and freeable upon return
* @tx - transaction to quiesce
*/
void async_tx_quiesce(struct dma_async_tx_descriptor **tx)
{
if (*tx) {
/* if ack is already set then we cannot be sure
* we are referring to the correct operation
*/
BUG_ON(async_tx_test_ack(*tx));
if (dma_wait_for_async_tx(*tx) != DMA_COMPLETE)
panic("%s: DMA error waiting for transaction\n",
__func__);
async_tx_ack(*tx);
*tx = NULL;
}
}
EXPORT_SYMBOL_GPL(async_tx_quiesce);
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API");
MODULE_LICENSE("GPL");