linux-brain/fs/nilfs2/page.c
Ryusuke Konishi ae98043f5f nilfs2: convert to SPDX license tags
Remove the verbose license text from NILFS2 files and replace them with
SPDX tags.  This does not change the license of any of the code.

Link: http://lkml.kernel.org/r/1535624528-5982-1-git-send-email-konishi.ryusuke@lab.ntt.co.jp
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-09-04 16:45:02 -07:00

565 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* page.c - buffer/page management specific to NILFS
*
* Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
*
* Written by Ryusuke Konishi and Seiji Kihara.
*/
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/swap.h>
#include <linux/bitops.h>
#include <linux/page-flags.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/pagevec.h>
#include <linux/gfp.h>
#include "nilfs.h"
#include "page.h"
#include "mdt.h"
#define NILFS_BUFFER_INHERENT_BITS \
(BIT(BH_Uptodate) | BIT(BH_Mapped) | BIT(BH_NILFS_Node) | \
BIT(BH_NILFS_Volatile) | BIT(BH_NILFS_Checked))
static struct buffer_head *
__nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
int blkbits, unsigned long b_state)
{
unsigned long first_block;
struct buffer_head *bh;
if (!page_has_buffers(page))
create_empty_buffers(page, 1 << blkbits, b_state);
first_block = (unsigned long)index << (PAGE_SHIFT - blkbits);
bh = nilfs_page_get_nth_block(page, block - first_block);
touch_buffer(bh);
wait_on_buffer(bh);
return bh;
}
struct buffer_head *nilfs_grab_buffer(struct inode *inode,
struct address_space *mapping,
unsigned long blkoff,
unsigned long b_state)
{
int blkbits = inode->i_blkbits;
pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits);
struct page *page;
struct buffer_head *bh;
page = grab_cache_page(mapping, index);
if (unlikely(!page))
return NULL;
bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
if (unlikely(!bh)) {
unlock_page(page);
put_page(page);
return NULL;
}
return bh;
}
/**
* nilfs_forget_buffer - discard dirty state
* @inode: owner inode of the buffer
* @bh: buffer head of the buffer to be discarded
*/
void nilfs_forget_buffer(struct buffer_head *bh)
{
struct page *page = bh->b_page;
const unsigned long clear_bits =
(BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
lock_buffer(bh);
set_mask_bits(&bh->b_state, clear_bits, 0);
if (nilfs_page_buffers_clean(page))
__nilfs_clear_page_dirty(page);
bh->b_blocknr = -1;
ClearPageUptodate(page);
ClearPageMappedToDisk(page);
unlock_buffer(bh);
brelse(bh);
}
/**
* nilfs_copy_buffer -- copy buffer data and flags
* @dbh: destination buffer
* @sbh: source buffer
*/
void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
{
void *kaddr0, *kaddr1;
unsigned long bits;
struct page *spage = sbh->b_page, *dpage = dbh->b_page;
struct buffer_head *bh;
kaddr0 = kmap_atomic(spage);
kaddr1 = kmap_atomic(dpage);
memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
kunmap_atomic(kaddr1);
kunmap_atomic(kaddr0);
dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
dbh->b_blocknr = sbh->b_blocknr;
dbh->b_bdev = sbh->b_bdev;
bh = dbh;
bits = sbh->b_state & (BIT(BH_Uptodate) | BIT(BH_Mapped));
while ((bh = bh->b_this_page) != dbh) {
lock_buffer(bh);
bits &= bh->b_state;
unlock_buffer(bh);
}
if (bits & BIT(BH_Uptodate))
SetPageUptodate(dpage);
else
ClearPageUptodate(dpage);
if (bits & BIT(BH_Mapped))
SetPageMappedToDisk(dpage);
else
ClearPageMappedToDisk(dpage);
}
/**
* nilfs_page_buffers_clean - check if a page has dirty buffers or not.
* @page: page to be checked
*
* nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
* Otherwise, it returns non-zero value.
*/
int nilfs_page_buffers_clean(struct page *page)
{
struct buffer_head *bh, *head;
bh = head = page_buffers(page);
do {
if (buffer_dirty(bh))
return 0;
bh = bh->b_this_page;
} while (bh != head);
return 1;
}
void nilfs_page_bug(struct page *page)
{
struct address_space *m;
unsigned long ino;
if (unlikely(!page)) {
printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
return;
}
m = page->mapping;
ino = m ? m->host->i_ino : 0;
printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
"mapping=%p ino=%lu\n",
page, page_ref_count(page),
(unsigned long long)page->index, page->flags, m, ino);
if (page_has_buffers(page)) {
struct buffer_head *bh, *head;
int i = 0;
bh = head = page_buffers(page);
do {
printk(KERN_CRIT
" BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
i++, bh, atomic_read(&bh->b_count),
(unsigned long long)bh->b_blocknr, bh->b_state);
bh = bh->b_this_page;
} while (bh != head);
}
}
/**
* nilfs_copy_page -- copy the page with buffers
* @dst: destination page
* @src: source page
* @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
*
* This function is for both data pages and btnode pages. The dirty flag
* should be treated by caller. The page must not be under i/o.
* Both src and dst page must be locked
*/
static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
{
struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
BUG_ON(PageWriteback(dst));
sbh = sbufs = page_buffers(src);
if (!page_has_buffers(dst))
create_empty_buffers(dst, sbh->b_size, 0);
if (copy_dirty)
mask |= BIT(BH_Dirty);
dbh = dbufs = page_buffers(dst);
do {
lock_buffer(sbh);
lock_buffer(dbh);
dbh->b_state = sbh->b_state & mask;
dbh->b_blocknr = sbh->b_blocknr;
dbh->b_bdev = sbh->b_bdev;
sbh = sbh->b_this_page;
dbh = dbh->b_this_page;
} while (dbh != dbufs);
copy_highpage(dst, src);
if (PageUptodate(src) && !PageUptodate(dst))
SetPageUptodate(dst);
else if (!PageUptodate(src) && PageUptodate(dst))
ClearPageUptodate(dst);
if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
SetPageMappedToDisk(dst);
else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
ClearPageMappedToDisk(dst);
do {
unlock_buffer(sbh);
unlock_buffer(dbh);
sbh = sbh->b_this_page;
dbh = dbh->b_this_page;
} while (dbh != dbufs);
}
int nilfs_copy_dirty_pages(struct address_space *dmap,
struct address_space *smap)
{
struct pagevec pvec;
unsigned int i;
pgoff_t index = 0;
int err = 0;
pagevec_init(&pvec);
repeat:
if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY))
return 0;
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i], *dpage;
lock_page(page);
if (unlikely(!PageDirty(page)))
NILFS_PAGE_BUG(page, "inconsistent dirty state");
dpage = grab_cache_page(dmap, page->index);
if (unlikely(!dpage)) {
/* No empty page is added to the page cache */
err = -ENOMEM;
unlock_page(page);
break;
}
if (unlikely(!page_has_buffers(page)))
NILFS_PAGE_BUG(page,
"found empty page in dat page cache");
nilfs_copy_page(dpage, page, 1);
__set_page_dirty_nobuffers(dpage);
unlock_page(dpage);
put_page(dpage);
unlock_page(page);
}
pagevec_release(&pvec);
cond_resched();
if (likely(!err))
goto repeat;
return err;
}
/**
* nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
* @dmap: destination page cache
* @smap: source page cache
*
* No pages must no be added to the cache during this process.
* This must be ensured by the caller.
*/
void nilfs_copy_back_pages(struct address_space *dmap,
struct address_space *smap)
{
struct pagevec pvec;
unsigned int i, n;
pgoff_t index = 0;
int err;
pagevec_init(&pvec);
repeat:
n = pagevec_lookup(&pvec, smap, &index);
if (!n)
return;
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i], *dpage;
pgoff_t offset = page->index;
lock_page(page);
dpage = find_lock_page(dmap, offset);
if (dpage) {
/* override existing page on the destination cache */
WARN_ON(PageDirty(dpage));
nilfs_copy_page(dpage, page, 0);
unlock_page(dpage);
put_page(dpage);
} else {
struct page *page2;
/* move the page to the destination cache */
xa_lock_irq(&smap->i_pages);
page2 = radix_tree_delete(&smap->i_pages, offset);
WARN_ON(page2 != page);
smap->nrpages--;
xa_unlock_irq(&smap->i_pages);
xa_lock_irq(&dmap->i_pages);
err = radix_tree_insert(&dmap->i_pages, offset, page);
if (unlikely(err < 0)) {
WARN_ON(err == -EEXIST);
page->mapping = NULL;
put_page(page); /* for cache */
} else {
page->mapping = dmap;
dmap->nrpages++;
if (PageDirty(page))
radix_tree_tag_set(&dmap->i_pages,
offset,
PAGECACHE_TAG_DIRTY);
}
xa_unlock_irq(&dmap->i_pages);
}
unlock_page(page);
}
pagevec_release(&pvec);
cond_resched();
goto repeat;
}
/**
* nilfs_clear_dirty_pages - discard dirty pages in address space
* @mapping: address space with dirty pages for discarding
* @silent: suppress [true] or print [false] warning messages
*/
void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent)
{
struct pagevec pvec;
unsigned int i;
pgoff_t index = 0;
pagevec_init(&pvec);
while (pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY)) {
for (i = 0; i < pagevec_count(&pvec); i++) {
struct page *page = pvec.pages[i];
lock_page(page);
nilfs_clear_dirty_page(page, silent);
unlock_page(page);
}
pagevec_release(&pvec);
cond_resched();
}
}
/**
* nilfs_clear_dirty_page - discard dirty page
* @page: dirty page that will be discarded
* @silent: suppress [true] or print [false] warning messages
*/
void nilfs_clear_dirty_page(struct page *page, bool silent)
{
struct inode *inode = page->mapping->host;
struct super_block *sb = inode->i_sb;
BUG_ON(!PageLocked(page));
if (!silent)
nilfs_msg(sb, KERN_WARNING,
"discard dirty page: offset=%lld, ino=%lu",
page_offset(page), inode->i_ino);
ClearPageUptodate(page);
ClearPageMappedToDisk(page);
if (page_has_buffers(page)) {
struct buffer_head *bh, *head;
const unsigned long clear_bits =
(BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
bh = head = page_buffers(page);
do {
lock_buffer(bh);
if (!silent)
nilfs_msg(sb, KERN_WARNING,
"discard dirty block: blocknr=%llu, size=%zu",
(u64)bh->b_blocknr, bh->b_size);
set_mask_bits(&bh->b_state, clear_bits, 0);
unlock_buffer(bh);
} while (bh = bh->b_this_page, bh != head);
}
__nilfs_clear_page_dirty(page);
}
unsigned int nilfs_page_count_clean_buffers(struct page *page,
unsigned int from, unsigned int to)
{
unsigned int block_start, block_end;
struct buffer_head *bh, *head;
unsigned int nc = 0;
for (bh = head = page_buffers(page), block_start = 0;
bh != head || !block_start;
block_start = block_end, bh = bh->b_this_page) {
block_end = block_start + bh->b_size;
if (block_end > from && block_start < to && !buffer_dirty(bh))
nc++;
}
return nc;
}
void nilfs_mapping_init(struct address_space *mapping, struct inode *inode)
{
mapping->host = inode;
mapping->flags = 0;
mapping_set_gfp_mask(mapping, GFP_NOFS);
mapping->private_data = NULL;
mapping->a_ops = &empty_aops;
}
/*
* NILFS2 needs clear_page_dirty() in the following two cases:
*
* 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
* page dirty flags when it copies back pages from the shadow cache
* (gcdat->{i_mapping,i_btnode_cache}) to its original cache
* (dat->{i_mapping,i_btnode_cache}).
*
* 2) Some B-tree operations like insertion or deletion may dispose buffers
* in dirty state, and this needs to cancel the dirty state of their pages.
*/
int __nilfs_clear_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
if (mapping) {
xa_lock_irq(&mapping->i_pages);
if (test_bit(PG_dirty, &page->flags)) {
radix_tree_tag_clear(&mapping->i_pages,
page_index(page),
PAGECACHE_TAG_DIRTY);
xa_unlock_irq(&mapping->i_pages);
return clear_page_dirty_for_io(page);
}
xa_unlock_irq(&mapping->i_pages);
return 0;
}
return TestClearPageDirty(page);
}
/**
* nilfs_find_uncommitted_extent - find extent of uncommitted data
* @inode: inode
* @start_blk: start block offset (in)
* @blkoff: start offset of the found extent (out)
*
* This function searches an extent of buffers marked "delayed" which
* starts from a block offset equal to or larger than @start_blk. If
* such an extent was found, this will store the start offset in
* @blkoff and return its length in blocks. Otherwise, zero is
* returned.
*/
unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
sector_t start_blk,
sector_t *blkoff)
{
unsigned int i;
pgoff_t index;
unsigned int nblocks_in_page;
unsigned long length = 0;
sector_t b;
struct pagevec pvec;
struct page *page;
if (inode->i_mapping->nrpages == 0)
return 0;
index = start_blk >> (PAGE_SHIFT - inode->i_blkbits);
nblocks_in_page = 1U << (PAGE_SHIFT - inode->i_blkbits);
pagevec_init(&pvec);
repeat:
pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
pvec.pages);
if (pvec.nr == 0)
return length;
if (length > 0 && pvec.pages[0]->index > index)
goto out;
b = pvec.pages[0]->index << (PAGE_SHIFT - inode->i_blkbits);
i = 0;
do {
page = pvec.pages[i];
lock_page(page);
if (page_has_buffers(page)) {
struct buffer_head *bh, *head;
bh = head = page_buffers(page);
do {
if (b < start_blk)
continue;
if (buffer_delay(bh)) {
if (length == 0)
*blkoff = b;
length++;
} else if (length > 0) {
goto out_locked;
}
} while (++b, bh = bh->b_this_page, bh != head);
} else {
if (length > 0)
goto out_locked;
b += nblocks_in_page;
}
unlock_page(page);
} while (++i < pagevec_count(&pvec));
index = page->index + 1;
pagevec_release(&pvec);
cond_resched();
goto repeat;
out_locked:
unlock_page(page);
out:
pagevec_release(&pvec);
return length;
}