linux-brain/drivers/mmc/core/sd.c
Ulf Hansson 72741084d9 mmc: core: Fix init of SD cards reporting an invalid VDD range
The OCR register defines the supported range of VDD voltages for SD cards.
However, it has turned out that some SD cards reports an invalid voltage
range, for example having bit7 set.

When a host supports MMC_CAP2_FULL_PWR_CYCLE and some of the voltages from
the invalid VDD range, this triggers the core to run a power cycle of the
card to try to initialize it at the lowest common supported voltage.
Obviously this fails, since the card can't support it.

Let's fix this problem, by clearing invalid bits from the read OCR register
for SD cards, before proceeding with the VDD voltage negotiation.

Cc: stable@vger.kernel.org
Reported-by: Philip Langdale <philipl@overt.org>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Reviewed-by: Philip Langdale <philipl@overt.org>
Tested-by: Philip Langdale <philipl@overt.org>
Tested-by: Manuel Presnitz <mail@mpy.de>
2019-08-30 09:17:53 +02:00

1338 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mmc/core/sd.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
* SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
* Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
*/
#include <linux/err.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/pm_runtime.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include "core.h"
#include "card.h"
#include "host.h"
#include "bus.h"
#include "mmc_ops.h"
#include "sd.h"
#include "sd_ops.h"
static const unsigned int tran_exp[] = {
10000, 100000, 1000000, 10000000,
0, 0, 0, 0
};
static const unsigned char tran_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const unsigned int taac_exp[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
};
static const unsigned int taac_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const unsigned int sd_au_size[] = {
0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
};
#define UNSTUFF_BITS(resp,start,size) \
({ \
const int __size = size; \
const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
const int __off = 3 - ((start) / 32); \
const int __shft = (start) & 31; \
u32 __res; \
\
__res = resp[__off] >> __shft; \
if (__size + __shft > 32) \
__res |= resp[__off-1] << ((32 - __shft) % 32); \
__res & __mask; \
})
/*
* Given the decoded CSD structure, decode the raw CID to our CID structure.
*/
void mmc_decode_cid(struct mmc_card *card)
{
u32 *resp = card->raw_cid;
/*
* SD doesn't currently have a version field so we will
* have to assume we can parse this.
*/
card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
card->cid.year = UNSTUFF_BITS(resp, 12, 8);
card->cid.month = UNSTUFF_BITS(resp, 8, 4);
card->cid.year += 2000; /* SD cards year offset */
}
/*
* Given a 128-bit response, decode to our card CSD structure.
*/
static int mmc_decode_csd(struct mmc_card *card)
{
struct mmc_csd *csd = &card->csd;
unsigned int e, m, csd_struct;
u32 *resp = card->raw_csd;
csd_struct = UNSTUFF_BITS(resp, 126, 2);
switch (csd_struct) {
case 0:
m = UNSTUFF_BITS(resp, 115, 4);
e = UNSTUFF_BITS(resp, 112, 3);
csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
m = UNSTUFF_BITS(resp, 99, 4);
e = UNSTUFF_BITS(resp, 96, 3);
csd->max_dtr = tran_exp[e] * tran_mant[m];
csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
e = UNSTUFF_BITS(resp, 47, 3);
m = UNSTUFF_BITS(resp, 62, 12);
csd->capacity = (1 + m) << (e + 2);
csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
if (UNSTUFF_BITS(resp, 46, 1)) {
csd->erase_size = 1;
} else if (csd->write_blkbits >= 9) {
csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
csd->erase_size <<= csd->write_blkbits - 9;
}
break;
case 1:
/*
* This is a block-addressed SDHC or SDXC card. Most
* interesting fields are unused and have fixed
* values. To avoid getting tripped by buggy cards,
* we assume those fixed values ourselves.
*/
mmc_card_set_blockaddr(card);
csd->taac_ns = 0; /* Unused */
csd->taac_clks = 0; /* Unused */
m = UNSTUFF_BITS(resp, 99, 4);
e = UNSTUFF_BITS(resp, 96, 3);
csd->max_dtr = tran_exp[e] * tran_mant[m];
csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
csd->c_size = UNSTUFF_BITS(resp, 48, 22);
/* SDXC cards have a minimum C_SIZE of 0x00FFFF */
if (csd->c_size >= 0xFFFF)
mmc_card_set_ext_capacity(card);
m = UNSTUFF_BITS(resp, 48, 22);
csd->capacity = (1 + m) << 10;
csd->read_blkbits = 9;
csd->read_partial = 0;
csd->write_misalign = 0;
csd->read_misalign = 0;
csd->r2w_factor = 4; /* Unused */
csd->write_blkbits = 9;
csd->write_partial = 0;
csd->erase_size = 1;
break;
default:
pr_err("%s: unrecognised CSD structure version %d\n",
mmc_hostname(card->host), csd_struct);
return -EINVAL;
}
card->erase_size = csd->erase_size;
return 0;
}
/*
* Given a 64-bit response, decode to our card SCR structure.
*/
static int mmc_decode_scr(struct mmc_card *card)
{
struct sd_scr *scr = &card->scr;
unsigned int scr_struct;
u32 resp[4];
resp[3] = card->raw_scr[1];
resp[2] = card->raw_scr[0];
scr_struct = UNSTUFF_BITS(resp, 60, 4);
if (scr_struct != 0) {
pr_err("%s: unrecognised SCR structure version %d\n",
mmc_hostname(card->host), scr_struct);
return -EINVAL;
}
scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
if (scr->sda_vsn == SCR_SPEC_VER_2)
/* Check if Physical Layer Spec v3.0 is supported */
scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
if (scr->sda_spec3) {
scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1);
scr->sda_specx = UNSTUFF_BITS(resp, 38, 4);
}
if (UNSTUFF_BITS(resp, 55, 1))
card->erased_byte = 0xFF;
else
card->erased_byte = 0x0;
if (scr->sda_spec3)
scr->cmds = UNSTUFF_BITS(resp, 32, 2);
/* SD Spec says: any SD Card shall set at least bits 0 and 2 */
if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
!(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
return -EINVAL;
}
return 0;
}
/*
* Fetch and process SD Status register.
*/
static int mmc_read_ssr(struct mmc_card *card)
{
unsigned int au, es, et, eo;
__be32 *raw_ssr;
u32 resp[4] = {};
u8 discard_support;
int i;
if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
pr_warn("%s: card lacks mandatory SD Status function\n",
mmc_hostname(card->host));
return 0;
}
raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
if (!raw_ssr)
return -ENOMEM;
if (mmc_app_sd_status(card, raw_ssr)) {
pr_warn("%s: problem reading SD Status register\n",
mmc_hostname(card->host));
kfree(raw_ssr);
return 0;
}
for (i = 0; i < 16; i++)
card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
kfree(raw_ssr);
/*
* UNSTUFF_BITS only works with four u32s so we have to offset the
* bitfield positions accordingly.
*/
au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4);
if (au) {
if (au <= 9 || card->scr.sda_spec3) {
card->ssr.au = sd_au_size[au];
es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16);
et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6);
if (es && et) {
eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2);
card->ssr.erase_timeout = (et * 1000) / es;
card->ssr.erase_offset = eo * 1000;
}
} else {
pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
mmc_hostname(card->host));
}
}
/*
* starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
*/
resp[3] = card->raw_ssr[6];
discard_support = UNSTUFF_BITS(resp, 313 - 288, 1);
card->erase_arg = (card->scr.sda_specx && discard_support) ?
SD_DISCARD_ARG : SD_ERASE_ARG;
return 0;
}
/*
* Fetches and decodes switch information
*/
static int mmc_read_switch(struct mmc_card *card)
{
int err;
u8 *status;
if (card->scr.sda_vsn < SCR_SPEC_VER_1)
return 0;
if (!(card->csd.cmdclass & CCC_SWITCH)) {
pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
mmc_hostname(card->host));
return 0;
}
status = kmalloc(64, GFP_KERNEL);
if (!status)
return -ENOMEM;
/*
* Find out the card's support bits with a mode 0 operation.
* The argument does not matter, as the support bits do not
* change with the arguments.
*/
err = mmc_sd_switch(card, 0, 0, 0, status);
if (err) {
/*
* If the host or the card can't do the switch,
* fail more gracefully.
*/
if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
goto out;
pr_warn("%s: problem reading Bus Speed modes\n",
mmc_hostname(card->host));
err = 0;
goto out;
}
if (status[13] & SD_MODE_HIGH_SPEED)
card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
if (card->scr.sda_spec3) {
card->sw_caps.sd3_bus_mode = status[13];
/* Driver Strengths supported by the card */
card->sw_caps.sd3_drv_type = status[9];
card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
}
out:
kfree(status);
return err;
}
/*
* Test if the card supports high-speed mode and, if so, switch to it.
*/
int mmc_sd_switch_hs(struct mmc_card *card)
{
int err;
u8 *status;
if (card->scr.sda_vsn < SCR_SPEC_VER_1)
return 0;
if (!(card->csd.cmdclass & CCC_SWITCH))
return 0;
if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
return 0;
if (card->sw_caps.hs_max_dtr == 0)
return 0;
status = kmalloc(64, GFP_KERNEL);
if (!status)
return -ENOMEM;
err = mmc_sd_switch(card, 1, 0, 1, status);
if (err)
goto out;
if ((status[16] & 0xF) != 1) {
pr_warn("%s: Problem switching card into high-speed mode!\n",
mmc_hostname(card->host));
err = 0;
} else {
err = 1;
}
out:
kfree(status);
return err;
}
static int sd_select_driver_type(struct mmc_card *card, u8 *status)
{
int card_drv_type, drive_strength, drv_type;
int err;
card->drive_strength = 0;
card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
drive_strength = mmc_select_drive_strength(card,
card->sw_caps.uhs_max_dtr,
card_drv_type, &drv_type);
if (drive_strength) {
err = mmc_sd_switch(card, 1, 2, drive_strength, status);
if (err)
return err;
if ((status[15] & 0xF) != drive_strength) {
pr_warn("%s: Problem setting drive strength!\n",
mmc_hostname(card->host));
return 0;
}
card->drive_strength = drive_strength;
}
if (drv_type)
mmc_set_driver_type(card->host, drv_type);
return 0;
}
static void sd_update_bus_speed_mode(struct mmc_card *card)
{
/*
* If the host doesn't support any of the UHS-I modes, fallback on
* default speed.
*/
if (!mmc_host_uhs(card->host)) {
card->sd_bus_speed = 0;
return;
}
if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
(card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
} else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
(card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
SD_MODE_UHS_SDR50)) {
card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
(card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
SD_MODE_UHS_SDR12)) {
card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
}
}
static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
{
int err;
unsigned int timing = 0;
switch (card->sd_bus_speed) {
case UHS_SDR104_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR104;
card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
break;
case UHS_DDR50_BUS_SPEED:
timing = MMC_TIMING_UHS_DDR50;
card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
break;
case UHS_SDR50_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR50;
card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
break;
case UHS_SDR25_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR25;
card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
break;
case UHS_SDR12_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR12;
card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
break;
default:
return 0;
}
err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
if (err)
return err;
if ((status[16] & 0xF) != card->sd_bus_speed)
pr_warn("%s: Problem setting bus speed mode!\n",
mmc_hostname(card->host));
else {
mmc_set_timing(card->host, timing);
mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
}
return 0;
}
/* Get host's max current setting at its current voltage */
static u32 sd_get_host_max_current(struct mmc_host *host)
{
u32 voltage, max_current;
voltage = 1 << host->ios.vdd;
switch (voltage) {
case MMC_VDD_165_195:
max_current = host->max_current_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
max_current = host->max_current_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
max_current = host->max_current_330;
break;
default:
max_current = 0;
}
return max_current;
}
static int sd_set_current_limit(struct mmc_card *card, u8 *status)
{
int current_limit = SD_SET_CURRENT_NO_CHANGE;
int err;
u32 max_current;
/*
* Current limit switch is only defined for SDR50, SDR104, and DDR50
* bus speed modes. For other bus speed modes, we do not change the
* current limit.
*/
if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
(card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
(card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
return 0;
/*
* Host has different current capabilities when operating at
* different voltages, so find out its max current first.
*/
max_current = sd_get_host_max_current(card->host);
/*
* We only check host's capability here, if we set a limit that is
* higher than the card's maximum current, the card will be using its
* maximum current, e.g. if the card's maximum current is 300ma, and
* when we set current limit to 200ma, the card will draw 200ma, and
* when we set current limit to 400/600/800ma, the card will draw its
* maximum 300ma from the host.
*
* The above is incorrect: if we try to set a current limit that is
* not supported by the card, the card can rightfully error out the
* attempt, and remain at the default current limit. This results
* in a 300mA card being limited to 200mA even though the host
* supports 800mA. Failures seen with SanDisk 8GB UHS cards with
* an iMX6 host. --rmk
*/
if (max_current >= 800 &&
card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
current_limit = SD_SET_CURRENT_LIMIT_800;
else if (max_current >= 600 &&
card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
current_limit = SD_SET_CURRENT_LIMIT_600;
else if (max_current >= 400 &&
card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
current_limit = SD_SET_CURRENT_LIMIT_400;
else if (max_current >= 200 &&
card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
current_limit = SD_SET_CURRENT_LIMIT_200;
if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
err = mmc_sd_switch(card, 1, 3, current_limit, status);
if (err)
return err;
if (((status[15] >> 4) & 0x0F) != current_limit)
pr_warn("%s: Problem setting current limit!\n",
mmc_hostname(card->host));
}
return 0;
}
/*
* UHS-I specific initialization procedure
*/
static int mmc_sd_init_uhs_card(struct mmc_card *card)
{
int err;
u8 *status;
if (!(card->csd.cmdclass & CCC_SWITCH))
return 0;
status = kmalloc(64, GFP_KERNEL);
if (!status)
return -ENOMEM;
/* Set 4-bit bus width */
err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
if (err)
goto out;
mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
/*
* Select the bus speed mode depending on host
* and card capability.
*/
sd_update_bus_speed_mode(card);
/* Set the driver strength for the card */
err = sd_select_driver_type(card, status);
if (err)
goto out;
/* Set current limit for the card */
err = sd_set_current_limit(card, status);
if (err)
goto out;
/* Set bus speed mode of the card */
err = sd_set_bus_speed_mode(card, status);
if (err)
goto out;
/*
* SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
* SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
*/
if (!mmc_host_is_spi(card->host) &&
(card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
err = mmc_execute_tuning(card);
/*
* As SD Specifications Part1 Physical Layer Specification
* Version 3.01 says, CMD19 tuning is available for unlocked
* cards in transfer state of 1.8V signaling mode. The small
* difference between v3.00 and 3.01 spec means that CMD19
* tuning is also available for DDR50 mode.
*/
if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
pr_warn("%s: ddr50 tuning failed\n",
mmc_hostname(card->host));
err = 0;
}
}
out:
kfree(status);
return err;
}
MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
card->raw_cid[2], card->raw_cid[3]);
MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
card->raw_csd[2], card->raw_csd[3]);
MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
MMC_DEV_ATTR(ssr,
"%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
card->raw_ssr[15]);
MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
static ssize_t mmc_dsr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mmc_card *card = mmc_dev_to_card(dev);
struct mmc_host *host = card->host;
if (card->csd.dsr_imp && host->dsr_req)
return sprintf(buf, "0x%x\n", host->dsr);
else
/* return default DSR value */
return sprintf(buf, "0x%x\n", 0x404);
}
static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
static struct attribute *sd_std_attrs[] = {
&dev_attr_cid.attr,
&dev_attr_csd.attr,
&dev_attr_scr.attr,
&dev_attr_ssr.attr,
&dev_attr_date.attr,
&dev_attr_erase_size.attr,
&dev_attr_preferred_erase_size.attr,
&dev_attr_fwrev.attr,
&dev_attr_hwrev.attr,
&dev_attr_manfid.attr,
&dev_attr_name.attr,
&dev_attr_oemid.attr,
&dev_attr_serial.attr,
&dev_attr_ocr.attr,
&dev_attr_rca.attr,
&dev_attr_dsr.attr,
NULL,
};
ATTRIBUTE_GROUPS(sd_std);
struct device_type sd_type = {
.groups = sd_std_groups,
};
/*
* Fetch CID from card.
*/
int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
{
int err;
u32 max_current;
int retries = 10;
u32 pocr = ocr;
try_again:
if (!retries) {
ocr &= ~SD_OCR_S18R;
pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
}
/*
* Since we're changing the OCR value, we seem to
* need to tell some cards to go back to the idle
* state. We wait 1ms to give cards time to
* respond.
*/
mmc_go_idle(host);
/*
* If SD_SEND_IF_COND indicates an SD 2.0
* compliant card and we should set bit 30
* of the ocr to indicate that we can handle
* block-addressed SDHC cards.
*/
err = mmc_send_if_cond(host, ocr);
if (!err)
ocr |= SD_OCR_CCS;
/*
* If the host supports one of UHS-I modes, request the card
* to switch to 1.8V signaling level. If the card has failed
* repeatedly to switch however, skip this.
*/
if (retries && mmc_host_uhs(host))
ocr |= SD_OCR_S18R;
/*
* If the host can supply more than 150mA at current voltage,
* XPC should be set to 1.
*/
max_current = sd_get_host_max_current(host);
if (max_current > 150)
ocr |= SD_OCR_XPC;
err = mmc_send_app_op_cond(host, ocr, rocr);
if (err)
return err;
/*
* In case CCS and S18A in the response is set, start Signal Voltage
* Switch procedure. SPI mode doesn't support CMD11.
*/
if (!mmc_host_is_spi(host) && rocr &&
((*rocr & 0x41000000) == 0x41000000)) {
err = mmc_set_uhs_voltage(host, pocr);
if (err == -EAGAIN) {
retries--;
goto try_again;
} else if (err) {
retries = 0;
goto try_again;
}
}
err = mmc_send_cid(host, cid);
return err;
}
int mmc_sd_get_csd(struct mmc_host *host, struct mmc_card *card)
{
int err;
/*
* Fetch CSD from card.
*/
err = mmc_send_csd(card, card->raw_csd);
if (err)
return err;
err = mmc_decode_csd(card);
if (err)
return err;
return 0;
}
static int mmc_sd_get_ro(struct mmc_host *host)
{
int ro;
/*
* Some systems don't feature a write-protect pin and don't need one.
* E.g. because they only have micro-SD card slot. For those systems
* assume that the SD card is always read-write.
*/
if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
return 0;
if (!host->ops->get_ro)
return -1;
ro = host->ops->get_ro(host);
return ro;
}
int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
bool reinit)
{
int err;
if (!reinit) {
/*
* Fetch SCR from card.
*/
err = mmc_app_send_scr(card);
if (err)
return err;
err = mmc_decode_scr(card);
if (err)
return err;
/*
* Fetch and process SD Status register.
*/
err = mmc_read_ssr(card);
if (err)
return err;
/* Erase init depends on CSD and SSR */
mmc_init_erase(card);
/*
* Fetch switch information from card.
*/
err = mmc_read_switch(card);
if (err)
return err;
}
/*
* For SPI, enable CRC as appropriate.
* This CRC enable is located AFTER the reading of the
* card registers because some SDHC cards are not able
* to provide valid CRCs for non-512-byte blocks.
*/
if (mmc_host_is_spi(host)) {
err = mmc_spi_set_crc(host, use_spi_crc);
if (err)
return err;
}
/*
* Check if read-only switch is active.
*/
if (!reinit) {
int ro = mmc_sd_get_ro(host);
if (ro < 0) {
pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
mmc_hostname(host));
} else if (ro > 0) {
mmc_card_set_readonly(card);
}
}
return 0;
}
unsigned mmc_sd_get_max_clock(struct mmc_card *card)
{
unsigned max_dtr = (unsigned int)-1;
if (mmc_card_hs(card)) {
if (max_dtr > card->sw_caps.hs_max_dtr)
max_dtr = card->sw_caps.hs_max_dtr;
} else if (max_dtr > card->csd.max_dtr) {
max_dtr = card->csd.max_dtr;
}
return max_dtr;
}
static bool mmc_sd_card_using_v18(struct mmc_card *card)
{
/*
* According to the SD spec., the Bus Speed Mode (function group 1) bits
* 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
* they can be used to determine if the card has already switched to
* 1.8V signaling.
*/
return card->sw_caps.sd3_bus_mode &
(SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
}
/*
* Handle the detection and initialisation of a card.
*
* In the case of a resume, "oldcard" will contain the card
* we're trying to reinitialise.
*/
static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
struct mmc_card *oldcard)
{
struct mmc_card *card;
int err;
u32 cid[4];
u32 rocr = 0;
bool v18_fixup_failed = false;
WARN_ON(!host->claimed);
retry:
err = mmc_sd_get_cid(host, ocr, cid, &rocr);
if (err)
return err;
if (oldcard) {
if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
pr_debug("%s: Perhaps the card was replaced\n",
mmc_hostname(host));
return -ENOENT;
}
card = oldcard;
} else {
/*
* Allocate card structure.
*/
card = mmc_alloc_card(host, &sd_type);
if (IS_ERR(card))
return PTR_ERR(card);
card->ocr = ocr;
card->type = MMC_TYPE_SD;
memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
}
/*
* Call the optional HC's init_card function to handle quirks.
*/
if (host->ops->init_card)
host->ops->init_card(host, card);
/*
* For native busses: get card RCA and quit open drain mode.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_send_relative_addr(host, &card->rca);
if (err)
goto free_card;
}
if (!oldcard) {
err = mmc_sd_get_csd(host, card);
if (err)
goto free_card;
mmc_decode_cid(card);
}
/*
* handling only for cards supporting DSR and hosts requesting
* DSR configuration
*/
if (card->csd.dsr_imp && host->dsr_req)
mmc_set_dsr(host);
/*
* Select card, as all following commands rely on that.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_select_card(card);
if (err)
goto free_card;
}
err = mmc_sd_setup_card(host, card, oldcard != NULL);
if (err)
goto free_card;
/*
* If the card has not been power cycled, it may still be using 1.8V
* signaling. Detect that situation and try to initialize a UHS-I (1.8V)
* transfer mode.
*/
if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
mmc_sd_card_using_v18(card) &&
host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
/*
* Re-read switch information in case it has changed since
* oldcard was initialized.
*/
if (oldcard) {
err = mmc_read_switch(card);
if (err)
goto free_card;
}
if (mmc_sd_card_using_v18(card)) {
if (mmc_host_set_uhs_voltage(host) ||
mmc_sd_init_uhs_card(card)) {
v18_fixup_failed = true;
mmc_power_cycle(host, ocr);
if (!oldcard)
mmc_remove_card(card);
goto retry;
}
goto done;
}
}
/* Initialization sequence for UHS-I cards */
if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
err = mmc_sd_init_uhs_card(card);
if (err)
goto free_card;
} else {
/*
* Attempt to change to high-speed (if supported)
*/
err = mmc_sd_switch_hs(card);
if (err > 0)
mmc_set_timing(card->host, MMC_TIMING_SD_HS);
else if (err)
goto free_card;
/*
* Set bus speed.
*/
mmc_set_clock(host, mmc_sd_get_max_clock(card));
/*
* Switch to wider bus (if supported).
*/
if ((host->caps & MMC_CAP_4_BIT_DATA) &&
(card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
if (err)
goto free_card;
mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
}
}
if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
pr_err("%s: Host failed to negotiate down from 3.3V\n",
mmc_hostname(host));
err = -EINVAL;
goto free_card;
}
done:
host->card = card;
return 0;
free_card:
if (!oldcard)
mmc_remove_card(card);
return err;
}
/*
* Host is being removed. Free up the current card.
*/
static void mmc_sd_remove(struct mmc_host *host)
{
mmc_remove_card(host->card);
host->card = NULL;
}
/*
* Card detection - card is alive.
*/
static int mmc_sd_alive(struct mmc_host *host)
{
return mmc_send_status(host->card, NULL);
}
/*
* Card detection callback from host.
*/
static void mmc_sd_detect(struct mmc_host *host)
{
int err;
mmc_get_card(host->card, NULL);
/*
* Just check if our card has been removed.
*/
err = _mmc_detect_card_removed(host);
mmc_put_card(host->card, NULL);
if (err) {
mmc_sd_remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
}
}
static int _mmc_sd_suspend(struct mmc_host *host)
{
int err = 0;
mmc_claim_host(host);
if (mmc_card_suspended(host->card))
goto out;
if (!mmc_host_is_spi(host))
err = mmc_deselect_cards(host);
if (!err) {
mmc_power_off(host);
mmc_card_set_suspended(host->card);
}
out:
mmc_release_host(host);
return err;
}
/*
* Callback for suspend
*/
static int mmc_sd_suspend(struct mmc_host *host)
{
int err;
err = _mmc_sd_suspend(host);
if (!err) {
pm_runtime_disable(&host->card->dev);
pm_runtime_set_suspended(&host->card->dev);
}
return err;
}
/*
* This function tries to determine if the same card is still present
* and, if so, restore all state to it.
*/
static int _mmc_sd_resume(struct mmc_host *host)
{
int err = 0;
mmc_claim_host(host);
if (!mmc_card_suspended(host->card))
goto out;
mmc_power_up(host, host->card->ocr);
err = mmc_sd_init_card(host, host->card->ocr, host->card);
mmc_card_clr_suspended(host->card);
out:
mmc_release_host(host);
return err;
}
/*
* Callback for resume
*/
static int mmc_sd_resume(struct mmc_host *host)
{
pm_runtime_enable(&host->card->dev);
return 0;
}
/*
* Callback for runtime_suspend.
*/
static int mmc_sd_runtime_suspend(struct mmc_host *host)
{
int err;
if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
return 0;
err = _mmc_sd_suspend(host);
if (err)
pr_err("%s: error %d doing aggressive suspend\n",
mmc_hostname(host), err);
return err;
}
/*
* Callback for runtime_resume.
*/
static int mmc_sd_runtime_resume(struct mmc_host *host)
{
int err;
err = _mmc_sd_resume(host);
if (err && err != -ENOMEDIUM)
pr_err("%s: error %d doing runtime resume\n",
mmc_hostname(host), err);
return 0;
}
static int mmc_sd_hw_reset(struct mmc_host *host)
{
mmc_power_cycle(host, host->card->ocr);
return mmc_sd_init_card(host, host->card->ocr, host->card);
}
static const struct mmc_bus_ops mmc_sd_ops = {
.remove = mmc_sd_remove,
.detect = mmc_sd_detect,
.runtime_suspend = mmc_sd_runtime_suspend,
.runtime_resume = mmc_sd_runtime_resume,
.suspend = mmc_sd_suspend,
.resume = mmc_sd_resume,
.alive = mmc_sd_alive,
.shutdown = mmc_sd_suspend,
.hw_reset = mmc_sd_hw_reset,
};
/*
* Starting point for SD card init.
*/
int mmc_attach_sd(struct mmc_host *host)
{
int err;
u32 ocr, rocr;
WARN_ON(!host->claimed);
err = mmc_send_app_op_cond(host, 0, &ocr);
if (err)
return err;
mmc_attach_bus(host, &mmc_sd_ops);
if (host->ocr_avail_sd)
host->ocr_avail = host->ocr_avail_sd;
/*
* We need to get OCR a different way for SPI.
*/
if (mmc_host_is_spi(host)) {
mmc_go_idle(host);
err = mmc_spi_read_ocr(host, 0, &ocr);
if (err)
goto err;
}
/*
* Some SD cards claims an out of spec VDD voltage range. Let's treat
* these bits as being in-valid and especially also bit7.
*/
ocr &= ~0x7FFF;
rocr = mmc_select_voltage(host, ocr);
/*
* Can we support the voltage(s) of the card(s)?
*/
if (!rocr) {
err = -EINVAL;
goto err;
}
/*
* Detect and init the card.
*/
err = mmc_sd_init_card(host, rocr, NULL);
if (err)
goto err;
mmc_release_host(host);
err = mmc_add_card(host->card);
if (err)
goto remove_card;
mmc_claim_host(host);
return 0;
remove_card:
mmc_remove_card(host->card);
host->card = NULL;
mmc_claim_host(host);
err:
mmc_detach_bus(host);
pr_err("%s: error %d whilst initialising SD card\n",
mmc_hostname(host), err);
return err;
}