linux-brain/fs/hfs/extent.c
Ernesto A. Fernández 54640c7502 hfs: prevent btree data loss on ENOSPC
Inserting a new record in a btree may require splitting several of its
nodes.  If we hit ENOSPC halfway through, the new nodes will be left
orphaned and their records will be lost.  This could mean lost inodes or
extents.

Henceforth, check the available disk space before making any changes.
This still leaves the potential problem of corruption on ENOMEM.

There is no need to reserve space before deleting a catalog record, as we
do for hfsplus.  This difference is because hfs index nodes have fixed
length keys.

Link: http://lkml.kernel.org/r/ab5fc8a7d5ffccfd5f27b1cf2cb4ceb6c110da74.1536269131.git.ernesto.mnd.fernandez@gmail.com
Signed-off-by: Ernesto A. Fernández <ernesto.mnd.fernandez@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:13 -07:00

550 lines
14 KiB
C

/*
* linux/fs/hfs/extent.c
*
* Copyright (C) 1995-1997 Paul H. Hargrove
* (C) 2003 Ardis Technologies <roman@ardistech.com>
* This file may be distributed under the terms of the GNU General Public License.
*
* This file contains the functions related to the extents B-tree.
*/
#include <linux/pagemap.h>
#include "hfs_fs.h"
#include "btree.h"
/*================ File-local functions ================*/
/*
* build_key
*/
static void hfs_ext_build_key(hfs_btree_key *key, u32 cnid, u16 block, u8 type)
{
key->key_len = 7;
key->ext.FkType = type;
key->ext.FNum = cpu_to_be32(cnid);
key->ext.FABN = cpu_to_be16(block);
}
/*
* hfs_ext_compare()
*
* Description:
* This is the comparison function used for the extents B-tree. In
* comparing extent B-tree entries, the file id is the most
* significant field (compared as unsigned ints); the fork type is
* the second most significant field (compared as unsigned chars);
* and the allocation block number field is the least significant
* (compared as unsigned ints).
* Input Variable(s):
* struct hfs_ext_key *key1: pointer to the first key to compare
* struct hfs_ext_key *key2: pointer to the second key to compare
* Output Variable(s):
* NONE
* Returns:
* int: negative if key1<key2, positive if key1>key2, and 0 if key1==key2
* Preconditions:
* key1 and key2 point to "valid" (struct hfs_ext_key)s.
* Postconditions:
* This function has no side-effects */
int hfs_ext_keycmp(const btree_key *key1, const btree_key *key2)
{
__be32 fnum1, fnum2;
__be16 block1, block2;
fnum1 = key1->ext.FNum;
fnum2 = key2->ext.FNum;
if (fnum1 != fnum2)
return be32_to_cpu(fnum1) < be32_to_cpu(fnum2) ? -1 : 1;
if (key1->ext.FkType != key2->ext.FkType)
return key1->ext.FkType < key2->ext.FkType ? -1 : 1;
block1 = key1->ext.FABN;
block2 = key2->ext.FABN;
if (block1 == block2)
return 0;
return be16_to_cpu(block1) < be16_to_cpu(block2) ? -1 : 1;
}
/*
* hfs_ext_find_block
*
* Find a block within an extent record
*/
static u16 hfs_ext_find_block(struct hfs_extent *ext, u16 off)
{
int i;
u16 count;
for (i = 0; i < 3; ext++, i++) {
count = be16_to_cpu(ext->count);
if (off < count)
return be16_to_cpu(ext->block) + off;
off -= count;
}
/* panic? */
return 0;
}
static int hfs_ext_block_count(struct hfs_extent *ext)
{
int i;
u16 count = 0;
for (i = 0; i < 3; ext++, i++)
count += be16_to_cpu(ext->count);
return count;
}
static u16 hfs_ext_lastblock(struct hfs_extent *ext)
{
int i;
ext += 2;
for (i = 0; i < 2; ext--, i++)
if (ext->count)
break;
return be16_to_cpu(ext->block) + be16_to_cpu(ext->count);
}
static int __hfs_ext_write_extent(struct inode *inode, struct hfs_find_data *fd)
{
int res;
hfs_ext_build_key(fd->search_key, inode->i_ino, HFS_I(inode)->cached_start,
HFS_IS_RSRC(inode) ? HFS_FK_RSRC : HFS_FK_DATA);
res = hfs_brec_find(fd);
if (HFS_I(inode)->flags & HFS_FLG_EXT_NEW) {
if (res != -ENOENT)
return res;
/* Fail early and avoid ENOSPC during the btree operation */
res = hfs_bmap_reserve(fd->tree, fd->tree->depth + 1);
if (res)
return res;
hfs_brec_insert(fd, HFS_I(inode)->cached_extents, sizeof(hfs_extent_rec));
HFS_I(inode)->flags &= ~(HFS_FLG_EXT_DIRTY|HFS_FLG_EXT_NEW);
} else {
if (res)
return res;
hfs_bnode_write(fd->bnode, HFS_I(inode)->cached_extents, fd->entryoffset, fd->entrylength);
HFS_I(inode)->flags &= ~HFS_FLG_EXT_DIRTY;
}
return 0;
}
int hfs_ext_write_extent(struct inode *inode)
{
struct hfs_find_data fd;
int res = 0;
if (HFS_I(inode)->flags & HFS_FLG_EXT_DIRTY) {
res = hfs_find_init(HFS_SB(inode->i_sb)->ext_tree, &fd);
if (res)
return res;
res = __hfs_ext_write_extent(inode, &fd);
hfs_find_exit(&fd);
}
return res;
}
static inline int __hfs_ext_read_extent(struct hfs_find_data *fd, struct hfs_extent *extent,
u32 cnid, u32 block, u8 type)
{
int res;
hfs_ext_build_key(fd->search_key, cnid, block, type);
fd->key->ext.FNum = 0;
res = hfs_brec_find(fd);
if (res && res != -ENOENT)
return res;
if (fd->key->ext.FNum != fd->search_key->ext.FNum ||
fd->key->ext.FkType != fd->search_key->ext.FkType)
return -ENOENT;
if (fd->entrylength != sizeof(hfs_extent_rec))
return -EIO;
hfs_bnode_read(fd->bnode, extent, fd->entryoffset, sizeof(hfs_extent_rec));
return 0;
}
static inline int __hfs_ext_cache_extent(struct hfs_find_data *fd, struct inode *inode, u32 block)
{
int res;
if (HFS_I(inode)->flags & HFS_FLG_EXT_DIRTY) {
res = __hfs_ext_write_extent(inode, fd);
if (res)
return res;
}
res = __hfs_ext_read_extent(fd, HFS_I(inode)->cached_extents, inode->i_ino,
block, HFS_IS_RSRC(inode) ? HFS_FK_RSRC : HFS_FK_DATA);
if (!res) {
HFS_I(inode)->cached_start = be16_to_cpu(fd->key->ext.FABN);
HFS_I(inode)->cached_blocks = hfs_ext_block_count(HFS_I(inode)->cached_extents);
} else {
HFS_I(inode)->cached_start = HFS_I(inode)->cached_blocks = 0;
HFS_I(inode)->flags &= ~(HFS_FLG_EXT_DIRTY|HFS_FLG_EXT_NEW);
}
return res;
}
static int hfs_ext_read_extent(struct inode *inode, u16 block)
{
struct hfs_find_data fd;
int res;
if (block >= HFS_I(inode)->cached_start &&
block < HFS_I(inode)->cached_start + HFS_I(inode)->cached_blocks)
return 0;
res = hfs_find_init(HFS_SB(inode->i_sb)->ext_tree, &fd);
if (!res) {
res = __hfs_ext_cache_extent(&fd, inode, block);
hfs_find_exit(&fd);
}
return res;
}
static void hfs_dump_extent(struct hfs_extent *extent)
{
int i;
hfs_dbg(EXTENT, " ");
for (i = 0; i < 3; i++)
hfs_dbg_cont(EXTENT, " %u:%u",
be16_to_cpu(extent[i].block),
be16_to_cpu(extent[i].count));
hfs_dbg_cont(EXTENT, "\n");
}
static int hfs_add_extent(struct hfs_extent *extent, u16 offset,
u16 alloc_block, u16 block_count)
{
u16 count, start;
int i;
hfs_dump_extent(extent);
for (i = 0; i < 3; extent++, i++) {
count = be16_to_cpu(extent->count);
if (offset == count) {
start = be16_to_cpu(extent->block);
if (alloc_block != start + count) {
if (++i >= 3)
return -ENOSPC;
extent++;
extent->block = cpu_to_be16(alloc_block);
} else
block_count += count;
extent->count = cpu_to_be16(block_count);
return 0;
} else if (offset < count)
break;
offset -= count;
}
/* panic? */
return -EIO;
}
static int hfs_free_extents(struct super_block *sb, struct hfs_extent *extent,
u16 offset, u16 block_nr)
{
u16 count, start;
int i;
hfs_dump_extent(extent);
for (i = 0; i < 3; extent++, i++) {
count = be16_to_cpu(extent->count);
if (offset == count)
goto found;
else if (offset < count)
break;
offset -= count;
}
/* panic? */
return -EIO;
found:
for (;;) {
start = be16_to_cpu(extent->block);
if (count <= block_nr) {
hfs_clear_vbm_bits(sb, start, count);
extent->block = 0;
extent->count = 0;
block_nr -= count;
} else {
count -= block_nr;
hfs_clear_vbm_bits(sb, start + count, block_nr);
extent->count = cpu_to_be16(count);
block_nr = 0;
}
if (!block_nr || !i)
return 0;
i--;
extent--;
count = be16_to_cpu(extent->count);
}
}
int hfs_free_fork(struct super_block *sb, struct hfs_cat_file *file, int type)
{
struct hfs_find_data fd;
u32 total_blocks, blocks, start;
u32 cnid = be32_to_cpu(file->FlNum);
struct hfs_extent *extent;
int res, i;
if (type == HFS_FK_DATA) {
total_blocks = be32_to_cpu(file->PyLen);
extent = file->ExtRec;
} else {
total_blocks = be32_to_cpu(file->RPyLen);
extent = file->RExtRec;
}
total_blocks /= HFS_SB(sb)->alloc_blksz;
if (!total_blocks)
return 0;
blocks = 0;
for (i = 0; i < 3; extent++, i++)
blocks += be16_to_cpu(extent[i].count);
res = hfs_free_extents(sb, extent, blocks, blocks);
if (res)
return res;
if (total_blocks == blocks)
return 0;
res = hfs_find_init(HFS_SB(sb)->ext_tree, &fd);
if (res)
return res;
do {
res = __hfs_ext_read_extent(&fd, extent, cnid, total_blocks, type);
if (res)
break;
start = be16_to_cpu(fd.key->ext.FABN);
hfs_free_extents(sb, extent, total_blocks - start, total_blocks);
hfs_brec_remove(&fd);
total_blocks = start;
} while (total_blocks > blocks);
hfs_find_exit(&fd);
return res;
}
/*
* hfs_get_block
*/
int hfs_get_block(struct inode *inode, sector_t block,
struct buffer_head *bh_result, int create)
{
struct super_block *sb;
u16 dblock, ablock;
int res;
sb = inode->i_sb;
/* Convert inode block to disk allocation block */
ablock = (u32)block / HFS_SB(sb)->fs_div;
if (block >= HFS_I(inode)->fs_blocks) {
if (block > HFS_I(inode)->fs_blocks || !create)
return -EIO;
if (ablock >= HFS_I(inode)->alloc_blocks) {
res = hfs_extend_file(inode);
if (res)
return res;
}
} else
create = 0;
if (ablock < HFS_I(inode)->first_blocks) {
dblock = hfs_ext_find_block(HFS_I(inode)->first_extents, ablock);
goto done;
}
mutex_lock(&HFS_I(inode)->extents_lock);
res = hfs_ext_read_extent(inode, ablock);
if (!res)
dblock = hfs_ext_find_block(HFS_I(inode)->cached_extents,
ablock - HFS_I(inode)->cached_start);
else {
mutex_unlock(&HFS_I(inode)->extents_lock);
return -EIO;
}
mutex_unlock(&HFS_I(inode)->extents_lock);
done:
map_bh(bh_result, sb, HFS_SB(sb)->fs_start +
dblock * HFS_SB(sb)->fs_div +
(u32)block % HFS_SB(sb)->fs_div);
if (create) {
set_buffer_new(bh_result);
HFS_I(inode)->phys_size += sb->s_blocksize;
HFS_I(inode)->fs_blocks++;
inode_add_bytes(inode, sb->s_blocksize);
mark_inode_dirty(inode);
}
return 0;
}
int hfs_extend_file(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
u32 start, len, goal;
int res;
mutex_lock(&HFS_I(inode)->extents_lock);
if (HFS_I(inode)->alloc_blocks == HFS_I(inode)->first_blocks)
goal = hfs_ext_lastblock(HFS_I(inode)->first_extents);
else {
res = hfs_ext_read_extent(inode, HFS_I(inode)->alloc_blocks);
if (res)
goto out;
goal = hfs_ext_lastblock(HFS_I(inode)->cached_extents);
}
len = HFS_I(inode)->clump_blocks;
start = hfs_vbm_search_free(sb, goal, &len);
if (!len) {
res = -ENOSPC;
goto out;
}
hfs_dbg(EXTENT, "extend %lu: %u,%u\n", inode->i_ino, start, len);
if (HFS_I(inode)->alloc_blocks == HFS_I(inode)->first_blocks) {
if (!HFS_I(inode)->first_blocks) {
hfs_dbg(EXTENT, "first extents\n");
/* no extents yet */
HFS_I(inode)->first_extents[0].block = cpu_to_be16(start);
HFS_I(inode)->first_extents[0].count = cpu_to_be16(len);
res = 0;
} else {
/* try to append to extents in inode */
res = hfs_add_extent(HFS_I(inode)->first_extents,
HFS_I(inode)->alloc_blocks,
start, len);
if (res == -ENOSPC)
goto insert_extent;
}
if (!res) {
hfs_dump_extent(HFS_I(inode)->first_extents);
HFS_I(inode)->first_blocks += len;
}
} else {
res = hfs_add_extent(HFS_I(inode)->cached_extents,
HFS_I(inode)->alloc_blocks -
HFS_I(inode)->cached_start,
start, len);
if (!res) {
hfs_dump_extent(HFS_I(inode)->cached_extents);
HFS_I(inode)->flags |= HFS_FLG_EXT_DIRTY;
HFS_I(inode)->cached_blocks += len;
} else if (res == -ENOSPC)
goto insert_extent;
}
out:
mutex_unlock(&HFS_I(inode)->extents_lock);
if (!res) {
HFS_I(inode)->alloc_blocks += len;
mark_inode_dirty(inode);
if (inode->i_ino < HFS_FIRSTUSER_CNID)
set_bit(HFS_FLG_ALT_MDB_DIRTY, &HFS_SB(sb)->flags);
set_bit(HFS_FLG_MDB_DIRTY, &HFS_SB(sb)->flags);
hfs_mark_mdb_dirty(sb);
}
return res;
insert_extent:
hfs_dbg(EXTENT, "insert new extent\n");
res = hfs_ext_write_extent(inode);
if (res)
goto out;
memset(HFS_I(inode)->cached_extents, 0, sizeof(hfs_extent_rec));
HFS_I(inode)->cached_extents[0].block = cpu_to_be16(start);
HFS_I(inode)->cached_extents[0].count = cpu_to_be16(len);
hfs_dump_extent(HFS_I(inode)->cached_extents);
HFS_I(inode)->flags |= HFS_FLG_EXT_DIRTY|HFS_FLG_EXT_NEW;
HFS_I(inode)->cached_start = HFS_I(inode)->alloc_blocks;
HFS_I(inode)->cached_blocks = len;
res = 0;
goto out;
}
void hfs_file_truncate(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
struct hfs_find_data fd;
u16 blk_cnt, alloc_cnt, start;
u32 size;
int res;
hfs_dbg(INODE, "truncate: %lu, %Lu -> %Lu\n",
inode->i_ino, (long long)HFS_I(inode)->phys_size,
inode->i_size);
if (inode->i_size > HFS_I(inode)->phys_size) {
struct address_space *mapping = inode->i_mapping;
void *fsdata;
struct page *page;
/* XXX: Can use generic_cont_expand? */
size = inode->i_size - 1;
res = pagecache_write_begin(NULL, mapping, size+1, 0, 0,
&page, &fsdata);
if (!res) {
res = pagecache_write_end(NULL, mapping, size+1, 0, 0,
page, fsdata);
}
if (res)
inode->i_size = HFS_I(inode)->phys_size;
return;
} else if (inode->i_size == HFS_I(inode)->phys_size)
return;
size = inode->i_size + HFS_SB(sb)->alloc_blksz - 1;
blk_cnt = size / HFS_SB(sb)->alloc_blksz;
alloc_cnt = HFS_I(inode)->alloc_blocks;
if (blk_cnt == alloc_cnt)
goto out;
mutex_lock(&HFS_I(inode)->extents_lock);
res = hfs_find_init(HFS_SB(sb)->ext_tree, &fd);
if (res) {
mutex_unlock(&HFS_I(inode)->extents_lock);
/* XXX: We lack error handling of hfs_file_truncate() */
return;
}
while (1) {
if (alloc_cnt == HFS_I(inode)->first_blocks) {
hfs_free_extents(sb, HFS_I(inode)->first_extents,
alloc_cnt, alloc_cnt - blk_cnt);
hfs_dump_extent(HFS_I(inode)->first_extents);
HFS_I(inode)->first_blocks = blk_cnt;
break;
}
res = __hfs_ext_cache_extent(&fd, inode, alloc_cnt);
if (res)
break;
start = HFS_I(inode)->cached_start;
hfs_free_extents(sb, HFS_I(inode)->cached_extents,
alloc_cnt - start, alloc_cnt - blk_cnt);
hfs_dump_extent(HFS_I(inode)->cached_extents);
if (blk_cnt > start) {
HFS_I(inode)->flags |= HFS_FLG_EXT_DIRTY;
break;
}
alloc_cnt = start;
HFS_I(inode)->cached_start = HFS_I(inode)->cached_blocks = 0;
HFS_I(inode)->flags &= ~(HFS_FLG_EXT_DIRTY|HFS_FLG_EXT_NEW);
hfs_brec_remove(&fd);
}
hfs_find_exit(&fd);
mutex_unlock(&HFS_I(inode)->extents_lock);
HFS_I(inode)->alloc_blocks = blk_cnt;
out:
HFS_I(inode)->phys_size = inode->i_size;
HFS_I(inode)->fs_blocks = (inode->i_size + sb->s_blocksize - 1) >> sb->s_blocksize_bits;
inode_set_bytes(inode, HFS_I(inode)->fs_blocks << sb->s_blocksize_bits);
mark_inode_dirty(inode);
}