linux-brain/arch/arm64/kernel/traps.c
Qiao Zhou fc42149932 arm64: traps: disable irq in die()
commit 6f44a0bacb upstream.

In current die(), the irq is disabled for __die() handle, not
including the possible panic() handling. Since the log in __die()
can take several hundreds ms, new irq might come and interrupt
current die().

If the process calling die() holds some critical resource, and some
other process scheduled later also needs it, then it would deadlock.
The first panic will not be executed.

So here disable irq for the whole flow of die().

Signed-off-by: Qiao Zhou <qiaozhou@asrmicro.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-27 14:13:04 +09:00

724 lines
18 KiB
C

/*
* Based on arch/arm/kernel/traps.c
*
* Copyright (C) 1995-2009 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bug.h>
#include <linux/signal.h>
#include <linux/personality.h>
#include <linux/kallsyms.h>
#include <linux/spinlock.h>
#include <linux/uaccess.h>
#include <linux/hardirq.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/kexec.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/syscalls.h>
#include <asm/atomic.h>
#include <asm/bug.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/insn.h>
#include <asm/traps.h>
#include <asm/stacktrace.h>
#include <asm/exception.h>
#include <asm/system_misc.h>
#include <asm/sysreg.h>
static const char *handler[]= {
"Synchronous Abort",
"IRQ",
"FIQ",
"Error"
};
int show_unhandled_signals = 0;
/*
* Dump out the contents of some kernel memory nicely...
*/
static void dump_mem(const char *lvl, const char *str, unsigned long bottom,
unsigned long top)
{
unsigned long first;
mm_segment_t fs;
int i;
/*
* We need to switch to kernel mode so that we can use __get_user
* to safely read from kernel space.
*/
fs = get_fs();
set_fs(KERNEL_DS);
printk("%s%s(0x%016lx to 0x%016lx)\n", lvl, str, bottom, top);
for (first = bottom & ~31; first < top; first += 32) {
unsigned long p;
char str[sizeof(" 12345678") * 8 + 1];
memset(str, ' ', sizeof(str));
str[sizeof(str) - 1] = '\0';
for (p = first, i = 0; i < (32 / 8)
&& p < top; i++, p += 8) {
if (p >= bottom && p < top) {
unsigned long val;
if (__get_user(val, (unsigned long *)p) == 0)
sprintf(str + i * 17, " %016lx", val);
else
sprintf(str + i * 17, " ????????????????");
}
}
printk("%s%04lx:%s\n", lvl, first & 0xffff, str);
}
set_fs(fs);
}
static void dump_backtrace_entry(unsigned long where)
{
/*
* Note that 'where' can have a physical address, but it's not handled.
*/
print_ip_sym(where);
}
static void __dump_instr(const char *lvl, struct pt_regs *regs)
{
unsigned long addr = instruction_pointer(regs);
char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
int i;
for (i = -4; i < 1; i++) {
unsigned int val, bad;
bad = get_user(val, &((u32 *)addr)[i]);
if (!bad)
p += sprintf(p, i == 0 ? "(%08x) " : "%08x ", val);
else {
p += sprintf(p, "bad PC value");
break;
}
}
printk("%sCode: %s\n", lvl, str);
}
static void dump_instr(const char *lvl, struct pt_regs *regs)
{
if (!user_mode(regs)) {
mm_segment_t fs = get_fs();
set_fs(KERNEL_DS);
__dump_instr(lvl, regs);
set_fs(fs);
} else {
__dump_instr(lvl, regs);
}
}
static void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)
{
struct stackframe frame;
unsigned long irq_stack_ptr;
int skip;
pr_debug("%s(regs = %p tsk = %p)\n", __func__, regs, tsk);
if (!tsk)
tsk = current;
/*
* Switching between stacks is valid when tracing current and in
* non-preemptible context.
*/
if (tsk == current && !preemptible())
irq_stack_ptr = IRQ_STACK_PTR(smp_processor_id());
else
irq_stack_ptr = 0;
if (tsk == current) {
frame.fp = (unsigned long)__builtin_frame_address(0);
frame.sp = current_stack_pointer;
frame.pc = (unsigned long)dump_backtrace;
} else {
/*
* task blocked in __switch_to
*/
frame.fp = thread_saved_fp(tsk);
frame.sp = thread_saved_sp(tsk);
frame.pc = thread_saved_pc(tsk);
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
frame.graph = tsk->curr_ret_stack;
#endif
skip = !!regs;
printk("Call trace:\n");
while (1) {
unsigned long where = frame.pc;
unsigned long stack;
int ret;
/* skip until specified stack frame */
if (!skip) {
dump_backtrace_entry(where);
} else if (frame.fp == regs->regs[29]) {
skip = 0;
/*
* Mostly, this is the case where this function is
* called in panic/abort. As exception handler's
* stack frame does not contain the corresponding pc
* at which an exception has taken place, use regs->pc
* instead.
*/
dump_backtrace_entry(regs->pc);
}
ret = unwind_frame(tsk, &frame);
if (ret < 0)
break;
stack = frame.sp;
if (in_exception_text(where)) {
/*
* If we switched to the irq_stack before calling this
* exception handler, then the pt_regs will be on the
* task stack. The easiest way to tell is if the large
* pt_regs would overlap with the end of the irq_stack.
*/
if (stack < irq_stack_ptr &&
(stack + sizeof(struct pt_regs)) > irq_stack_ptr)
stack = IRQ_STACK_TO_TASK_STACK(irq_stack_ptr);
dump_mem("", "Exception stack", stack,
stack + sizeof(struct pt_regs));
}
}
}
void show_stack(struct task_struct *tsk, unsigned long *sp)
{
dump_backtrace(NULL, tsk);
barrier();
}
#ifdef CONFIG_PREEMPT
#define S_PREEMPT " PREEMPT"
#else
#define S_PREEMPT ""
#endif
#define S_SMP " SMP"
static int __die(const char *str, int err, struct thread_info *thread,
struct pt_regs *regs)
{
struct task_struct *tsk = thread->task;
static int die_counter;
int ret;
pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP "\n",
str, err, ++die_counter);
/* trap and error numbers are mostly meaningless on ARM */
ret = notify_die(DIE_OOPS, str, regs, err, 0, SIGSEGV);
if (ret == NOTIFY_STOP)
return ret;
print_modules();
__show_regs(regs);
pr_emerg("Process %.*s (pid: %d, stack limit = 0x%p)\n",
TASK_COMM_LEN, tsk->comm, task_pid_nr(tsk), thread + 1);
if (!user_mode(regs)) {
dump_mem(KERN_EMERG, "Stack: ", regs->sp,
THREAD_SIZE + (unsigned long)task_stack_page(tsk));
dump_backtrace(regs, tsk);
dump_instr(KERN_EMERG, regs);
}
return ret;
}
static DEFINE_RAW_SPINLOCK(die_lock);
/*
* This function is protected against re-entrancy.
*/
void die(const char *str, struct pt_regs *regs, int err)
{
struct thread_info *thread = current_thread_info();
int ret;
unsigned long flags;
raw_spin_lock_irqsave(&die_lock, flags);
oops_enter();
console_verbose();
bust_spinlocks(1);
ret = __die(str, err, thread, regs);
if (regs && kexec_should_crash(thread->task))
crash_kexec(regs);
bust_spinlocks(0);
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
oops_exit();
if (in_interrupt())
panic("Fatal exception in interrupt");
if (panic_on_oops)
panic("Fatal exception");
raw_spin_unlock_irqrestore(&die_lock, flags);
if (ret != NOTIFY_STOP)
do_exit(SIGSEGV);
}
void arm64_notify_die(const char *str, struct pt_regs *regs,
struct siginfo *info, int err)
{
if (user_mode(regs)) {
current->thread.fault_address = 0;
current->thread.fault_code = err;
force_sig_info(info->si_signo, info, current);
} else {
die(str, regs, err);
}
}
static LIST_HEAD(undef_hook);
static DEFINE_RAW_SPINLOCK(undef_lock);
void register_undef_hook(struct undef_hook *hook)
{
unsigned long flags;
raw_spin_lock_irqsave(&undef_lock, flags);
list_add(&hook->node, &undef_hook);
raw_spin_unlock_irqrestore(&undef_lock, flags);
}
void unregister_undef_hook(struct undef_hook *hook)
{
unsigned long flags;
raw_spin_lock_irqsave(&undef_lock, flags);
list_del(&hook->node);
raw_spin_unlock_irqrestore(&undef_lock, flags);
}
static int call_undef_hook(struct pt_regs *regs)
{
struct undef_hook *hook;
unsigned long flags;
u32 instr;
int (*fn)(struct pt_regs *regs, u32 instr) = NULL;
void __user *pc = (void __user *)instruction_pointer(regs);
if (!user_mode(regs))
return 1;
if (compat_thumb_mode(regs)) {
/* 16-bit Thumb instruction */
if (get_user(instr, (u16 __user *)pc))
goto exit;
instr = le16_to_cpu(instr);
if (aarch32_insn_is_wide(instr)) {
u32 instr2;
if (get_user(instr2, (u16 __user *)(pc + 2)))
goto exit;
instr2 = le16_to_cpu(instr2);
instr = (instr << 16) | instr2;
}
} else {
/* 32-bit ARM instruction */
if (get_user(instr, (u32 __user *)pc))
goto exit;
instr = le32_to_cpu(instr);
}
raw_spin_lock_irqsave(&undef_lock, flags);
list_for_each_entry(hook, &undef_hook, node)
if ((instr & hook->instr_mask) == hook->instr_val &&
(regs->pstate & hook->pstate_mask) == hook->pstate_val)
fn = hook->fn;
raw_spin_unlock_irqrestore(&undef_lock, flags);
exit:
return fn ? fn(regs, instr) : 1;
}
static void force_signal_inject(int signal, int code, struct pt_regs *regs,
unsigned long address)
{
siginfo_t info;
void __user *pc = (void __user *)instruction_pointer(regs);
const char *desc;
switch (signal) {
case SIGILL:
desc = "undefined instruction";
break;
case SIGSEGV:
desc = "illegal memory access";
break;
default:
desc = "bad mode";
break;
}
if (unhandled_signal(current, signal) &&
show_unhandled_signals_ratelimited()) {
pr_info("%s[%d]: %s: pc=%p\n",
current->comm, task_pid_nr(current), desc, pc);
dump_instr(KERN_INFO, regs);
}
info.si_signo = signal;
info.si_errno = 0;
info.si_code = code;
info.si_addr = pc;
arm64_notify_die(desc, regs, &info, 0);
}
/*
* Set up process info to signal segmentation fault - called on access error.
*/
void arm64_notify_segfault(struct pt_regs *regs, unsigned long addr)
{
int code;
down_read(&current->mm->mmap_sem);
if (find_vma(current->mm, addr) == NULL)
code = SEGV_MAPERR;
else
code = SEGV_ACCERR;
up_read(&current->mm->mmap_sem);
force_signal_inject(SIGSEGV, code, regs, addr);
}
asmlinkage void __exception do_undefinstr(struct pt_regs *regs)
{
/* check for AArch32 breakpoint instructions */
if (!aarch32_break_handler(regs))
return;
if (call_undef_hook(regs) == 0)
return;
force_signal_inject(SIGILL, ILL_ILLOPC, regs, 0);
}
int cpu_enable_cache_maint_trap(void *__unused)
{
config_sctlr_el1(SCTLR_EL1_UCI, 0);
return 0;
}
#define __user_cache_maint(insn, address, res) \
if (address >= user_addr_max()) \
res = -EFAULT; \
else \
asm volatile ( \
"1: " insn ", %1\n" \
" mov %w0, #0\n" \
"2:\n" \
" .pushsection .fixup,\"ax\"\n" \
" .align 2\n" \
"3: mov %w0, %w2\n" \
" b 2b\n" \
" .popsection\n" \
_ASM_EXTABLE(1b, 3b) \
: "=r" (res) \
: "r" (address), "i" (-EFAULT) )
static void user_cache_maint_handler(unsigned int esr, struct pt_regs *regs)
{
unsigned long address;
int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT;
int crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
int ret = 0;
address = (rt == 31) ? 0 : untagged_addr(regs->regs[rt]);
switch (crm) {
case ESR_ELx_SYS64_ISS_CRM_DC_CVAU: /* DC CVAU, gets promoted */
__user_cache_maint("dc civac", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_DC_CVAC: /* DC CVAC, gets promoted */
__user_cache_maint("dc civac", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_DC_CIVAC: /* DC CIVAC */
__user_cache_maint("dc civac", address, ret);
break;
case ESR_ELx_SYS64_ISS_CRM_IC_IVAU: /* IC IVAU */
__user_cache_maint("ic ivau", address, ret);
break;
default:
force_signal_inject(SIGILL, ILL_ILLOPC, regs, 0);
return;
}
if (ret)
arm64_notify_segfault(regs, address);
else
regs->pc += 4;
}
static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
{
int rt = (esr & ESR_ELx_SYS64_ISS_RT_MASK) >> ESR_ELx_SYS64_ISS_RT_SHIFT;
regs->regs[rt] = arm64_ftr_reg_ctrel0.sys_val;
regs->pc += 4;
}
struct sys64_hook {
unsigned int esr_mask;
unsigned int esr_val;
void (*handler)(unsigned int esr, struct pt_regs *regs);
};
static struct sys64_hook sys64_hooks[] = {
{
.esr_mask = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_EL0_CACHE_OP_VAL,
.handler = user_cache_maint_handler,
},
{
/* Trap read access to CTR_EL0 */
.esr_mask = ESR_ELx_SYS64_ISS_SYS_OP_MASK,
.esr_val = ESR_ELx_SYS64_ISS_SYS_CTR_READ,
.handler = ctr_read_handler,
},
{},
};
asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs)
{
struct sys64_hook *hook;
for (hook = sys64_hooks; hook->handler; hook++)
if ((hook->esr_mask & esr) == hook->esr_val) {
hook->handler(esr, regs);
return;
}
force_signal_inject(SIGILL, ILL_ILLOPC, regs, 0);
}
long compat_arm_syscall(struct pt_regs *regs);
asmlinkage long do_ni_syscall(struct pt_regs *regs)
{
#ifdef CONFIG_COMPAT
long ret;
if (is_compat_task()) {
ret = compat_arm_syscall(regs);
if (ret != -ENOSYS)
return ret;
}
#endif
if (show_unhandled_signals_ratelimited()) {
pr_info("%s[%d]: syscall %d\n", current->comm,
task_pid_nr(current), (int)regs->syscallno);
dump_instr("", regs);
if (user_mode(regs))
__show_regs(regs);
}
return sys_ni_syscall();
}
static const char *esr_class_str[] = {
[0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
[ESR_ELx_EC_UNKNOWN] = "Unknown/Uncategorized",
[ESR_ELx_EC_WFx] = "WFI/WFE",
[ESR_ELx_EC_CP15_32] = "CP15 MCR/MRC",
[ESR_ELx_EC_CP15_64] = "CP15 MCRR/MRRC",
[ESR_ELx_EC_CP14_MR] = "CP14 MCR/MRC",
[ESR_ELx_EC_CP14_LS] = "CP14 LDC/STC",
[ESR_ELx_EC_FP_ASIMD] = "ASIMD",
[ESR_ELx_EC_CP10_ID] = "CP10 MRC/VMRS",
[ESR_ELx_EC_CP14_64] = "CP14 MCRR/MRRC",
[ESR_ELx_EC_ILL] = "PSTATE.IL",
[ESR_ELx_EC_SVC32] = "SVC (AArch32)",
[ESR_ELx_EC_HVC32] = "HVC (AArch32)",
[ESR_ELx_EC_SMC32] = "SMC (AArch32)",
[ESR_ELx_EC_SVC64] = "SVC (AArch64)",
[ESR_ELx_EC_HVC64] = "HVC (AArch64)",
[ESR_ELx_EC_SMC64] = "SMC (AArch64)",
[ESR_ELx_EC_SYS64] = "MSR/MRS (AArch64)",
[ESR_ELx_EC_IMP_DEF] = "EL3 IMP DEF",
[ESR_ELx_EC_IABT_LOW] = "IABT (lower EL)",
[ESR_ELx_EC_IABT_CUR] = "IABT (current EL)",
[ESR_ELx_EC_PC_ALIGN] = "PC Alignment",
[ESR_ELx_EC_DABT_LOW] = "DABT (lower EL)",
[ESR_ELx_EC_DABT_CUR] = "DABT (current EL)",
[ESR_ELx_EC_SP_ALIGN] = "SP Alignment",
[ESR_ELx_EC_FP_EXC32] = "FP (AArch32)",
[ESR_ELx_EC_FP_EXC64] = "FP (AArch64)",
[ESR_ELx_EC_SERROR] = "SError",
[ESR_ELx_EC_BREAKPT_LOW] = "Breakpoint (lower EL)",
[ESR_ELx_EC_BREAKPT_CUR] = "Breakpoint (current EL)",
[ESR_ELx_EC_SOFTSTP_LOW] = "Software Step (lower EL)",
[ESR_ELx_EC_SOFTSTP_CUR] = "Software Step (current EL)",
[ESR_ELx_EC_WATCHPT_LOW] = "Watchpoint (lower EL)",
[ESR_ELx_EC_WATCHPT_CUR] = "Watchpoint (current EL)",
[ESR_ELx_EC_BKPT32] = "BKPT (AArch32)",
[ESR_ELx_EC_VECTOR32] = "Vector catch (AArch32)",
[ESR_ELx_EC_BRK64] = "BRK (AArch64)",
};
const char *esr_get_class_string(u32 esr)
{
return esr_class_str[ESR_ELx_EC(esr)];
}
/*
* bad_mode handles the impossible case in the exception vector. This is always
* fatal.
*/
asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
{
console_verbose();
pr_crit("Bad mode in %s handler detected on CPU%d, code 0x%08x -- %s\n",
handler[reason], smp_processor_id(), esr,
esr_get_class_string(esr));
die("Oops - bad mode", regs, 0);
local_irq_disable();
panic("bad mode");
}
/*
* bad_el0_sync handles unexpected, but potentially recoverable synchronous
* exceptions taken from EL0. Unlike bad_mode, this returns.
*/
asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
{
siginfo_t info;
void __user *pc = (void __user *)instruction_pointer(regs);
console_verbose();
pr_crit("Bad EL0 synchronous exception detected on CPU%d, code 0x%08x -- %s\n",
smp_processor_id(), esr, esr_get_class_string(esr));
__show_regs(regs);
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_ILLOPC;
info.si_addr = pc;
current->thread.fault_address = 0;
current->thread.fault_code = 0;
force_sig_info(info.si_signo, &info, current);
}
void __pte_error(const char *file, int line, unsigned long val)
{
pr_err("%s:%d: bad pte %016lx.\n", file, line, val);
}
void __pmd_error(const char *file, int line, unsigned long val)
{
pr_err("%s:%d: bad pmd %016lx.\n", file, line, val);
}
void __pud_error(const char *file, int line, unsigned long val)
{
pr_err("%s:%d: bad pud %016lx.\n", file, line, val);
}
void __pgd_error(const char *file, int line, unsigned long val)
{
pr_err("%s:%d: bad pgd %016lx.\n", file, line, val);
}
/* GENERIC_BUG traps */
int is_valid_bugaddr(unsigned long addr)
{
/*
* bug_handler() only called for BRK #BUG_BRK_IMM.
* So the answer is trivial -- any spurious instances with no
* bug table entry will be rejected by report_bug() and passed
* back to the debug-monitors code and handled as a fatal
* unexpected debug exception.
*/
return 1;
}
static int bug_handler(struct pt_regs *regs, unsigned int esr)
{
if (user_mode(regs))
return DBG_HOOK_ERROR;
switch (report_bug(regs->pc, regs)) {
case BUG_TRAP_TYPE_BUG:
die("Oops - BUG", regs, 0);
break;
case BUG_TRAP_TYPE_WARN:
/* Ideally, report_bug() should backtrace for us... but no. */
dump_backtrace(regs, NULL);
break;
default:
/* unknown/unrecognised bug trap type */
return DBG_HOOK_ERROR;
}
/* If thread survives, skip over the BUG instruction and continue: */
regs->pc += AARCH64_INSN_SIZE; /* skip BRK and resume */
return DBG_HOOK_HANDLED;
}
static struct break_hook bug_break_hook = {
.esr_val = 0xf2000000 | BUG_BRK_IMM,
.esr_mask = 0xffffffff,
.fn = bug_handler,
};
/*
* Initial handler for AArch64 BRK exceptions
* This handler only used until debug_traps_init().
*/
int __init early_brk64(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
{
return bug_handler(regs, esr) != DBG_HOOK_HANDLED;
}
/* This registration must happen early, before debug_traps_init(). */
void __init trap_init(void)
{
register_break_hook(&bug_break_hook);
}