linux-brain/arch/x86/include/asm/segment.h
Linus Torvalds 050e9baa9d Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variables
The changes to automatically test for working stack protector compiler
support in the Kconfig files removed the special STACKPROTECTOR_AUTO
option that picked the strongest stack protector that the compiler
supported.

That was all a nice cleanup - it makes no sense to have the AUTO case
now that the Kconfig phase can just determine the compiler support
directly.

HOWEVER.

It also meant that doing "make oldconfig" would now _disable_ the strong
stackprotector if you had AUTO enabled, because in a legacy config file,
the sane stack protector configuration would look like

  CONFIG_HAVE_CC_STACKPROTECTOR=y
  # CONFIG_CC_STACKPROTECTOR_NONE is not set
  # CONFIG_CC_STACKPROTECTOR_REGULAR is not set
  # CONFIG_CC_STACKPROTECTOR_STRONG is not set
  CONFIG_CC_STACKPROTECTOR_AUTO=y

and when you ran this through "make oldconfig" with the Kbuild changes,
it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had
been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just
CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version
used to be disabled (because it was really enabled by AUTO), and would
disable it in the new config, resulting in:

  CONFIG_HAVE_CC_STACKPROTECTOR=y
  CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
  CONFIG_CC_STACKPROTECTOR=y
  # CONFIG_CC_STACKPROTECTOR_STRONG is not set
  CONFIG_CC_HAS_SANE_STACKPROTECTOR=y

That's dangerously subtle - people could suddenly find themselves with
the weaker stack protector setup without even realizing.

The solution here is to just rename not just the old RECULAR stack
protector option, but also the strong one.  This does that by just
removing the CC_ prefix entirely for the user choices, because it really
is not about the compiler support (the compiler support now instead
automatially impacts _visibility_ of the options to users).

This results in "make oldconfig" actually asking the user for their
choice, so that we don't have any silent subtle security model changes.
The end result would generally look like this:

  CONFIG_HAVE_CC_STACKPROTECTOR=y
  CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
  CONFIG_STACKPROTECTOR=y
  CONFIG_STACKPROTECTOR_STRONG=y
  CONFIG_CC_HAS_SANE_STACKPROTECTOR=y

where the "CC_" versions really are about internal compiler
infrastructure, not the user selections.

Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-14 12:21:18 +09:00

341 lines
9.5 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_SEGMENT_H
#define _ASM_X86_SEGMENT_H
#include <linux/const.h>
#include <asm/alternative.h>
/*
* Constructor for a conventional segment GDT (or LDT) entry.
* This is a macro so it can be used in initializers.
*/
#define GDT_ENTRY(flags, base, limit) \
((((base) & _AC(0xff000000,ULL)) << (56-24)) | \
(((flags) & _AC(0x0000f0ff,ULL)) << 40) | \
(((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \
(((base) & _AC(0x00ffffff,ULL)) << 16) | \
(((limit) & _AC(0x0000ffff,ULL))))
/* Simple and small GDT entries for booting only: */
#define GDT_ENTRY_BOOT_CS 2
#define GDT_ENTRY_BOOT_DS 3
#define GDT_ENTRY_BOOT_TSS 4
#define __BOOT_CS (GDT_ENTRY_BOOT_CS*8)
#define __BOOT_DS (GDT_ENTRY_BOOT_DS*8)
#define __BOOT_TSS (GDT_ENTRY_BOOT_TSS*8)
/*
* Bottom two bits of selector give the ring
* privilege level
*/
#define SEGMENT_RPL_MASK 0x3
/* User mode is privilege level 3: */
#define USER_RPL 0x3
/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */
#define SEGMENT_TI_MASK 0x4
/* LDT segment has TI set ... */
#define SEGMENT_LDT 0x4
/* ... GDT has it cleared */
#define SEGMENT_GDT 0x0
#define GDT_ENTRY_INVALID_SEG 0
#ifdef CONFIG_X86_32
/*
* The layout of the per-CPU GDT under Linux:
*
* 0 - null <=== cacheline #1
* 1 - reserved
* 2 - reserved
* 3 - reserved
*
* 4 - unused <=== cacheline #2
* 5 - unused
*
* ------- start of TLS (Thread-Local Storage) segments:
*
* 6 - TLS segment #1 [ glibc's TLS segment ]
* 7 - TLS segment #2 [ Wine's %fs Win32 segment ]
* 8 - TLS segment #3 <=== cacheline #3
* 9 - reserved
* 10 - reserved
* 11 - reserved
*
* ------- start of kernel segments:
*
* 12 - kernel code segment <=== cacheline #4
* 13 - kernel data segment
* 14 - default user CS
* 15 - default user DS
* 16 - TSS <=== cacheline #5
* 17 - LDT
* 18 - PNPBIOS support (16->32 gate)
* 19 - PNPBIOS support
* 20 - PNPBIOS support <=== cacheline #6
* 21 - PNPBIOS support
* 22 - PNPBIOS support
* 23 - APM BIOS support
* 24 - APM BIOS support <=== cacheline #7
* 25 - APM BIOS support
*
* 26 - ESPFIX small SS
* 27 - per-cpu [ offset to per-cpu data area ]
* 28 - stack_canary-20 [ for stack protector ] <=== cacheline #8
* 29 - unused
* 30 - unused
* 31 - TSS for double fault handler
*/
#define GDT_ENTRY_TLS_MIN 6
#define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1)
#define GDT_ENTRY_KERNEL_CS 12
#define GDT_ENTRY_KERNEL_DS 13
#define GDT_ENTRY_DEFAULT_USER_CS 14
#define GDT_ENTRY_DEFAULT_USER_DS 15
#define GDT_ENTRY_TSS 16
#define GDT_ENTRY_LDT 17
#define GDT_ENTRY_PNPBIOS_CS32 18
#define GDT_ENTRY_PNPBIOS_CS16 19
#define GDT_ENTRY_PNPBIOS_DS 20
#define GDT_ENTRY_PNPBIOS_TS1 21
#define GDT_ENTRY_PNPBIOS_TS2 22
#define GDT_ENTRY_APMBIOS_BASE 23
#define GDT_ENTRY_ESPFIX_SS 26
#define GDT_ENTRY_PERCPU 27
#define GDT_ENTRY_STACK_CANARY 28
#define GDT_ENTRY_DOUBLEFAULT_TSS 31
/*
* Number of entries in the GDT table:
*/
#define GDT_ENTRIES 32
/*
* Segment selector values corresponding to the above entries:
*/
#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8)
#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
#define __ESPFIX_SS (GDT_ENTRY_ESPFIX_SS*8)
/* segment for calling fn: */
#define PNP_CS32 (GDT_ENTRY_PNPBIOS_CS32*8)
/* code segment for BIOS: */
#define PNP_CS16 (GDT_ENTRY_PNPBIOS_CS16*8)
/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */
#define SEGMENT_IS_PNP_CODE(x) (((x) & 0xf4) == PNP_CS32)
/* data segment for BIOS: */
#define PNP_DS (GDT_ENTRY_PNPBIOS_DS*8)
/* transfer data segment: */
#define PNP_TS1 (GDT_ENTRY_PNPBIOS_TS1*8)
/* another data segment: */
#define PNP_TS2 (GDT_ENTRY_PNPBIOS_TS2*8)
#ifdef CONFIG_SMP
# define __KERNEL_PERCPU (GDT_ENTRY_PERCPU*8)
#else
# define __KERNEL_PERCPU 0
#endif
#ifdef CONFIG_STACKPROTECTOR
# define __KERNEL_STACK_CANARY (GDT_ENTRY_STACK_CANARY*8)
#else
# define __KERNEL_STACK_CANARY 0
#endif
#else /* 64-bit: */
#include <asm/cache.h>
#define GDT_ENTRY_KERNEL32_CS 1
#define GDT_ENTRY_KERNEL_CS 2
#define GDT_ENTRY_KERNEL_DS 3
/*
* We cannot use the same code segment descriptor for user and kernel mode,
* not even in long flat mode, because of different DPL.
*
* GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes
* selectors:
*
* if returning to 32-bit userspace: cs = STAR.SYSRET_CS,
* if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16,
*
* ss = STAR.SYSRET_CS+8 (in either case)
*
* thus USER_DS should be between 32-bit and 64-bit code selectors:
*/
#define GDT_ENTRY_DEFAULT_USER32_CS 4
#define GDT_ENTRY_DEFAULT_USER_DS 5
#define GDT_ENTRY_DEFAULT_USER_CS 6
/* Needs two entries */
#define GDT_ENTRY_TSS 8
/* Needs two entries */
#define GDT_ENTRY_LDT 10
#define GDT_ENTRY_TLS_MIN 12
#define GDT_ENTRY_TLS_MAX 14
/* Abused to load per CPU data from limit */
#define GDT_ENTRY_PER_CPU 15
/*
* Number of entries in the GDT table:
*/
#define GDT_ENTRIES 16
/*
* Segment selector values corresponding to the above entries:
*
* Note, selectors also need to have a correct RPL,
* expressed with the +3 value for user-space selectors:
*/
#define __KERNEL32_CS (GDT_ENTRY_KERNEL32_CS*8)
#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8)
#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8)
#define __USER32_CS (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3)
#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3)
#define __USER32_DS __USER_DS
#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3)
#define __PER_CPU_SEG (GDT_ENTRY_PER_CPU*8 + 3)
#endif
#ifndef CONFIG_PARAVIRT
# define get_kernel_rpl() 0
#endif
#define IDT_ENTRIES 256
#define NUM_EXCEPTION_VECTORS 32
/* Bitmask of exception vectors which push an error code on the stack: */
#define EXCEPTION_ERRCODE_MASK 0x00027d00
#define GDT_SIZE (GDT_ENTRIES*8)
#define GDT_ENTRY_TLS_ENTRIES 3
#define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES* 8)
#ifdef __KERNEL__
/*
* early_idt_handler_array is an array of entry points referenced in the
* early IDT. For simplicity, it's a real array with one entry point
* every nine bytes. That leaves room for an optional 'push $0' if the
* vector has no error code (two bytes), a 'push $vector_number' (two
* bytes), and a jump to the common entry code (up to five bytes).
*/
#define EARLY_IDT_HANDLER_SIZE 9
/*
* xen_early_idt_handler_array is for Xen pv guests: for each entry in
* early_idt_handler_array it contains a prequel in the form of
* pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to
* max 8 bytes.
*/
#define XEN_EARLY_IDT_HANDLER_SIZE 8
#ifndef __ASSEMBLY__
extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE];
extern void early_ignore_irq(void);
#if defined(CONFIG_X86_64) && defined(CONFIG_XEN_PV)
extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE];
#endif
/*
* Load a segment. Fall back on loading the zero segment if something goes
* wrong. This variant assumes that loading zero fully clears the segment.
* This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any
* failure to fully clear the cached descriptor is only observable for
* FS and GS.
*/
#define __loadsegment_simple(seg, value) \
do { \
unsigned short __val = (value); \
\
asm volatile(" \n" \
"1: movl %k0,%%" #seg " \n" \
\
".section .fixup,\"ax\" \n" \
"2: xorl %k0,%k0 \n" \
" jmp 1b \n" \
".previous \n" \
\
_ASM_EXTABLE(1b, 2b) \
\
: "+r" (__val) : : "memory"); \
} while (0)
#define __loadsegment_ss(value) __loadsegment_simple(ss, (value))
#define __loadsegment_ds(value) __loadsegment_simple(ds, (value))
#define __loadsegment_es(value) __loadsegment_simple(es, (value))
#ifdef CONFIG_X86_32
/*
* On 32-bit systems, the hidden parts of FS and GS are unobservable if
* the selector is NULL, so there's no funny business here.
*/
#define __loadsegment_fs(value) __loadsegment_simple(fs, (value))
#define __loadsegment_gs(value) __loadsegment_simple(gs, (value))
#else
static inline void __loadsegment_fs(unsigned short value)
{
asm volatile(" \n"
"1: movw %0, %%fs \n"
"2: \n"
_ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs)
: : "rm" (value) : "memory");
}
/* __loadsegment_gs is intentionally undefined. Use load_gs_index instead. */
#endif
#define loadsegment(seg, value) __loadsegment_ ## seg (value)
/*
* Save a segment register away:
*/
#define savesegment(seg, value) \
asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
/*
* x86-32 user GS accessors:
*/
#ifdef CONFIG_X86_32
# ifdef CONFIG_X86_32_LAZY_GS
# define get_user_gs(regs) (u16)({ unsigned long v; savesegment(gs, v); v; })
# define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
# define task_user_gs(tsk) ((tsk)->thread.gs)
# define lazy_save_gs(v) savesegment(gs, (v))
# define lazy_load_gs(v) loadsegment(gs, (v))
# else /* X86_32_LAZY_GS */
# define get_user_gs(regs) (u16)((regs)->gs)
# define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
# define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
# define lazy_save_gs(v) do { } while (0)
# define lazy_load_gs(v) do { } while (0)
# endif /* X86_32_LAZY_GS */
#endif /* X86_32 */
#endif /* !__ASSEMBLY__ */
#endif /* __KERNEL__ */
#endif /* _ASM_X86_SEGMENT_H */