linux-brain/drivers/crypto/inside-secure/safexcel_cipher.c
Ard Biesheuvel 04007b0e6c crypto: des - split off DES library from generic DES cipher driver
Another one for the cipher museum: split off DES core processing into
a separate module so other drivers (mostly for crypto accelerators)
can reuse the code without pulling in the generic DES cipher itself.
This will also permit the cipher interface to be made private to the
crypto API itself once we move the only user in the kernel (CIFS) to
this library interface.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-08-22 14:57:33 +10:00

1797 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017 Marvell
*
* Antoine Tenart <antoine.tenart@free-electrons.com>
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/authenc.h>
#include <crypto/ctr.h>
#include <crypto/internal/des.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include "safexcel.h"
enum safexcel_cipher_direction {
SAFEXCEL_ENCRYPT,
SAFEXCEL_DECRYPT,
};
enum safexcel_cipher_alg {
SAFEXCEL_DES,
SAFEXCEL_3DES,
SAFEXCEL_AES,
};
struct safexcel_cipher_ctx {
struct safexcel_context base;
struct safexcel_crypto_priv *priv;
u32 mode;
enum safexcel_cipher_alg alg;
bool aead;
__le32 key[8];
u32 nonce;
unsigned int key_len;
/* All the below is AEAD specific */
u32 hash_alg;
u32 state_sz;
u32 ipad[SHA512_DIGEST_SIZE / sizeof(u32)];
u32 opad[SHA512_DIGEST_SIZE / sizeof(u32)];
};
struct safexcel_cipher_req {
enum safexcel_cipher_direction direction;
/* Number of result descriptors associated to the request */
unsigned int rdescs;
bool needs_inv;
int nr_src, nr_dst;
};
static void safexcel_cipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
struct safexcel_command_desc *cdesc)
{
u32 block_sz = 0;
if (ctx->mode != CONTEXT_CONTROL_CRYPTO_MODE_ECB) {
switch (ctx->alg) {
case SAFEXCEL_DES:
block_sz = DES_BLOCK_SIZE;
cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
break;
case SAFEXCEL_3DES:
block_sz = DES3_EDE_BLOCK_SIZE;
cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
break;
case SAFEXCEL_AES:
block_sz = AES_BLOCK_SIZE;
cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
break;
}
if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD) {
/* 32 bit nonce */
cdesc->control_data.token[0] = ctx->nonce;
/* 64 bit IV part */
memcpy(&cdesc->control_data.token[1], iv, 8);
/* 32 bit counter, start at 1 (big endian!) */
cdesc->control_data.token[3] = cpu_to_be32(1);
} else {
memcpy(cdesc->control_data.token, iv, block_sz);
}
}
}
static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
struct safexcel_command_desc *cdesc,
u32 length)
{
struct safexcel_token *token;
safexcel_cipher_token(ctx, iv, cdesc);
/* skip over worst case IV of 4 dwords, no need to be exact */
token = (struct safexcel_token *)(cdesc->control_data.token + 4);
token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[0].packet_length = length;
token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
EIP197_TOKEN_STAT_LAST_HASH;
token[0].instructions = EIP197_TOKEN_INS_LAST |
EIP197_TOKEN_INS_TYPE_CRYPTO |
EIP197_TOKEN_INS_TYPE_OUTPUT;
}
static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
struct safexcel_command_desc *cdesc,
enum safexcel_cipher_direction direction,
u32 cryptlen, u32 assoclen, u32 digestsize)
{
struct safexcel_token *token;
safexcel_cipher_token(ctx, iv, cdesc);
if (direction == SAFEXCEL_DECRYPT)
cryptlen -= digestsize;
if (direction == SAFEXCEL_ENCRYPT) {
/* align end of instruction sequence to end of token */
token = (struct safexcel_token *)(cdesc->control_data.token +
EIP197_MAX_TOKENS - 3);
token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
token[2].packet_length = digestsize;
token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
} else {
/* align end of instruction sequence to end of token */
token = (struct safexcel_token *)(cdesc->control_data.token +
EIP197_MAX_TOKENS - 4);
token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
token[2].packet_length = digestsize;
token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
token[3].packet_length = digestsize |
EIP197_TOKEN_HASH_RESULT_VERIFY;
token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
}
if (unlikely(!cryptlen)) {
token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[1].packet_length = assoclen;
token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
token[1].instructions = EIP197_TOKEN_INS_LAST |
EIP197_TOKEN_INS_TYPE_HASH;
} else {
if (likely(assoclen)) {
token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[0].packet_length = assoclen;
token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
}
token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[1].packet_length = cryptlen;
token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
token[1].instructions = EIP197_TOKEN_INS_LAST |
EIP197_TOKEN_INS_TYPE_CRYPTO |
EIP197_TOKEN_INS_TYPE_HASH |
EIP197_TOKEN_INS_TYPE_OUTPUT;
}
}
static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
const u8 *key, unsigned int len)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_aes_ctx aes;
int ret, i;
ret = aes_expandkey(&aes, key, len);
if (ret) {
crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
for (i = 0; i < len / sizeof(u32); i++) {
if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
ctx->base.needs_inv = true;
break;
}
}
}
for (i = 0; i < len / sizeof(u32); i++)
ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
ctx->key_len = len;
memzero_explicit(&aes, sizeof(aes));
return 0;
}
static int safexcel_aead_setkey(struct crypto_aead *ctfm, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_ahash_export_state istate, ostate;
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_authenc_keys keys;
struct crypto_aes_ctx aes;
int err = -EINVAL;
if (crypto_authenc_extractkeys(&keys, key, len) != 0)
goto badkey;
if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD) {
/* Minimum keysize is minimum AES key size + nonce size */
if (keys.enckeylen < (AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE))
goto badkey;
/* last 4 bytes of key are the nonce! */
ctx->nonce = *(u32 *)(keys.enckey + keys.enckeylen -
CTR_RFC3686_NONCE_SIZE);
/* exclude the nonce here */
keys.enckeylen -= CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD;
}
/* Encryption key */
switch (ctx->alg) {
case SAFEXCEL_3DES:
err = verify_aead_des3_key(ctfm, keys.enckey, keys.enckeylen);
if (unlikely(err))
goto badkey_expflags;
break;
case SAFEXCEL_AES:
err = aes_expandkey(&aes, keys.enckey, keys.enckeylen);
if (unlikely(err))
goto badkey;
break;
default:
dev_err(priv->dev, "aead: unsupported cipher algorithm\n");
goto badkey;
}
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
memcmp(ctx->key, keys.enckey, keys.enckeylen))
ctx->base.needs_inv = true;
/* Auth key */
switch (ctx->hash_alg) {
case CONTEXT_CONTROL_CRYPTO_ALG_SHA1:
if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
case CONTEXT_CONTROL_CRYPTO_ALG_SHA384:
if (safexcel_hmac_setkey("safexcel-sha384", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
case CONTEXT_CONTROL_CRYPTO_ALG_SHA512:
if (safexcel_hmac_setkey("safexcel-sha512", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
default:
dev_err(priv->dev, "aead: unsupported hash algorithm\n");
goto badkey;
}
crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
CRYPTO_TFM_RES_MASK);
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
(memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
memcmp(ctx->opad, ostate.state, ctx->state_sz)))
ctx->base.needs_inv = true;
/* Now copy the keys into the context */
memcpy(ctx->key, keys.enckey, keys.enckeylen);
ctx->key_len = keys.enckeylen;
memcpy(ctx->ipad, &istate.state, ctx->state_sz);
memcpy(ctx->opad, &ostate.state, ctx->state_sz);
memzero_explicit(&keys, sizeof(keys));
return 0;
badkey:
crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
badkey_expflags:
memzero_explicit(&keys, sizeof(keys));
return err;
}
static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
struct crypto_async_request *async,
struct safexcel_cipher_req *sreq,
struct safexcel_command_desc *cdesc)
{
struct safexcel_crypto_priv *priv = ctx->priv;
int ctrl_size;
if (ctx->aead) {
if (sreq->direction == SAFEXCEL_ENCRYPT)
cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
else
cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
} else {
cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;
/* The decryption control type is a combination of the
* encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
* types.
*/
if (sreq->direction == SAFEXCEL_DECRYPT)
cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
}
cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
cdesc->control_data.control1 |= ctx->mode;
if (ctx->aead)
cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
ctx->hash_alg;
if (ctx->alg == SAFEXCEL_DES) {
cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_DES;
} else if (ctx->alg == SAFEXCEL_3DES) {
cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_3DES;
} else if (ctx->alg == SAFEXCEL_AES) {
switch (ctx->key_len) {
case AES_KEYSIZE_128:
cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
break;
case AES_KEYSIZE_192:
cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
break;
case AES_KEYSIZE_256:
cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
break;
default:
dev_err(priv->dev, "aes keysize not supported: %u\n",
ctx->key_len);
return -EINVAL;
}
}
ctrl_size = ctx->key_len / sizeof(u32);
if (ctx->aead)
/* Take in account the ipad+opad digests */
ctrl_size += ctx->state_sz / sizeof(u32) * 2;
cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);
return 0;
}
static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
struct crypto_async_request *async,
struct scatterlist *src,
struct scatterlist *dst,
unsigned int cryptlen,
struct safexcel_cipher_req *sreq,
bool *should_complete, int *ret)
{
struct skcipher_request *areq = skcipher_request_cast(async);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(areq);
struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct safexcel_result_desc *rdesc;
int ndesc = 0;
*ret = 0;
if (unlikely(!sreq->rdescs))
return 0;
while (sreq->rdescs--) {
rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
if (IS_ERR(rdesc)) {
dev_err(priv->dev,
"cipher: result: could not retrieve the result descriptor\n");
*ret = PTR_ERR(rdesc);
break;
}
if (likely(!*ret))
*ret = safexcel_rdesc_check_errors(priv, rdesc);
ndesc++;
}
safexcel_complete(priv, ring);
if (src == dst) {
dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE);
dma_unmap_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE);
}
/*
* Update IV in req from last crypto output word for CBC modes
*/
if ((!ctx->aead) && (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) &&
(sreq->direction == SAFEXCEL_ENCRYPT)) {
/* For encrypt take the last output word */
sg_pcopy_to_buffer(dst, sreq->nr_dst, areq->iv,
crypto_skcipher_ivsize(skcipher),
(cryptlen -
crypto_skcipher_ivsize(skcipher)));
}
*should_complete = true;
return ndesc;
}
static int safexcel_send_req(struct crypto_async_request *base, int ring,
struct safexcel_cipher_req *sreq,
struct scatterlist *src, struct scatterlist *dst,
unsigned int cryptlen, unsigned int assoclen,
unsigned int digestsize, u8 *iv, int *commands,
int *results)
{
struct skcipher_request *areq = skcipher_request_cast(base);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(areq);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct safexcel_command_desc *cdesc;
struct safexcel_command_desc *first_cdesc = NULL;
struct safexcel_result_desc *rdesc, *first_rdesc = NULL;
struct scatterlist *sg;
unsigned int totlen;
unsigned int totlen_src = cryptlen + assoclen;
unsigned int totlen_dst = totlen_src;
int n_cdesc = 0, n_rdesc = 0;
int queued, i, ret = 0;
bool first = true;
sreq->nr_src = sg_nents_for_len(src, totlen_src);
if (ctx->aead) {
/*
* AEAD has auth tag appended to output for encrypt and
* removed from the output for decrypt!
*/
if (sreq->direction == SAFEXCEL_DECRYPT)
totlen_dst -= digestsize;
else
totlen_dst += digestsize;
memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
ctx->ipad, ctx->state_sz);
memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) /
sizeof(u32),
ctx->opad, ctx->state_sz);
} else if ((ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) &&
(sreq->direction == SAFEXCEL_DECRYPT)) {
/*
* Save IV from last crypto input word for CBC modes in decrypt
* direction. Need to do this first in case of inplace operation
* as it will be overwritten.
*/
sg_pcopy_to_buffer(src, sreq->nr_src, areq->iv,
crypto_skcipher_ivsize(skcipher),
(totlen_src -
crypto_skcipher_ivsize(skcipher)));
}
sreq->nr_dst = sg_nents_for_len(dst, totlen_dst);
/*
* Remember actual input length, source buffer length may be
* updated in case of inline operation below.
*/
totlen = totlen_src;
queued = totlen_src;
if (src == dst) {
sreq->nr_src = max(sreq->nr_src, sreq->nr_dst);
sreq->nr_dst = sreq->nr_src;
if (unlikely((totlen_src || totlen_dst) &&
(sreq->nr_src <= 0))) {
dev_err(priv->dev, "In-place buffer not large enough (need %d bytes)!",
max(totlen_src, totlen_dst));
return -EINVAL;
}
dma_map_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL);
} else {
if (unlikely(totlen_src && (sreq->nr_src <= 0))) {
dev_err(priv->dev, "Source buffer not large enough (need %d bytes)!",
totlen_src);
return -EINVAL;
}
dma_map_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE);
if (unlikely(totlen_dst && (sreq->nr_dst <= 0))) {
dev_err(priv->dev, "Dest buffer not large enough (need %d bytes)!",
totlen_dst);
dma_unmap_sg(priv->dev, src, sreq->nr_src,
DMA_TO_DEVICE);
return -EINVAL;
}
dma_map_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE);
}
memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);
/* The EIP cannot deal with zero length input packets! */
if (totlen == 0)
totlen = 1;
/* command descriptors */
for_each_sg(src, sg, sreq->nr_src, i) {
int len = sg_dma_len(sg);
/* Do not overflow the request */
if (queued - len < 0)
len = queued;
cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
!(queued - len),
sg_dma_address(sg), len, totlen,
ctx->base.ctxr_dma);
if (IS_ERR(cdesc)) {
/* No space left in the command descriptor ring */
ret = PTR_ERR(cdesc);
goto cdesc_rollback;
}
n_cdesc++;
if (n_cdesc == 1) {
first_cdesc = cdesc;
}
queued -= len;
if (!queued)
break;
}
if (unlikely(!n_cdesc)) {
/*
* Special case: zero length input buffer.
* The engine always needs the 1st command descriptor, however!
*/
first_cdesc = safexcel_add_cdesc(priv, ring, 1, 1, 0, 0, totlen,
ctx->base.ctxr_dma);
n_cdesc = 1;
}
/* Add context control words and token to first command descriptor */
safexcel_context_control(ctx, base, sreq, first_cdesc);
if (ctx->aead)
safexcel_aead_token(ctx, iv, first_cdesc,
sreq->direction, cryptlen,
assoclen, digestsize);
else
safexcel_skcipher_token(ctx, iv, first_cdesc,
cryptlen);
/* result descriptors */
for_each_sg(dst, sg, sreq->nr_dst, i) {
bool last = (i == sreq->nr_dst - 1);
u32 len = sg_dma_len(sg);
/* only allow the part of the buffer we know we need */
if (len > totlen_dst)
len = totlen_dst;
if (unlikely(!len))
break;
totlen_dst -= len;
/* skip over AAD space in buffer - not written */
if (assoclen) {
if (assoclen >= len) {
assoclen -= len;
continue;
}
rdesc = safexcel_add_rdesc(priv, ring, first, last,
sg_dma_address(sg) +
assoclen,
len - assoclen);
assoclen = 0;
} else {
rdesc = safexcel_add_rdesc(priv, ring, first, last,
sg_dma_address(sg),
len);
}
if (IS_ERR(rdesc)) {
/* No space left in the result descriptor ring */
ret = PTR_ERR(rdesc);
goto rdesc_rollback;
}
if (first) {
first_rdesc = rdesc;
first = false;
}
n_rdesc++;
}
if (unlikely(first)) {
/*
* Special case: AEAD decrypt with only AAD data.
* In this case there is NO output data from the engine,
* but the engine still needs a result descriptor!
* Create a dummy one just for catching the result token.
*/
rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);
if (IS_ERR(rdesc)) {
/* No space left in the result descriptor ring */
ret = PTR_ERR(rdesc);
goto rdesc_rollback;
}
first_rdesc = rdesc;
n_rdesc = 1;
}
safexcel_rdr_req_set(priv, ring, first_rdesc, base);
*commands = n_cdesc;
*results = n_rdesc;
return 0;
rdesc_rollback:
for (i = 0; i < n_rdesc; i++)
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
cdesc_rollback:
for (i = 0; i < n_cdesc; i++)
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
if (src == dst) {
dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE);
dma_unmap_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE);
}
return ret;
}
static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *base,
struct safexcel_cipher_req *sreq,
bool *should_complete, int *ret)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_result_desc *rdesc;
int ndesc = 0, enq_ret;
*ret = 0;
if (unlikely(!sreq->rdescs))
return 0;
while (sreq->rdescs--) {
rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
if (IS_ERR(rdesc)) {
dev_err(priv->dev,
"cipher: invalidate: could not retrieve the result descriptor\n");
*ret = PTR_ERR(rdesc);
break;
}
if (likely(!*ret))
*ret = safexcel_rdesc_check_errors(priv, rdesc);
ndesc++;
}
safexcel_complete(priv, ring);
if (ctx->base.exit_inv) {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
*should_complete = true;
return ndesc;
}
ring = safexcel_select_ring(priv);
ctx->base.ring = ring;
spin_lock_bh(&priv->ring[ring].queue_lock);
enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
if (enq_ret != -EINPROGRESS)
*ret = enq_ret;
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
*should_complete = false;
return ndesc;
}
static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct skcipher_request *req = skcipher_request_cast(async);
struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
int err;
if (sreq->needs_inv) {
sreq->needs_inv = false;
err = safexcel_handle_inv_result(priv, ring, async, sreq,
should_complete, ret);
} else {
err = safexcel_handle_req_result(priv, ring, async, req->src,
req->dst, req->cryptlen, sreq,
should_complete, ret);
}
return err;
}
static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct aead_request *req = aead_request_cast(async);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct safexcel_cipher_req *sreq = aead_request_ctx(req);
int err;
if (sreq->needs_inv) {
sreq->needs_inv = false;
err = safexcel_handle_inv_result(priv, ring, async, sreq,
should_complete, ret);
} else {
err = safexcel_handle_req_result(priv, ring, async, req->src,
req->dst,
req->cryptlen + crypto_aead_authsize(tfm),
sreq, should_complete, ret);
}
return err;
}
static int safexcel_cipher_send_inv(struct crypto_async_request *base,
int ring, int *commands, int *results)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring);
if (unlikely(ret))
return ret;
*commands = 1;
*results = 1;
return 0;
}
static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
int *commands, int *results)
{
struct skcipher_request *req = skcipher_request_cast(async);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
if (sreq->needs_inv) {
ret = safexcel_cipher_send_inv(async, ring, commands, results);
} else {
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
u8 input_iv[AES_BLOCK_SIZE];
/*
* Save input IV in case of CBC decrypt mode
* Will be overwritten with output IV prior to use!
*/
memcpy(input_iv, req->iv, crypto_skcipher_ivsize(skcipher));
ret = safexcel_send_req(async, ring, sreq, req->src,
req->dst, req->cryptlen, 0, 0, input_iv,
commands, results);
}
sreq->rdescs = *results;
return ret;
}
static int safexcel_aead_send(struct crypto_async_request *async, int ring,
int *commands, int *results)
{
struct aead_request *req = aead_request_cast(async);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct safexcel_cipher_req *sreq = aead_request_ctx(req);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
if (sreq->needs_inv)
ret = safexcel_cipher_send_inv(async, ring, commands, results);
else
ret = safexcel_send_req(async, ring, sreq, req->src, req->dst,
req->cryptlen, req->assoclen,
crypto_aead_authsize(tfm), req->iv,
commands, results);
sreq->rdescs = *results;
return ret;
}
static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
struct crypto_async_request *base,
struct safexcel_cipher_req *sreq,
struct safexcel_inv_result *result)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ring = ctx->base.ring;
init_completion(&result->completion);
ctx = crypto_tfm_ctx(base->tfm);
ctx->base.exit_inv = true;
sreq->needs_inv = true;
spin_lock_bh(&priv->ring[ring].queue_lock);
crypto_enqueue_request(&priv->ring[ring].queue, base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
wait_for_completion(&result->completion);
if (result->error) {
dev_warn(priv->dev,
"cipher: sync: invalidate: completion error %d\n",
result->error);
return result->error;
}
return 0;
}
static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
{
EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
struct safexcel_inv_result result = {};
memset(req, 0, sizeof(struct skcipher_request));
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_inv_complete, &result);
skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}
static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
{
EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
struct safexcel_cipher_req *sreq = aead_request_ctx(req);
struct safexcel_inv_result result = {};
memset(req, 0, sizeof(struct aead_request));
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_inv_complete, &result);
aead_request_set_tfm(req, __crypto_aead_cast(tfm));
return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}
static int safexcel_queue_req(struct crypto_async_request *base,
struct safexcel_cipher_req *sreq,
enum safexcel_cipher_direction dir, u32 mode,
enum safexcel_cipher_alg alg)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret, ring;
sreq->needs_inv = false;
sreq->direction = dir;
ctx->alg = alg;
ctx->mode = mode;
if (ctx->base.ctxr) {
if (priv->flags & EIP197_TRC_CACHE && ctx->base.needs_inv) {
sreq->needs_inv = true;
ctx->base.needs_inv = false;
}
} else {
ctx->base.ring = safexcel_select_ring(priv);
ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
EIP197_GFP_FLAGS(*base),
&ctx->base.ctxr_dma);
if (!ctx->base.ctxr)
return -ENOMEM;
}
ring = ctx->base.ring;
spin_lock_bh(&priv->ring[ring].queue_lock);
ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
return ret;
}
static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
SAFEXCEL_AES);
}
static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
SAFEXCEL_AES);
}
static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_alg_template *tmpl =
container_of(tfm->__crt_alg, struct safexcel_alg_template,
alg.skcipher.base);
crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
sizeof(struct safexcel_cipher_req));
ctx->priv = tmpl->priv;
ctx->base.send = safexcel_skcipher_send;
ctx->base.handle_result = safexcel_skcipher_handle_result;
return 0;
}
static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
memzero_explicit(ctx->key, sizeof(ctx->key));
/* context not allocated, skip invalidation */
if (!ctx->base.ctxr)
return -ENOMEM;
memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
return 0;
}
static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
if (safexcel_cipher_cra_exit(tfm))
return;
if (priv->flags & EIP197_TRC_CACHE) {
ret = safexcel_skcipher_exit_inv(tfm);
if (ret)
dev_warn(priv->dev, "skcipher: invalidation error %d\n",
ret);
} else {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
}
}
static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
if (safexcel_cipher_cra_exit(tfm))
return;
if (priv->flags & EIP197_TRC_CACHE) {
ret = safexcel_aead_exit_inv(tfm);
if (ret)
dev_warn(priv->dev, "aead: invalidation error %d\n",
ret);
} else {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
}
}
struct safexcel_alg_template safexcel_alg_ecb_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.skcipher = {
.setkey = safexcel_skcipher_aes_setkey,
.encrypt = safexcel_ecb_aes_encrypt,
.decrypt = safexcel_ecb_aes_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "safexcel-ecb-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
SAFEXCEL_AES);
}
static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
SAFEXCEL_AES);
}
struct safexcel_alg_template safexcel_alg_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.skcipher = {
.setkey = safexcel_skcipher_aes_setkey,
.encrypt = safexcel_cbc_aes_encrypt,
.decrypt = safexcel_cbc_aes_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "safexcel-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_ctr_aes_encrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD,
SAFEXCEL_AES);
}
static int safexcel_ctr_aes_decrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD,
SAFEXCEL_AES);
}
static int safexcel_skcipher_aesctr_setkey(struct crypto_skcipher *ctfm,
const u8 *key, unsigned int len)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_aes_ctx aes;
int ret, i;
unsigned int keylen;
/* last 4 bytes of key are the nonce! */
ctx->nonce = *(u32 *)(key + len - CTR_RFC3686_NONCE_SIZE);
/* exclude the nonce here */
keylen = len - CTR_RFC3686_NONCE_SIZE;
ret = aes_expandkey(&aes, key, keylen);
if (ret) {
crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
for (i = 0; i < keylen / sizeof(u32); i++) {
if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
ctx->base.needs_inv = true;
break;
}
}
}
for (i = 0; i < keylen / sizeof(u32); i++)
ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
ctx->key_len = keylen;
memzero_explicit(&aes, sizeof(aes));
return 0;
}
struct safexcel_alg_template safexcel_alg_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.setkey = safexcel_skcipher_aesctr_setkey,
.encrypt = safexcel_ctr_aes_encrypt,
.decrypt = safexcel_ctr_aes_decrypt,
/* Add nonce size */
.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.base = {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "safexcel-ctr-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_cbc_des_encrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
SAFEXCEL_DES);
}
static int safexcel_cbc_des_decrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
SAFEXCEL_DES);
}
static int safexcel_des_setkey(struct crypto_skcipher *ctfm, const u8 *key,
unsigned int len)
{
struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm);
int ret;
ret = verify_skcipher_des_key(ctfm, key);
if (ret)
return ret;
/* if context exits and key changed, need to invalidate it */
if (ctx->base.ctxr_dma)
if (memcmp(ctx->key, key, len))
ctx->base.needs_inv = true;
memcpy(ctx->key, key, len);
ctx->key_len = len;
return 0;
}
struct safexcel_alg_template safexcel_alg_cbc_des = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.skcipher = {
.setkey = safexcel_des_setkey,
.encrypt = safexcel_cbc_des_encrypt,
.decrypt = safexcel_cbc_des_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.base = {
.cra_name = "cbc(des)",
.cra_driver_name = "safexcel-cbc-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_ecb_des_encrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
SAFEXCEL_DES);
}
static int safexcel_ecb_des_decrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
SAFEXCEL_DES);
}
struct safexcel_alg_template safexcel_alg_ecb_des = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.skcipher = {
.setkey = safexcel_des_setkey,
.encrypt = safexcel_ecb_des_encrypt,
.decrypt = safexcel_ecb_des_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.base = {
.cra_name = "ecb(des)",
.cra_driver_name = "safexcel-ecb-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_cbc_des3_ede_encrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
SAFEXCEL_3DES);
}
static int safexcel_cbc_des3_ede_decrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC,
SAFEXCEL_3DES);
}
static int safexcel_des3_ede_setkey(struct crypto_skcipher *ctfm,
const u8 *key, unsigned int len)
{
struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm);
int err;
err = verify_skcipher_des3_key(ctfm, key);
if (err)
return err;
/* if context exits and key changed, need to invalidate it */
if (ctx->base.ctxr_dma) {
if (memcmp(ctx->key, key, len))
ctx->base.needs_inv = true;
}
memcpy(ctx->key, key, len);
ctx->key_len = len;
return 0;
}
struct safexcel_alg_template safexcel_alg_cbc_des3_ede = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.skcipher = {
.setkey = safexcel_des3_ede_setkey,
.encrypt = safexcel_cbc_des3_ede_encrypt,
.decrypt = safexcel_cbc_des3_ede_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "safexcel-cbc-des3_ede",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_ecb_des3_ede_encrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
SAFEXCEL_3DES);
}
static int safexcel_ecb_des3_ede_decrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB,
SAFEXCEL_3DES);
}
struct safexcel_alg_template safexcel_alg_ecb_des3_ede = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.skcipher = {
.setkey = safexcel_des3_ede_setkey,
.encrypt = safexcel_ecb_des3_ede_encrypt,
.decrypt = safexcel_ecb_des3_ede_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.base = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "safexcel-ecb-des3_ede",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_encrypt_aes(struct aead_request *req)
{
struct safexcel_cipher_req *creq = aead_request_ctx(req);
return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT,
CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
}
static int safexcel_aead_decrypt_aes(struct aead_request *req)
{
struct safexcel_cipher_req *creq = aead_request_ctx(req);
return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT,
CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_AES);
}
static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_alg_template *tmpl =
container_of(tfm->__crt_alg, struct safexcel_alg_template,
alg.aead.base);
crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
sizeof(struct safexcel_cipher_req));
ctx->priv = tmpl->priv;
ctx->alg = SAFEXCEL_AES; /* default */
ctx->aead = true;
ctx->base.send = safexcel_aead_send;
ctx->base.handle_result = safexcel_aead_handle_result;
return 0;
}
static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
ctx->state_sz = SHA1_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_aes,
.decrypt = safexcel_aead_decrypt_aes,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha1_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
ctx->state_sz = SHA256_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_aes,
.decrypt = safexcel_aead_decrypt_aes,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha256_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
ctx->state_sz = SHA256_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_aes,
.decrypt = safexcel_aead_decrypt_aes,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha224_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha512_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
ctx->state_sz = SHA512_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_aes,
.decrypt = safexcel_aead_decrypt_aes,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha512_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha384_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
ctx->state_sz = SHA512_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.engines = EIP97IES | EIP197B | EIP197D,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_aes,
.decrypt = safexcel_aead_decrypt_aes,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha384_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha1_des3_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha1_cra_init(tfm);
ctx->alg = SAFEXCEL_3DES; /* override default */
return 0;
}
static int safexcel_aead_encrypt_3des(struct aead_request *req)
{
struct safexcel_cipher_req *creq = aead_request_ctx(req);
return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT,
CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_3DES);
}
static int safexcel_aead_decrypt_3des(struct aead_request *req)
{
struct safexcel_cipher_req *creq = aead_request_ctx(req);
return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT,
CONTEXT_CONTROL_CRYPTO_MODE_CBC, SAFEXCEL_3DES);
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_des3_ede = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_3des,
.decrypt = safexcel_aead_decrypt_3des,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
.cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-des3_ede",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha1_des3_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha1_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha1_cra_init(tfm);
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_aes,
.decrypt = safexcel_aead_decrypt_aes,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
.cra_driver_name = "safexcel-authenc-hmac-sha1-ctr-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha1_ctr_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha256_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha256_cra_init(tfm);
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_aes,
.decrypt = safexcel_aead_decrypt_aes,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
.cra_driver_name = "safexcel-authenc-hmac-sha256-ctr-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha256_ctr_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha224_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha224_cra_init(tfm);
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_aes,
.decrypt = safexcel_aead_decrypt_aes,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha224),rfc3686(ctr(aes)))",
.cra_driver_name = "safexcel-authenc-hmac-sha224-ctr-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha224_ctr_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha512_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha512_cra_init(tfm);
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_aes,
.decrypt = safexcel_aead_decrypt_aes,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha512),rfc3686(ctr(aes)))",
.cra_driver_name = "safexcel-authenc-hmac-sha512-ctr-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha512_ctr_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha384_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha384_cra_init(tfm);
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt_aes,
.decrypt = safexcel_aead_decrypt_aes,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha384),rfc3686(ctr(aes)))",
.cra_driver_name = "safexcel-authenc-hmac-sha384-ctr-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha384_ctr_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};