linux-brain/include/linux/fsl_qman.h

3911 lines
134 KiB
C

/* Copyright 2008-2012 Freescale Semiconductor, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FSL_QMAN_H
#define FSL_QMAN_H
#ifdef __cplusplus
extern "C" {
#endif
/* Last updated for v00.800 of the BG */
/* Hardware constants */
#define QM_CHANNEL_SWPORTAL0 0
#define QMAN_CHANNEL_POOL1 0x21
#define QMAN_CHANNEL_CAAM 0x80
#define QMAN_CHANNEL_PME 0xa0
#define QMAN_CHANNEL_POOL1_REV3 0x401
#define QMAN_CHANNEL_CAAM_REV3 0x840
#define QMAN_CHANNEL_PME_REV3 0x860
#define QMAN_CHANNEL_DCE 0x8a0
#define QMAN_CHANNEL_DCE_QMANREV312 0x880
extern u16 qm_channel_pool1;
extern u16 qm_channel_caam;
extern u16 qm_channel_pme;
extern u16 qm_channel_dce;
enum qm_dc_portal {
qm_dc_portal_fman0 = 0,
qm_dc_portal_fman1 = 1,
qm_dc_portal_caam = 2,
qm_dc_portal_pme = 3,
qm_dc_portal_rman = 4,
qm_dc_portal_dce = 5
};
/* Portal processing (interrupt) sources */
#define QM_PIRQ_CCSCI 0x00200000 /* CEETM Congestion State Change */
#define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
#define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
#define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
#define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
#define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
/* This mask contains all the interrupt sources that need handling except DQRI,
* ie. that if present should trigger slow-path processing. */
#define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
QM_PIRQ_MRI | QM_PIRQ_CCSCI)
/* --- Clock speed --- */
/* A qman driver instance may or may not know the current qman clock speed.
* However, certain CEETM calculations may not be possible if this is not known.
* The 'set' function will only succeed (return zero) if the driver did not
* already know the clock speed. Likewise, the 'get' function will only succeed
* if the driver does know the clock speed (either because it knew when booting,
* or was told via 'set'). In cases where software is running on a driver
* instance that does not know the clock speed (eg. on a hypervised data-plane),
* and the user can obtain the current qman clock speed by other means (eg. from
* a message sent from the control-plane), then the 'set' function can be used
* to enable rate-calculations in a driver where it would otherwise not be
* possible. */
int qm_get_clock(u64 *clock_hz);
int qm_set_clock(u64 clock_hz);
/* For qman_static_dequeue_*** APIs */
#define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff
/* for n in [1,15] */
#define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n))
/* for conversion from n of qm_channel */
static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
{
return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
}
/* For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
* NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
* FQID(n) to fill in the frame queue ID. */
#define QM_VDQCR_PRECEDENCE_VDQCR 0x0
#define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000
#define QM_VDQCR_EXACT 0x40000000
#define QM_VDQCR_NUMFRAMES_MASK 0x3f000000
#define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24)
#define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f)
#define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0)
/* ------------------------------------------------------- */
/* --- Qman data structures (and associated constants) --- */
/* Represents s/w corenet portal mapped data structures */
struct qm_eqcr_entry; /* EQCR (EnQueue Command Ring) entries */
struct qm_dqrr_entry; /* DQRR (DeQueue Response Ring) entries */
struct qm_mr_entry; /* MR (Message Ring) entries */
struct qm_mc_command; /* MC (Management Command) command */
struct qm_mc_result; /* MC result */
/* See David Lapp's "Frame formats" document, "dpateam", Jan 07, 2008 */
#define QM_FD_FORMAT_SG 0x4
#define QM_FD_FORMAT_LONG 0x2
#define QM_FD_FORMAT_COMPOUND 0x1
enum qm_fd_format {
/* 'contig' implies a contiguous buffer, whereas 'sg' implies a
* scatter-gather table. 'big' implies a 29-bit length with no offset
* field, otherwise length is 20-bit and offset is 9-bit. 'compound'
* implies a s/g-like table, where each entry itself represents a frame
* (contiguous or scatter-gather) and the 29-bit "length" is
* interpreted purely for congestion calculations, ie. a "congestion
* weight". */
qm_fd_contig = 0,
qm_fd_contig_big = QM_FD_FORMAT_LONG,
qm_fd_sg = QM_FD_FORMAT_SG,
qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
qm_fd_compound = QM_FD_FORMAT_COMPOUND
};
/* Capitalised versions are un-typed but can be used in static expressions */
#define QM_FD_CONTIG 0
#define QM_FD_CONTIG_BIG QM_FD_FORMAT_LONG
#define QM_FD_SG QM_FD_FORMAT_SG
#define QM_FD_SG_BIG (QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG)
#define QM_FD_COMPOUND QM_FD_FORMAT_COMPOUND
/* See 1.5.1.1: "Frame Descriptor (FD)" */
struct qm_fd {
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 dd:2; /* dynamic debug */
u8 liodn_offset:6;
u8 bpid:8; /* Buffer Pool ID */
u8 eliodn_offset:4;
u8 __reserved:4;
u8 addr_hi; /* high 8-bits of 40-bit address */
u32 addr_lo; /* low 32-bits of 40-bit address */
#else
u32 addr_lo; /* low 32-bits of 40-bit address */
u8 addr_hi; /* high 8-bits of 40-bit address */
u8 __reserved:4;
u8 eliodn_offset:4;
u8 bpid:8; /* Buffer Pool ID */
u8 liodn_offset:6;
u8 dd:2; /* dynamic debug */
#endif
};
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u64 __notaddress:24;
u64 addr:40;
#else
u64 addr:40;
u64 __notaddress:24;
#endif
};
u64 opaque_addr;
};
/* The 'format' field indicates the interpretation of the remaining 29
* bits of the 32-bit word. For packing reasons, it is duplicated in the
* other union elements. Note, union'd structs are difficult to use with
* static initialisation under gcc, in which case use the "opaque" form
* with one of the macros. */
union {
/* For easier/faster copying of this part of the fd (eg. from a
* DQRR entry to an EQCR entry) copy 'opaque' */
u32 opaque;
/* If 'format' is _contig or _sg, 20b length and 9b offset */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
enum qm_fd_format format:3;
u16 offset:9;
u32 length20:20;
#else
u32 length20:20;
u16 offset:9;
enum qm_fd_format format:3;
#endif
};
/* If 'format' is _contig_big or _sg_big, 29b length */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
enum qm_fd_format _format1:3;
u32 length29:29;
#else
u32 length29:29;
enum qm_fd_format _format1:3;
#endif
};
/* If 'format' is _compound, 29b "congestion weight" */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
enum qm_fd_format _format2:3;
u32 cong_weight:29;
#else
u32 cong_weight:29;
enum qm_fd_format _format2:3;
#endif
};
};
union {
u32 cmd;
u32 status;
};
} __aligned(8);
#define QM_FD_DD_NULL 0x00
#define QM_FD_PID_MASK 0x3f
static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
{
return fd->addr;
}
static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
{
return (dma_addr_t)fd->addr;
}
/* Macro, so we compile better if 'v' isn't always 64-bit */
#define qm_fd_addr_set64(fd, v) \
do { \
struct qm_fd *__fd931 = (fd); \
__fd931->addr = v; \
} while (0)
/* For static initialisation of FDs (which is complicated by the use of unions
* in "struct qm_fd"), use the following macros. Note that;
* - 'dd', 'pid' and 'bpid' are ignored because there's no static initialisation
* use-case),
* - use capitalised QM_FD_*** formats for static initialisation.
*/
#define QM_FD_FMT_20(cmd, addr_hi, addr_lo, fmt, off, len) \
{ 0, 0, 0, 0, 0, addr_hi, addr_lo, \
{ (((fmt)&0x7) << 29) | (((off)&0x1ff) << 20) | ((len)&0xfffff) }, \
{ cmd } }
#define QM_FD_FMT_29(cmd, addr_hi, addr_lo, fmt, len) \
{ 0, 0, 0, 0, 0, addr_hi, addr_lo, \
{ (((fmt)&0x7) << 29) | ((len)&0x1fffffff) }, \
{ cmd } }
/* See 2.2.1.3 Multi-Core Datapath Acceleration Architecture */
#define QM_SG_OFFSET_MASK 0x1FFF
struct qm_sg_entry {
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 __reserved1[3];
u8 addr_hi; /* high 8-bits of 40-bit address */
u32 addr_lo; /* low 32-bits of 40-bit address */
#else
u32 addr_lo; /* low 32-bits of 40-bit address */
u8 addr_hi; /* high 8-bits of 40-bit address */
u8 __reserved1[3];
#endif
};
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u64 __notaddress:24;
u64 addr:40;
#else
u64 addr:40;
u64 __notaddress:24;
#endif
};
u64 opaque;
};
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 extension:1; /* Extension bit */
u32 final:1; /* Final bit */
u32 length:30;
#else
u32 length:30;
u32 final:1; /* Final bit */
u32 extension:1; /* Extension bit */
#endif
};
u32 sgt_efl;
};
u8 __reserved2;
u8 bpid;
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 __reserved3:3;
u16 offset:13;
#else
u16 offset:13;
u16 __reserved3:3;
#endif
};
u16 opaque_offset;
};
} __packed;
union qm_sg_efl {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 extension:1; /* Extension bit */
u32 final:1; /* Final bit */
u32 length:30;
#else
u32 length:30;
u32 final:1; /* Final bit */
u32 extension:1; /* Extension bit */
#endif
};
u32 efl;
};
static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
{
return (dma_addr_t)be64_to_cpu(sg->opaque) & 0xffffffffffULL;
}
static inline u8 qm_sg_entry_get_ext(const struct qm_sg_entry *sg)
{
union qm_sg_efl u;
u.efl = be32_to_cpu(sg->sgt_efl);
return u.extension;
}
static inline u8 qm_sg_entry_get_final(const struct qm_sg_entry *sg)
{
union qm_sg_efl u;
u.efl = be32_to_cpu(sg->sgt_efl);
return u.final;
}
static inline u32 qm_sg_entry_get_len(const struct qm_sg_entry *sg)
{
union qm_sg_efl u;
u.efl = be32_to_cpu(sg->sgt_efl);
return u.length;
}
static inline u8 qm_sg_entry_get_bpid(const struct qm_sg_entry *sg)
{
return sg->bpid;
}
static inline u16 qm_sg_entry_get_offset(const struct qm_sg_entry *sg)
{
u32 opaque_offset = be16_to_cpu(sg->opaque_offset);
return opaque_offset & 0x1fff;
}
/* Macro, so we compile better if 'v' isn't always 64-bit */
#define qm_sg_entry_set64(sg, v) \
do { \
struct qm_sg_entry *__sg931 = (sg); \
__sg931->opaque = cpu_to_be64(v); \
} while (0)
#define qm_sg_entry_set_ext(sg, v) \
do { \
union qm_sg_efl __u932; \
__u932.efl = be32_to_cpu((sg)->sgt_efl); \
__u932.extension = v; \
(sg)->sgt_efl = cpu_to_be32(__u932.efl); \
} while (0)
#define qm_sg_entry_set_final(sg, v) \
do { \
union qm_sg_efl __u933; \
__u933.efl = be32_to_cpu((sg)->sgt_efl); \
__u933.final = v; \
(sg)->sgt_efl = cpu_to_be32(__u933.efl); \
} while (0)
#define qm_sg_entry_set_len(sg, v) \
do { \
union qm_sg_efl __u934; \
__u934.efl = be32_to_cpu((sg)->sgt_efl); \
__u934.length = v; \
(sg)->sgt_efl = cpu_to_be32(__u934.efl); \
} while (0)
#define qm_sg_entry_set_bpid(sg, v) \
do { \
struct qm_sg_entry *__u935 = (sg); \
__u935->bpid = v; \
} while (0)
#define qm_sg_entry_set_offset(sg, v) \
do { \
struct qm_sg_entry *__u936 = (sg); \
__u936->opaque_offset = cpu_to_be16(v); \
} while (0)
/* See 1.5.8.1: "Enqueue Command" */
struct qm_eqcr_entry {
u8 __dont_write_directly__verb;
u8 dca;
u16 seqnum;
u32 orp; /* 24-bit */
u32 fqid; /* 24-bit */
u32 tag;
struct qm_fd fd;
u8 __reserved3[32];
} __packed;
#define QM_EQCR_VERB_VBIT 0x80
#define QM_EQCR_VERB_CMD_MASK 0x61 /* but only one value; */
#define QM_EQCR_VERB_CMD_ENQUEUE 0x01
#define QM_EQCR_VERB_COLOUR_MASK 0x18 /* 4 possible values; */
#define QM_EQCR_VERB_COLOUR_GREEN 0x00
#define QM_EQCR_VERB_COLOUR_YELLOW 0x08
#define QM_EQCR_VERB_COLOUR_RED 0x10
#define QM_EQCR_VERB_COLOUR_OVERRIDE 0x18
#define QM_EQCR_VERB_INTERRUPT 0x04 /* on command consumption */
#define QM_EQCR_VERB_ORP 0x02 /* enable order restoration */
#define QM_EQCR_DCA_ENABLE 0x80
#define QM_EQCR_DCA_PARK 0x40
#define QM_EQCR_DCA_IDXMASK 0x0f /* "DQRR::idx" goes here */
#define QM_EQCR_SEQNUM_NESN 0x8000 /* Advance NESN */
#define QM_EQCR_SEQNUM_NLIS 0x4000 /* More fragments to come */
#define QM_EQCR_SEQNUM_SEQMASK 0x3fff /* sequence number goes here */
#define QM_EQCR_FQID_NULL 0 /* eg. for an ORP seqnum hole */
/* See 1.5.8.2: "Frame Dequeue Response" */
struct qm_dqrr_entry {
u8 verb;
u8 stat;
u16 seqnum; /* 15-bit */
u8 tok;
u8 __reserved2[3];
u32 fqid; /* 24-bit */
u32 contextB;
struct qm_fd fd;
u8 __reserved4[32];
};
#define QM_DQRR_VERB_VBIT 0x80
#define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */
#define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */
#define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */
#define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */
#define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */
#define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */
#define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */
#define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/
/* See 1.5.8.3: "ERN Message Response" */
/* See 1.5.8.4: "FQ State Change Notification" */
struct qm_mr_entry {
u8 verb;
union {
struct {
u8 dca;
u16 seqnum;
u8 rc; /* Rejection Code */
u32 orp:24;
u32 fqid; /* 24-bit */
u32 tag;
struct qm_fd fd;
} __packed ern;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 colour:2; /* See QM_MR_DCERN_COLOUR_* */
u8 __reserved1:3;
enum qm_dc_portal portal:3;
#else
enum qm_dc_portal portal:3;
u8 __reserved1:3;
u8 colour:2; /* See QM_MR_DCERN_COLOUR_* */
#endif
u16 __reserved2;
u8 rc; /* Rejection Code */
u32 __reserved3:24;
u32 fqid; /* 24-bit */
u32 tag;
struct qm_fd fd;
} __packed dcern;
struct {
u8 fqs; /* Frame Queue Status */
u8 __reserved1[6];
u32 fqid; /* 24-bit */
u32 contextB;
u8 __reserved2[16];
} __packed fq; /* FQRN/FQRNI/FQRL/FQPN */
};
u8 __reserved2[32];
} __packed;
#define QM_MR_VERB_VBIT 0x80
/* The "ern" VERB bits match QM_EQCR_VERB_*** so aren't reproduced here. ERNs
* originating from direct-connect portals ("dcern") use 0x20 as a verb which
* would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished from
* the other MR types by noting if the 0x20 bit is unset. */
#define QM_MR_VERB_TYPE_MASK 0x27
#define QM_MR_VERB_DC_ERN 0x20
#define QM_MR_VERB_FQRN 0x21
#define QM_MR_VERB_FQRNI 0x22
#define QM_MR_VERB_FQRL 0x23
#define QM_MR_VERB_FQPN 0x24
#define QM_MR_RC_MASK 0xf0 /* contains one of; */
#define QM_MR_RC_CGR_TAILDROP 0x00
#define QM_MR_RC_WRED 0x10
#define QM_MR_RC_ERROR 0x20
#define QM_MR_RC_ORPWINDOW_EARLY 0x30
#define QM_MR_RC_ORPWINDOW_LATE 0x40
#define QM_MR_RC_FQ_TAILDROP 0x50
#define QM_MR_RC_ORPWINDOW_RETIRED 0x60
#define QM_MR_RC_ORP_ZERO 0x70
#define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
#define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
#define QM_MR_DCERN_COLOUR_GREEN 0x00
#define QM_MR_DCERN_COLOUR_YELLOW 0x01
#define QM_MR_DCERN_COLOUR_RED 0x02
#define QM_MR_DCERN_COLOUR_OVERRIDE 0x03
/* An identical structure of FQD fields is present in the "Init FQ" command and
* the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
* Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
* latter has two inlines to assist with converting to/from the mant+exp
* representation. */
struct qm_fqd_stashing {
/* See QM_STASHING_EXCL_<...> */
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 exclusive;
u8 __reserved1:2;
/* Numbers of cachelines */
u8 annotation_cl:2;
u8 data_cl:2;
u8 context_cl:2;
#else
u8 context_cl:2;
u8 data_cl:2;
u8 annotation_cl:2;
u8 __reserved1:2;
u8 exclusive;
#endif
} __packed;
struct qm_fqd_taildrop {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 __reserved1:3;
u16 mant:8;
u16 exp:5;
#else
u16 exp:5;
u16 mant:8;
u16 __reserved1:3;
#endif
} __packed;
struct qm_fqd_oac {
/* See QM_OAC_<...> */
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 oac:2; /* "Overhead Accounting Control" */
u8 __reserved1:6;
#else
u8 __reserved1:6;
u8 oac:2; /* "Overhead Accounting Control" */
#endif
/* Two's-complement value (-128 to +127) */
signed char oal; /* "Overhead Accounting Length" */
} __packed;
struct qm_fqd {
union {
u8 orpc;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 __reserved1:2;
u8 orprws:3;
u8 oa:1;
u8 olws:2;
#else
u8 olws:2;
u8 oa:1;
u8 orprws:3;
u8 __reserved1:2;
#endif
} __packed;
};
u8 cgid;
u16 fq_ctrl; /* See QM_FQCTRL_<...> */
union {
u16 dest_wq;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 channel:13; /* qm_channel */
u16 wq:3;
#else
u16 wq:3;
u16 channel:13; /* qm_channel */
#endif
} __packed dest;
};
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 __reserved2:1;
u16 ics_cred:15;
#else
u16 __reserved2:1;
u16 ics_cred:15;
#endif
/* For "Initialize Frame Queue" commands, the write-enable mask
* determines whether 'td' or 'oac_init' is observed. For query
* commands, this field is always 'td', and 'oac_query' (below) reflects
* the Overhead ACcounting values. */
union {
struct qm_fqd_taildrop td;
struct qm_fqd_oac oac_init;
};
u32 context_b;
union {
/* Treat it as 64-bit opaque */
u64 opaque;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 hi;
u32 lo;
#else
u32 lo;
u32 hi;
#endif
};
/* Treat it as s/w portal stashing config */
/* See 1.5.6.7.1: "FQD Context_A field used for [...] */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
struct qm_fqd_stashing stashing;
/* 48-bit address of FQ context to
* stash, must be cacheline-aligned */
u16 context_hi;
u32 context_lo;
#else
u32 context_lo;
u16 context_hi;
struct qm_fqd_stashing stashing;
#endif
} __packed;
} context_a;
struct qm_fqd_oac oac_query;
} __packed;
/* 64-bit converters for context_hi/lo */
static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
{
return ((u64)fqd->context_a.context_hi << 32) |
(u64)fqd->context_a.context_lo;
}
static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
{
return (dma_addr_t)qm_fqd_stashing_get64(fqd);
}
static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
{
return ((u64)fqd->context_a.hi << 32) |
(u64)fqd->context_a.lo;
}
/* Macro, so we compile better when 'v' isn't necessarily 64-bit */
#define qm_fqd_stashing_set64(fqd, v) \
do { \
struct qm_fqd *__fqd931 = (fqd); \
__fqd931->context_a.context_hi = upper_32_bits(v); \
__fqd931->context_a.context_lo = lower_32_bits(v); \
} while (0)
#define qm_fqd_context_a_set64(fqd, v) \
do { \
struct qm_fqd *__fqd931 = (fqd); \
__fqd931->context_a.hi = upper_32_bits(v); \
__fqd931->context_a.lo = lower_32_bits(v); \
} while (0)
/* convert a threshold value into mant+exp representation */
static inline int qm_fqd_taildrop_set(struct qm_fqd_taildrop *td, u32 val,
int roundup)
{
u32 e = 0;
int oddbit = 0;
if (val > 0xe0000000)
return -ERANGE;
while (val > 0xff) {
oddbit = val & 1;
val >>= 1;
e++;
if (roundup && oddbit)
val++;
}
td->exp = e;
td->mant = val;
return 0;
}
/* and the other direction */
static inline u32 qm_fqd_taildrop_get(const struct qm_fqd_taildrop *td)
{
return (u32)td->mant << td->exp;
}
/* See 1.5.2.2: "Frame Queue Descriptor (FQD)" */
/* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
#define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */
#define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */
#define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */
#define QM_FQCTRL_ORP 0x0100 /* ORP Enable */
#define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */
#define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */
#define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */
#define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */
#define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */
#define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */
#define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */
/* See 1.5.6.7.1: "FQD Context_A field used for [...] */
/* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
#define QM_STASHING_EXCL_ANNOTATION 0x04
#define QM_STASHING_EXCL_DATA 0x02
#define QM_STASHING_EXCL_CTX 0x01
/* See 1.5.5.3: "Intra Class Scheduling" */
/* FQD field 'OAC' (Overhead ACcounting) uses these constants */
#define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */
#define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */
/* See 1.5.8.4: "FQ State Change Notification" */
/* This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
* and associated commands/responses. The WRED parameters are calculated from
* these fields as follows;
* MaxTH = MA * (2 ^ Mn)
* Slope = SA / (2 ^ Sn)
* MaxP = 4 * (Pn + 1)
*/
struct qm_cgr_wr_parm {
union {
u32 word;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 MA:8;
u32 Mn:5;
u32 SA:7; /* must be between 64-127 */
u32 Sn:6;
u32 Pn:6;
#else
u32 Pn:6;
u32 Sn:6;
u32 SA:7; /* must be between 64-127 */
u32 Mn:5;
u32 MA:8;
#endif
} __packed;
};
} __packed;
/* This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
* management commands, this is padded to a 16-bit structure field, so that's
* how we represent it here. The congestion state threshold is calculated from
* these fields as follows;
* CS threshold = TA * (2 ^ Tn)
*/
struct qm_cgr_cs_thres {
union {
u16 hword;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 __reserved:3;
u16 TA:8;
u16 Tn:5;
#else
u16 Tn:5;
u16 TA:8;
u16 __reserved:3;
#endif
} __packed;
};
} __packed;
/* This identical structure of CGR fields is present in the "Init/Modify CGR"
* commands and the "Query CGR" result. It's suctioned out here into its own
* struct. */
struct __qm_mc_cgr {
struct qm_cgr_wr_parm wr_parm_g;
struct qm_cgr_wr_parm wr_parm_y;
struct qm_cgr_wr_parm wr_parm_r;
u8 wr_en_g; /* boolean, use QM_CGR_EN */
u8 wr_en_y; /* boolean, use QM_CGR_EN */
u8 wr_en_r; /* boolean, use QM_CGR_EN */
u8 cscn_en; /* boolean, use QM_CGR_EN */
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */
#else
u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */
u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
#endif
};
u32 cscn_targ; /* use QM_CGR_TARG_* */
};
u8 cstd_en; /* boolean, use QM_CGR_EN */
u8 cs; /* boolean, only used in query response */
union {
/* use qm_cgr_cs_thres_set64() */
struct qm_cgr_cs_thres cs_thres;
u16 __cs_thres;
};
u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
} __packed;
#define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */
#define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/
#define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */
#define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */
#define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */
#define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */
/* Convert CGR thresholds to/from "cs_thres" format */
static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
{
return (u64)th->TA << th->Tn;
}
static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
int roundup)
{
u32 e = 0;
int oddbit = 0;
while (val > 0xff) {
oddbit = val & 1;
val >>= 1;
e++;
if (roundup && oddbit)
val++;
}
th->Tn = e;
th->TA = val;
return 0;
}
/* See 1.5.8.5.1: "Initialize FQ" */
/* See 1.5.8.5.2: "Query FQ" */
/* See 1.5.8.5.3: "Query FQ Non-Programmable Fields" */
/* See 1.5.8.5.4: "Alter FQ State Commands " */
/* See 1.5.8.6.1: "Initialize/Modify CGR" */
/* See 1.5.8.6.2: "CGR Test Write" */
/* See 1.5.8.6.3: "Query CGR" */
/* See 1.5.8.6.4: "Query Congestion Group State" */
struct qm_mcc_initfq {
u8 __reserved1;
u16 we_mask; /* Write Enable Mask */
u32 fqid; /* 24-bit */
u16 count; /* Initialises 'count+1' FQDs */
struct qm_fqd fqd; /* the FQD fields go here */
u8 __reserved3[30];
} __packed;
struct qm_mcc_queryfq {
u8 __reserved1[3];
u32 fqid; /* 24-bit */
u8 __reserved2[56];
} __packed;
struct qm_mcc_queryfq_np {
u8 __reserved1[3];
u32 fqid; /* 24-bit */
u8 __reserved2[56];
} __packed;
struct qm_mcc_alterfq {
u8 __reserved1[3];
u32 fqid; /* 24-bit */
u8 __reserved2;
u8 count; /* number of consecutive FQID */
u8 __reserved3[10];
u32 context_b; /* frame queue context b */
u8 __reserved4[40];
} __packed;
struct qm_mcc_initcgr {
u8 __reserved1;
u16 we_mask; /* Write Enable Mask */
struct __qm_mc_cgr cgr; /* CGR fields */
u8 __reserved2[2];
u8 cgid;
u8 __reserved4[32];
} __packed;
struct qm_mcc_cgrtestwrite {
u8 __reserved1[2];
u8 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
u32 i_bcnt_lo; /* low 32-bits of 40-bit */
u8 __reserved2[23];
u8 cgid;
u8 __reserved3[32];
} __packed;
struct qm_mcc_querycgr {
u8 __reserved1[30];
u8 cgid;
u8 __reserved2[32];
} __packed;
struct qm_mcc_querycongestion {
u8 __reserved[63];
} __packed;
struct qm_mcc_querywq {
u8 __reserved;
/* select channel if verb != QUERYWQ_DEDICATED */
union {
u16 channel_wq; /* ignores wq (3 lsbits) */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 id:13; /* qm_channel */
u16 __reserved1:3;
#else
u16 __reserved1:3;
u16 id:13; /* qm_channel */
#endif
} __packed channel;
};
u8 __reserved2[60];
} __packed;
struct qm_mcc_ceetm_lfqmt_config {
u8 __reserved1[4];
u32 lfqid:24;
u8 __reserved2[2];
u16 cqid;
u8 __reserved3[2];
u16 dctidx;
u8 __reserved4[48];
} __packed;
struct qm_mcc_ceetm_lfqmt_query {
u8 __reserved1[4];
u32 lfqid:24;
u8 __reserved2[56];
} __packed;
struct qm_mcc_ceetm_cq_config {
u8 __reserved1;
u16 cqid;
u8 dcpid;
u8 __reserved2;
u16 ccgid;
u8 __reserved3[56];
} __packed;
struct qm_mcc_ceetm_cq_query {
u8 __reserved1;
u16 cqid;
u8 dcpid;
u8 __reserved2[59];
} __packed;
struct qm_mcc_ceetm_dct_config {
u8 __reserved1;
u16 dctidx;
u8 dcpid;
u8 __reserved2[15];
u32 context_b;
u64 context_a;
u8 __reserved3[32];
} __packed;
struct qm_mcc_ceetm_dct_query {
u8 __reserved1;
u16 dctidx;
u8 dcpid;
u8 __reserved2[59];
} __packed;
struct qm_mcc_ceetm_class_scheduler_config {
u8 __reserved1;
u16 cqcid;
u8 dcpid;
u8 __reserved2[6];
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 gpc_reserved:1;
u8 gpc_combine_flag:1;
u8 gpc_prio_b:3;
u8 gpc_prio_a:3;
#else
u8 gpc_prio_a:3;
u8 gpc_prio_b:3;
u8 gpc_combine_flag:1;
u8 gpc_reserved:1;
#endif
u16 crem;
u16 erem;
u8 w[8];
u8 __reserved3[40];
} __packed;
struct qm_mcc_ceetm_class_scheduler_query {
u8 __reserved1;
u16 cqcid;
u8 dcpid;
u8 __reserved2[59];
} __packed;
#define CEETM_COMMAND_CHANNEL_MAPPING (0 << 12)
#define CEETM_COMMAND_SP_MAPPING (1 << 12)
#define CEETM_COMMAND_CHANNEL_SHAPER (2 << 12)
#define CEETM_COMMAND_LNI_SHAPER (3 << 12)
#define CEETM_COMMAND_TCFC (4 << 12)
#define CEETM_CCGRID_MASK 0x01FF
#define CEETM_CCGR_CM_CONFIGURE (0 << 14)
#define CEETM_CCGR_DN_CONFIGURE (1 << 14)
#define CEETM_CCGR_TEST_WRITE (2 << 14)
#define CEETM_CCGR_CM_QUERY (0 << 14)
#define CEETM_CCGR_DN_QUERY (1 << 14)
#define CEETM_CCGR_DN_QUERY_FLUSH (2 << 14)
#define CEETM_QUERY_CONGESTION_STATE (3 << 14)
struct qm_mcc_ceetm_mapping_shaper_tcfc_config {
u8 __reserved1;
u16 cid;
u8 dcpid;
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 map_shaped:1;
u8 map_reserved:4;
u8 map_lni_id:3;
#else
u8 map_lni_id:3;
u8 map_reserved:4;
u8 map_shaped:1;
#endif
u8 __reserved2[58];
} __packed channel_mapping;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 map_reserved:5;
u8 map_lni_id:3;
#else
u8 map_lni_id:3;
u8 map_reserved:5;
#endif
u8 __reserved2[58];
} __packed sp_mapping;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 cpl:1;
u8 cpl_reserved:2;
u8 oal:5;
#else
u8 oal:5;
u8 cpl_reserved:2;
u8 cpl:1;
#endif
u32 crtcr:24;
u32 ertcr:24;
u16 crtbl;
u16 ertbl;
u8 mps; /* This will be hardcoded by driver with 60 */
u8 __reserved2[47];
} __packed shaper_config;
struct {
u8 __reserved2[11];
u64 lnitcfcc;
u8 __reserved3[40];
} __packed tcfc_config;
};
} __packed;
struct qm_mcc_ceetm_mapping_shaper_tcfc_query {
u8 __reserved1;
u16 cid;
u8 dcpid;
u8 __reserved2[59];
} __packed;
struct qm_mcc_ceetm_ccgr_config {
u8 __reserved1;
u16 ccgrid;
u8 dcpid;
u8 __reserved2;
u16 we_mask;
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 ctl_reserved:1;
u8 ctl_wr_en_g:1;
u8 ctl_wr_en_y:1;
u8 ctl_wr_en_r:1;
u8 ctl_td_en:1;
u8 ctl_td_mode:1;
u8 ctl_cscn_en:1;
u8 ctl_mode:1;
#else
u8 ctl_mode:1;
u8 ctl_cscn_en:1;
u8 ctl_td_mode:1;
u8 ctl_td_en:1;
u8 ctl_wr_en_r:1;
u8 ctl_wr_en_y:1;
u8 ctl_wr_en_g:1;
u8 ctl_reserved:1;
#endif
u8 cdv;
u16 cscn_tupd;
u8 oal;
u8 __reserved3;
struct qm_cgr_cs_thres cs_thres;
struct qm_cgr_cs_thres cs_thres_x;
struct qm_cgr_cs_thres td_thres;
struct qm_cgr_wr_parm wr_parm_g;
struct qm_cgr_wr_parm wr_parm_y;
struct qm_cgr_wr_parm wr_parm_r;
} __packed cm_config;
struct {
u8 dnc;
u8 dn0;
u8 dn1;
u64 dnba:40;
u8 __reserved3[2];
u16 dnth_0;
u8 __reserved4[2];
u16 dnth_1;
u8 __reserved5[8];
} __packed dn_config;
struct {
u8 __reserved3[3];
u64 i_cnt:40;
u8 __reserved4[16];
} __packed test_write;
};
u8 __reserved5[32];
} __packed;
struct qm_mcc_ceetm_ccgr_query {
u8 __reserved1;
u16 ccgrid;
u8 dcpid;
u8 __reserved2[59];
} __packed;
struct qm_mcc_ceetm_cq_peek_pop_xsfdrread {
u8 __reserved1;
u16 cqid;
u8 dcpid;
u8 ct;
u16 xsfdr;
u8 __reserved2[56];
} __packed;
#define CEETM_QUERY_DEQUEUE_STATISTICS 0x00
#define CEETM_QUERY_DEQUEUE_CLEAR_STATISTICS 0x01
#define CEETM_WRITE_DEQUEUE_STATISTICS 0x02
#define CEETM_QUERY_REJECT_STATISTICS 0x03
#define CEETM_QUERY_REJECT_CLEAR_STATISTICS 0x04
#define CEETM_WRITE_REJECT_STATISTICS 0x05
struct qm_mcc_ceetm_statistics_query_write {
u8 __reserved1;
u16 cid;
u8 dcpid;
u8 ct;
u8 __reserved2[13];
u64 frm_cnt:40;
u8 __reserved3[2];
u64 byte_cnt:48;
u8 __reserved[32];
} __packed;
struct qm_mc_command {
u8 __dont_write_directly__verb;
union {
struct qm_mcc_initfq initfq;
struct qm_mcc_queryfq queryfq;
struct qm_mcc_queryfq_np queryfq_np;
struct qm_mcc_alterfq alterfq;
struct qm_mcc_initcgr initcgr;
struct qm_mcc_cgrtestwrite cgrtestwrite;
struct qm_mcc_querycgr querycgr;
struct qm_mcc_querycongestion querycongestion;
struct qm_mcc_querywq querywq;
struct qm_mcc_ceetm_lfqmt_config lfqmt_config;
struct qm_mcc_ceetm_lfqmt_query lfqmt_query;
struct qm_mcc_ceetm_cq_config cq_config;
struct qm_mcc_ceetm_cq_query cq_query;
struct qm_mcc_ceetm_dct_config dct_config;
struct qm_mcc_ceetm_dct_query dct_query;
struct qm_mcc_ceetm_class_scheduler_config csch_config;
struct qm_mcc_ceetm_class_scheduler_query csch_query;
struct qm_mcc_ceetm_mapping_shaper_tcfc_config mst_config;
struct qm_mcc_ceetm_mapping_shaper_tcfc_query mst_query;
struct qm_mcc_ceetm_ccgr_config ccgr_config;
struct qm_mcc_ceetm_ccgr_query ccgr_query;
struct qm_mcc_ceetm_cq_peek_pop_xsfdrread cq_ppxr;
struct qm_mcc_ceetm_statistics_query_write stats_query_write;
};
} __packed;
#define QM_MCC_VERB_VBIT 0x80
#define QM_MCC_VERB_MASK 0x7f /* where the verb contains; */
#define QM_MCC_VERB_INITFQ_PARKED 0x40
#define QM_MCC_VERB_INITFQ_SCHED 0x41
#define QM_MCC_VERB_QUERYFQ 0x44
#define QM_MCC_VERB_QUERYFQ_NP 0x45 /* "non-programmable" fields */
#define QM_MCC_VERB_QUERYWQ 0x46
#define QM_MCC_VERB_QUERYWQ_DEDICATED 0x47
#define QM_MCC_VERB_ALTER_SCHED 0x48 /* Schedule FQ */
#define QM_MCC_VERB_ALTER_FE 0x49 /* Force Eligible FQ */
#define QM_MCC_VERB_ALTER_RETIRE 0x4a /* Retire FQ */
#define QM_MCC_VERB_ALTER_OOS 0x4b /* Take FQ out of service */
#define QM_MCC_VERB_ALTER_FQXON 0x4d /* FQ XON */
#define QM_MCC_VERB_ALTER_FQXOFF 0x4e /* FQ XOFF */
#define QM_MCC_VERB_INITCGR 0x50
#define QM_MCC_VERB_MODIFYCGR 0x51
#define QM_MCC_VERB_CGRTESTWRITE 0x52
#define QM_MCC_VERB_QUERYCGR 0x58
#define QM_MCC_VERB_QUERYCONGESTION 0x59
/* INITFQ-specific flags */
#define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */
#define QM_INITFQ_WE_OAC 0x0100
#define QM_INITFQ_WE_ORPC 0x0080
#define QM_INITFQ_WE_CGID 0x0040
#define QM_INITFQ_WE_FQCTRL 0x0020
#define QM_INITFQ_WE_DESTWQ 0x0010
#define QM_INITFQ_WE_ICSCRED 0x0008
#define QM_INITFQ_WE_TDTHRESH 0x0004
#define QM_INITFQ_WE_CONTEXTB 0x0002
#define QM_INITFQ_WE_CONTEXTA 0x0001
/* INITCGR/MODIFYCGR-specific flags */
#define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */
#define QM_CGR_WE_WR_PARM_G 0x0400
#define QM_CGR_WE_WR_PARM_Y 0x0200
#define QM_CGR_WE_WR_PARM_R 0x0100
#define QM_CGR_WE_WR_EN_G 0x0080
#define QM_CGR_WE_WR_EN_Y 0x0040
#define QM_CGR_WE_WR_EN_R 0x0020
#define QM_CGR_WE_CSCN_EN 0x0010
#define QM_CGR_WE_CSCN_TARG 0x0008
#define QM_CGR_WE_CSTD_EN 0x0004
#define QM_CGR_WE_CS_THRES 0x0002
#define QM_CGR_WE_MODE 0x0001
/* See 1.5.9.7 CEETM Management Commands */
#define QM_CEETM_VERB_LFQMT_CONFIG 0x70
#define QM_CEETM_VERB_LFQMT_QUERY 0x71
#define QM_CEETM_VERB_CQ_CONFIG 0x72
#define QM_CEETM_VERB_CQ_QUERY 0x73
#define QM_CEETM_VERB_DCT_CONFIG 0x74
#define QM_CEETM_VERB_DCT_QUERY 0x75
#define QM_CEETM_VERB_CLASS_SCHEDULER_CONFIG 0x76
#define QM_CEETM_VERB_CLASS_SCHEDULER_QUERY 0x77
#define QM_CEETM_VERB_MAPPING_SHAPER_TCFC_CONFIG 0x78
#define QM_CEETM_VERB_MAPPING_SHAPER_TCFC_QUERY 0x79
#define QM_CEETM_VERB_CCGR_CONFIG 0x7A
#define QM_CEETM_VERB_CCGR_QUERY 0x7B
#define QM_CEETM_VERB_CQ_PEEK_POP_XFDRREAD 0x7C
#define QM_CEETM_VERB_STATISTICS_QUERY_WRITE 0x7D
/* See 1.5.8.5.1: "Initialize FQ" */
/* See 1.5.8.5.2: "Query FQ" */
/* See 1.5.8.5.3: "Query FQ Non-Programmable Fields" */
/* See 1.5.8.5.4: "Alter FQ State Commands " */
/* See 1.5.8.6.1: "Initialize/Modify CGR" */
/* See 1.5.8.6.2: "CGR Test Write" */
/* See 1.5.8.6.3: "Query CGR" */
/* See 1.5.8.6.4: "Query Congestion Group State" */
struct qm_mcr_initfq {
u8 __reserved1[62];
} __packed;
struct qm_mcr_queryfq {
u8 __reserved1[8];
struct qm_fqd fqd; /* the FQD fields are here */
u8 __reserved2[30];
} __packed;
struct qm_mcr_queryfq_np {
u8 __reserved1;
u8 state; /* QM_MCR_NP_STATE_*** */
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 __reserved2;
u32 fqd_link:24;
u16 __reserved3:2;
u16 odp_seq:14;
u16 __reserved4:2;
u16 orp_nesn:14;
u16 __reserved5:1;
u16 orp_ea_hseq:15;
u16 __reserved6:1;
u16 orp_ea_tseq:15;
u8 __reserved7;
u32 orp_ea_hptr:24;
u8 __reserved8;
u32 orp_ea_tptr:24;
u8 __reserved9;
u32 pfdr_hptr:24;
u8 __reserved10;
u32 pfdr_tptr:24;
u8 __reserved11[5];
u8 __reserved12:7;
u8 is:1;
u16 ics_surp;
u32 byte_cnt;
u8 __reserved13;
u32 frm_cnt:24;
u32 __reserved14;
u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
u16 __reserved15;
u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
#else
u8 __reserved2;
u32 fqd_link:24;
u16 odp_seq:14;
u16 __reserved3:2;
u16 orp_nesn:14;
u16 __reserved4:2;
u16 orp_ea_hseq:15;
u16 __reserved5:1;
u16 orp_ea_tseq:15;
u16 __reserved6:1;
u8 __reserved7;
u32 orp_ea_hptr:24;
u8 __reserved8;
u32 orp_ea_tptr:24;
u8 __reserved9;
u32 pfdr_hptr:24;
u8 __reserved10;
u32 pfdr_tptr:24;
u8 __reserved11[5];
u8 is:1;
u8 __reserved12:7;
u16 ics_surp;
u32 byte_cnt;
u8 __reserved13;
u32 frm_cnt:24;
u32 __reserved14;
u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
u16 __reserved15;
u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
#endif
} __packed;
struct qm_mcr_alterfq {
u8 fqs; /* Frame Queue Status */
u8 __reserved1[61];
} __packed;
struct qm_mcr_initcgr {
u8 __reserved1[62];
} __packed;
struct qm_mcr_cgrtestwrite {
u16 __reserved1;
struct __qm_mc_cgr cgr; /* CGR fields */
u8 __reserved2[3];
u32 __reserved3:24;
u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
u32 i_bcnt_lo; /* low 32-bits of 40-bit */
u32 __reserved4:24;
u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */
u32 a_bcnt_lo; /* low 32-bits of 40-bit */
u16 lgt; /* Last Group Tick */
u16 wr_prob_g;
u16 wr_prob_y;
u16 wr_prob_r;
u8 __reserved5[8];
} __packed;
struct qm_mcr_querycgr {
u16 __reserved1;
struct __qm_mc_cgr cgr; /* CGR fields */
u8 __reserved2[3];
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 __reserved3:24;
u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
u32 i_bcnt_lo; /* low 32-bits of 40-bit */
#else
u32 i_bcnt_lo; /* low 32-bits of 40-bit */
u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
u32 __reserved3:24;
#endif
};
u64 i_bcnt;
};
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 __reserved4:24;
u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */
u32 a_bcnt_lo; /* low 32-bits of 40-bit */
#else
u32 a_bcnt_lo; /* low 32-bits of 40-bit */
u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */
u32 __reserved4:24;
#endif
};
u64 a_bcnt;
};
union {
u32 cscn_targ_swp[4];
u8 __reserved5[16];
};
} __packed;
static inline u64 qm_mcr_querycgr_i_get64(const struct qm_mcr_querycgr *q)
{
return be64_to_cpu(q->i_bcnt);
}
static inline u64 qm_mcr_querycgr_a_get64(const struct qm_mcr_querycgr *q)
{
return be64_to_cpu(q->a_bcnt);
}
static inline u64 qm_mcr_cgrtestwrite_i_get64(
const struct qm_mcr_cgrtestwrite *q)
{
return be64_to_cpu(((u64)q->i_bcnt_hi << 32) | (u64)q->i_bcnt_lo);
}
static inline u64 qm_mcr_cgrtestwrite_a_get64(
const struct qm_mcr_cgrtestwrite *q)
{
return be64_to_cpu(((u64)q->a_bcnt_hi << 32) | (u64)q->a_bcnt_lo);
}
/* Macro, so we compile better if 'v' isn't always 64-bit */
#define qm_mcr_querycgr_i_set64(q, v) \
do { \
struct qm_mcr_querycgr *__q931 = (fd); \
__q931->i_bcnt_hi = upper_32_bits(v); \
__q931->i_bcnt_lo = lower_32_bits(v); \
} while (0)
#define qm_mcr_querycgr_a_set64(q, v) \
do { \
struct qm_mcr_querycgr *__q931 = (fd); \
__q931->a_bcnt_hi = upper_32_bits(v); \
__q931->a_bcnt_lo = lower_32_bits(v); \
} while (0)
struct __qm_mcr_querycongestion {
u32 __state[8];
};
struct qm_mcr_querycongestion {
u8 __reserved[30];
/* Access this struct using QM_MCR_QUERYCONGESTION() */
struct __qm_mcr_querycongestion state;
} __packed;
struct qm_mcr_querywq {
union {
u16 channel_wq; /* ignores wq (3 lsbits) */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 id:13; /* qm_channel */
u16 __reserved:3;
#else
u16 __reserved:3;
u16 id:13; /* qm_channel */
#endif
} __packed channel;
};
u8 __reserved[28];
u32 wq_len[8];
} __packed;
/* QMAN CEETM Management Command Response */
struct qm_mcr_ceetm_lfqmt_config {
u8 __reserved1[62];
} __packed;
struct qm_mcr_ceetm_lfqmt_query {
u8 __reserved1[8];
u16 cqid;
u8 __reserved2[2];
u16 dctidx;
u8 __reserved3[2];
u16 ccgid;
u8 __reserved4[44];
} __packed;
struct qm_mcr_ceetm_cq_config {
u8 __reserved1[62];
} __packed;
struct qm_mcr_ceetm_cq_query {
u8 __reserved1[4];
u16 ccgid;
u16 state;
u32 pfdr_hptr:24;
u32 pfdr_tptr:24;
u16 od1_xsfdr;
u16 od2_xsfdr;
u16 od3_xsfdr;
u16 od4_xsfdr;
u16 od5_xsfdr;
u16 od6_xsfdr;
u16 ra1_xsfdr;
u16 ra2_xsfdr;
u8 __reserved2;
u32 frm_cnt:24;
u8 __reserved333[28];
} __packed;
struct qm_mcr_ceetm_dct_config {
u8 __reserved1[62];
} __packed;
struct qm_mcr_ceetm_dct_query {
u8 __reserved1[18];
u32 context_b;
u64 context_a;
u8 __reserved2[32];
} __packed;
struct qm_mcr_ceetm_class_scheduler_config {
u8 __reserved1[62];
} __packed;
struct qm_mcr_ceetm_class_scheduler_query {
u8 __reserved1[9];
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 gpc_reserved:1;
u8 gpc_combine_flag:1;
u8 gpc_prio_b:3;
u8 gpc_prio_a:3;
#else
u8 gpc_prio_a:3;
u8 gpc_prio_b:3;
u8 gpc_combine_flag:1;
u8 gpc_reserved:1;
#endif
u16 crem;
u16 erem;
u8 w[8];
u8 __reserved2[5];
u32 wbfslist:24;
u32 d8;
u32 d9;
u32 d10;
u32 d11;
u32 d12;
u32 d13;
u32 d14;
u32 d15;
} __packed;
struct qm_mcr_ceetm_mapping_shaper_tcfc_config {
u16 cid;
u8 __reserved2[60];
} __packed;
struct qm_mcr_ceetm_mapping_shaper_tcfc_query {
u16 cid;
u8 __reserved1;
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 map_shaped:1;
u8 map_reserved:4;
u8 map_lni_id:3;
#else
u8 map_lni_id:3;
u8 map_reserved:4;
u8 map_shaped:1;
#endif
u8 __reserved2[58];
} __packed channel_mapping_query;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 map_reserved:5;
u8 map_lni_id:3;
#else
u8 map_lni_id:3;
u8 map_reserved:5;
#endif
u8 __reserved2[58];
} __packed sp_mapping_query;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 cpl:1;
u8 cpl_reserved:2;
u8 oal:5;
#else
u8 oal:5;
u8 cpl_reserved:2;
u8 cpl:1;
#endif
u32 crtcr:24;
u32 ertcr:24;
u16 crtbl;
u16 ertbl;
u8 mps;
u8 __reserved2[15];
u32 crat;
u32 erat;
u8 __reserved3[24];
} __packed shaper_query;
struct {
u8 __reserved1[11];
u64 lnitcfcc;
u8 __reserved3[40];
} __packed tcfc_query;
};
} __packed;
struct qm_mcr_ceetm_ccgr_config {
u8 __reserved1[46];
union {
u8 __reserved2[8];
struct {
u16 timestamp;
u16 wr_porb_g;
u16 wr_prob_y;
u16 wr_prob_r;
} __packed test_write;
};
u8 __reserved3[8];
} __packed;
struct qm_mcr_ceetm_ccgr_query {
u8 __reserved1[6];
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 ctl_reserved:1;
u8 ctl_wr_en_g:1;
u8 ctl_wr_en_y:1;
u8 ctl_wr_en_r:1;
u8 ctl_td_en:1;
u8 ctl_td_mode:1;
u8 ctl_cscn_en:1;
u8 ctl_mode:1;
#else
u8 ctl_mode:1;
u8 ctl_cscn_en:1;
u8 ctl_td_mode:1;
u8 ctl_td_en:1;
u8 ctl_wr_en_r:1;
u8 ctl_wr_en_y:1;
u8 ctl_wr_en_g:1;
u8 ctl_reserved:1;
#endif
u8 cdv;
u8 __reserved2[2];
u8 oal;
u8 __reserved3;
struct qm_cgr_cs_thres cs_thres;
struct qm_cgr_cs_thres cs_thres_x;
struct qm_cgr_cs_thres td_thres;
struct qm_cgr_wr_parm wr_parm_g;
struct qm_cgr_wr_parm wr_parm_y;
struct qm_cgr_wr_parm wr_parm_r;
u16 cscn_targ_dcp;
u8 dcp_lsn;
u64 i_cnt:40;
u8 __reserved4[3];
u64 a_cnt:40;
u32 cscn_targ_swp[4];
} __packed cm_query;
struct {
u8 dnc;
u8 dn0;
u8 dn1;
u64 dnba:40;
u8 __reserved2[2];
u16 dnth_0;
u8 __reserved3[2];
u16 dnth_1;
u8 __reserved4[10];
u16 dnacc_0;
u8 __reserved5[2];
u16 dnacc_1;
u8 __reserved6[24];
} __packed dn_query;
struct {
u8 __reserved2[24];
struct __qm_mcr_querycongestion state;
} __packed congestion_state;
};
} __packed;
struct qm_mcr_ceetm_cq_peek_pop_xsfdrread {
u8 stat;
u8 __reserved1[11];
u16 dctidx;
struct qm_fd fd;
u8 __reserved2[32];
} __packed;
struct qm_mcr_ceetm_statistics_query {
u8 __reserved1[17];
u64 frm_cnt:40;
u8 __reserved2[2];
u64 byte_cnt:48;
u8 __reserved3[32];
} __packed;
struct qm_mc_result {
u8 verb;
u8 result;
union {
struct qm_mcr_initfq initfq;
struct qm_mcr_queryfq queryfq;
struct qm_mcr_queryfq_np queryfq_np;
struct qm_mcr_alterfq alterfq;
struct qm_mcr_initcgr initcgr;
struct qm_mcr_cgrtestwrite cgrtestwrite;
struct qm_mcr_querycgr querycgr;
struct qm_mcr_querycongestion querycongestion;
struct qm_mcr_querywq querywq;
struct qm_mcr_ceetm_lfqmt_config lfqmt_config;
struct qm_mcr_ceetm_lfqmt_query lfqmt_query;
struct qm_mcr_ceetm_cq_config cq_config;
struct qm_mcr_ceetm_cq_query cq_query;
struct qm_mcr_ceetm_dct_config dct_config;
struct qm_mcr_ceetm_dct_query dct_query;
struct qm_mcr_ceetm_class_scheduler_config csch_config;
struct qm_mcr_ceetm_class_scheduler_query csch_query;
struct qm_mcr_ceetm_mapping_shaper_tcfc_config mst_config;
struct qm_mcr_ceetm_mapping_shaper_tcfc_query mst_query;
struct qm_mcr_ceetm_ccgr_config ccgr_config;
struct qm_mcr_ceetm_ccgr_query ccgr_query;
struct qm_mcr_ceetm_cq_peek_pop_xsfdrread cq_ppxr;
struct qm_mcr_ceetm_statistics_query stats_query;
};
} __packed;
#define QM_MCR_VERB_RRID 0x80
#define QM_MCR_VERB_MASK QM_MCC_VERB_MASK
#define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED
#define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED
#define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ
#define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP
#define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ
#define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED
#define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED
#define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE
#define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE
#define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS
#define QM_MCR_RESULT_NULL 0x00
#define QM_MCR_RESULT_OK 0xf0
#define QM_MCR_RESULT_ERR_FQID 0xf1
#define QM_MCR_RESULT_ERR_FQSTATE 0xf2
#define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */
#define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4
#define QM_MCR_RESULT_PENDING 0xf8
#define QM_MCR_RESULT_ERR_BADCOMMAND 0xff
#define QM_MCR_NP_STATE_FE 0x10
#define QM_MCR_NP_STATE_R 0x08
#define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */
#define QM_MCR_NP_STATE_OOS 0x00
#define QM_MCR_NP_STATE_RETIRED 0x01
#define QM_MCR_NP_STATE_TEN_SCHED 0x02
#define QM_MCR_NP_STATE_TRU_SCHED 0x03
#define QM_MCR_NP_STATE_PARKED 0x04
#define QM_MCR_NP_STATE_ACTIVE 0x05
#define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */
#define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */
#define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */
#define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */
#define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */
#define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
#define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
/* This extracts the state for congestion group 'n' from a query response.
* Eg.
* u8 cgr = [...];
* struct qm_mc_result *res = [...];
* printf("congestion group %d congestion state: %d\n", cgr,
* QM_MCR_QUERYCONGESTION(&res->querycongestion.state, cgr));
*/
#define __CGR_WORD(num) (num >> 5)
#define __CGR_SHIFT(num) (num & 0x1f)
#define __CGR_NUM (sizeof(struct __qm_mcr_querycongestion) << 3)
static inline int QM_MCR_QUERYCONGESTION(struct __qm_mcr_querycongestion *p,
u8 cgr)
{
return p->__state[__CGR_WORD(cgr)] & (0x80000000 >> __CGR_SHIFT(cgr));
}
/*********************/
/* Utility interface */
/*********************/
/* Represents an allocator over a range of FQIDs. NB, accesses are not locked,
* spinlock them yourself if needed. */
struct qman_fqid_pool;
/* Create/destroy a FQID pool, num must be a multiple of 32. NB, _destroy()
* always succeeds, but returns non-zero if there were "leaked" FQID
* allocations. */
struct qman_fqid_pool *qman_fqid_pool_create(u32 fqid_start, u32 num);
int qman_fqid_pool_destroy(struct qman_fqid_pool *pool);
/* Alloc/free a FQID from the range. _alloc() returns zero for success. */
int qman_fqid_pool_alloc(struct qman_fqid_pool *pool, u32 *fqid);
void qman_fqid_pool_free(struct qman_fqid_pool *pool, u32 fqid);
u32 qman_fqid_pool_used(struct qman_fqid_pool *pool);
/*******************************************************************/
/* Managed (aka "shared" or "mux/demux") portal, high-level i/face */
/*******************************************************************/
/* Portal and Frame Queues */
/* ----------------------- */
/* Represents a managed portal */
struct qman_portal;
/* This object type represents Qman frame queue descriptors (FQD), it is
* cacheline-aligned, and initialised by qman_create_fq(). The structure is
* defined further down. */
struct qman_fq;
/* This object type represents a Qman congestion group, it is defined further
* down. */
struct qman_cgr;
struct qman_portal_config {
/* If the caller enables DQRR stashing (and thus wishes to operate the
* portal from only one cpu), this is the logical CPU that the portal
* will stash to. Whether stashing is enabled or not, this setting is
* also used for any "core-affine" portals, ie. default portals
* associated to the corresponding cpu. -1 implies that there is no core
* affinity configured. */
int cpu;
/* portal interrupt line */
int irq;
/* the unique index of this portal */
u32 index;
/* Is this portal shared? (If so, it has coarser locking and demuxes
* processing on behalf of other CPUs.) */
int is_shared;
/* The portal's dedicated channel id, use this value for initialising
* frame queues to target this portal when scheduled. */
u16 channel;
/* A mask of which pool channels this portal has dequeue access to
* (using QM_SDQCR_CHANNELS_POOL(n) for the bitmask) */
u32 pools;
};
/* This enum, and the callback type that returns it, are used when handling
* dequeued frames via DQRR. Note that for "null" callbacks registered with the
* portal object (for handling dequeues that do not demux because contextB is
* NULL), the return value *MUST* be qman_cb_dqrr_consume. */
enum qman_cb_dqrr_result {
/* DQRR entry can be consumed */
qman_cb_dqrr_consume,
/* Like _consume, but requests parking - FQ must be held-active */
qman_cb_dqrr_park,
/* Does not consume, for DCA mode only. This allows out-of-order
* consumes by explicit calls to qman_dca() and/or the use of implicit
* DCA via EQCR entries. */
qman_cb_dqrr_defer,
/* Stop processing without consuming this ring entry. Exits the current
* qman_poll_dqrr() or interrupt-handling, as appropriate. If within an
* interrupt handler, the callback would typically call
* qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
* otherwise the interrupt will reassert immediately. */
qman_cb_dqrr_stop,
/* Like qman_cb_dqrr_stop, but consumes the current entry. */
qman_cb_dqrr_consume_stop
};
typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
struct qman_fq *fq,
const struct qm_dqrr_entry *dqrr);
/* This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
* are always consumed after the callback returns. */
typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
const struct qm_mr_entry *msg);
/* This callback type is used when handling DCP ERNs */
typedef void (*qman_cb_dc_ern)(struct qman_portal *qm,
const struct qm_mr_entry *msg);
/* s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
* held-active + held-suspended are just "sched". Things like "retired" will not
* be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
* then, to indicate it's completing and to gate attempts to retry the retire
* command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
* technically impossible in the case of enqueue DCAs (which refer to DQRR ring
* index rather than the FQ that ring entry corresponds to), so repeated park
* commands are allowed (if you're silly enough to try) but won't change FQ
* state, and the resulting park notifications move FQs from "sched" to
* "parked". */
enum qman_fq_state {
qman_fq_state_oos,
qman_fq_state_parked,
qman_fq_state_sched,
qman_fq_state_retired
};
/* Frame queue objects (struct qman_fq) are stored within memory passed to
* qman_create_fq(), as this allows stashing of caller-provided demux callback
* pointers at no extra cost to stashing of (driver-internal) FQ state. If the
* caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
* they should;
*
* (a) extend the qman_fq structure with their state; eg.
*
* // myfq is allocated and driver_fq callbacks filled in;
* struct my_fq {
* struct qman_fq base;
* int an_extra_field;
* [ ... add other fields to be associated with each FQ ...]
* } *myfq = some_my_fq_allocator();
* struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
*
* // in a dequeue callback, access extra fields from 'fq' via a cast;
* struct my_fq *myfq = (struct my_fq *)fq;
* do_something_with(myfq->an_extra_field);
* [...]
*
* (b) when and if configuring the FQ for context stashing, specify how ever
* many cachelines are required to stash 'struct my_fq', to accelerate not
* only the Qman driver but the callback as well.
*/
struct qman_fq_cb {
qman_cb_dqrr dqrr; /* for dequeued frames */
qman_cb_mr ern; /* for s/w ERNs */
qman_cb_mr fqs; /* frame-queue state changes*/
};
struct qman_fq {
/* Caller of qman_create_fq() provides these demux callbacks */
struct qman_fq_cb cb;
/* These are internal to the driver, don't touch. In particular, they
* may change, be removed, or extended (so you shouldn't rely on
* sizeof(qman_fq) being a constant). */
spinlock_t fqlock;
u32 fqid;
volatile unsigned long flags;
enum qman_fq_state state;
int cgr_groupid;
struct rb_node node;
#ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
u32 key;
#endif
};
/* This callback type is used when handling congestion group entry/exit.
* 'congested' is non-zero on congestion-entry, and zero on congestion-exit. */
typedef void (*qman_cb_cgr)(struct qman_portal *qm,
struct qman_cgr *cgr, int congested);
struct qman_cgr {
/* Set these prior to qman_create_cgr() */
u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
qman_cb_cgr cb;
/* These are private to the driver */
u16 chan; /* portal channel this object is created on */
struct list_head node;
};
/* Flags to qman_create_fq() */
#define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
#define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
#define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */
#define QMAN_FQ_FLAG_LOCKED 0x00000008 /* multi-core locking */
#define QMAN_FQ_FLAG_AS_IS 0x00000010 /* query h/w state */
#define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
/* Flags to qman_destroy_fq() */
#define QMAN_FQ_DESTROY_PARKED 0x00000001 /* FQ can be parked or OOS */
/* Flags from qman_fq_state() */
#define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
#define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
#define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
#define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
#define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
#define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */
/* Flags to qman_init_fq() */
#define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
#define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
/* Flags to qman_volatile_dequeue() */
#ifdef CONFIG_FSL_DPA_CAN_WAIT
#define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */
#define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */
#define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */
#endif
/* Flags to qman_enqueue(). NB, the strange numbering is to align with hardware,
* bit-wise. (NB: the PME API is sensitive to these precise numberings too, so
* any change here should be audited in PME.) */
#ifdef CONFIG_FSL_DPA_CAN_WAIT
#define QMAN_ENQUEUE_FLAG_WAIT 0x00010000 /* wait if EQCR is full */
#define QMAN_ENQUEUE_FLAG_WAIT_INT 0x00020000 /* if wait, interruptible? */
#ifdef CONFIG_FSL_DPA_CAN_WAIT_SYNC
#define QMAN_ENQUEUE_FLAG_WAIT_SYNC 0x00000004 /* if wait, until consumed? */
#endif
#endif
#define QMAN_ENQUEUE_FLAG_WATCH_CGR 0x00080000 /* watch congestion state */
#define QMAN_ENQUEUE_FLAG_DCA 0x00008000 /* perform enqueue-DCA */
#define QMAN_ENQUEUE_FLAG_DCA_PARK 0x00004000 /* If DCA, requests park */
#define QMAN_ENQUEUE_FLAG_DCA_PTR(p) /* If DCA, p is DQRR entry */ \
(((u32)(p) << 2) & 0x00000f00)
#define QMAN_ENQUEUE_FLAG_C_GREEN 0x00000000 /* choose one C_*** flag */
#define QMAN_ENQUEUE_FLAG_C_YELLOW 0x00000008
#define QMAN_ENQUEUE_FLAG_C_RED 0x00000010
#define QMAN_ENQUEUE_FLAG_C_OVERRIDE 0x00000018
/* For the ORP-specific qman_enqueue_orp() variant;
* - this flag indicates "Not Last In Sequence", ie. all but the final fragment
* of a frame. */
#define QMAN_ENQUEUE_FLAG_NLIS 0x01000000
/* - this flag performs no enqueue but fills in an ORP sequence number that
* would otherwise block it (eg. if a frame has been dropped). */
#define QMAN_ENQUEUE_FLAG_HOLE 0x02000000
/* - this flag performs no enqueue but advances NESN to the given sequence
* number. */
#define QMAN_ENQUEUE_FLAG_NESN 0x04000000
/* Flags to qman_modify_cgr() */
#define QMAN_CGR_FLAG_USE_INIT 0x00000001
#define QMAN_CGR_MODE_FRAME 0x00000001
/* Portal Management */
/* ----------------- */
/**
* qman_get_portal_config - get portal configuration settings
*
* This returns a read-only view of the current cpu's affine portal settings.
*/
const struct qman_portal_config *qman_get_portal_config(void);
/**
* qman_irqsource_get - return the portal work that is interrupt-driven
*
* Returns a bitmask of QM_PIRQ_**I processing sources that are currently
* enabled for interrupt handling on the current cpu's affine portal. These
* sources will trigger the portal interrupt and the interrupt handler (or a
* tasklet/bottom-half it defers to) will perform the corresponding processing
* work. The qman_poll_***() functions will only process sources that are not in
* this bitmask. If the current CPU is sharing a portal hosted on another CPU,
* this always returns zero.
*/
u32 qman_irqsource_get(void);
/**
* qman_irqsource_add - add processing sources to be interrupt-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Adds processing sources that should be interrupt-driven (rather than
* processed via qman_poll_***() functions). Returns zero for success, or
* -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int qman_irqsource_add(u32 bits);
/**
* qman_irqsource_remove - remove processing sources from being interrupt-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Removes processing sources from being interrupt-driven, so that they will
* instead be processed via qman_poll_***() functions. Returns zero for success,
* or -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int qman_irqsource_remove(u32 bits);
/**
* qman_affine_cpus - return a mask of cpus that have affine portals
*/
const cpumask_t *qman_affine_cpus(void);
/**
* qman_affine_channel - return the channel ID of an portal
* @cpu: the cpu whose affine portal is the subject of the query
*
* If @cpu is -1, the affine portal for the current CPU will be used. It is a
* bug to call this function for any value of @cpu (other than -1) that is not a
* member of the mask returned from qman_affine_cpus().
*/
u16 qman_affine_channel(int cpu);
/**
* qman_get_affine_portal - return the portal pointer affine to cpu
* @cpu: the cpu whose affine portal is the subject of the query
*
*/
void *qman_get_affine_portal(int cpu);
/**
* qman_poll_dqrr - process DQRR (fast-path) entries
* @limit: the maximum number of DQRR entries to process
*
* Use of this function requires that DQRR processing not be interrupt-driven.
* Ie. the value returned by qman_irqsource_get() should not include
* QM_PIRQ_DQRI. If the current CPU is sharing a portal hosted on another CPU,
* this function will return -EINVAL, otherwise the return value is >=0 and
* represents the number of DQRR entries processed.
*/
int qman_poll_dqrr(unsigned int limit);
/**
* qman_poll_slow - process anything (except DQRR) that isn't interrupt-driven.
*
* This function does any portal processing that isn't interrupt-driven. If the
* current CPU is sharing a portal hosted on another CPU, this function will
* return (u32)-1, otherwise the return value is a bitmask of QM_PIRQ_* sources
* indicating what interrupt sources were actually processed by the call.
*/
u32 qman_poll_slow(void);
/**
* qman_poll - legacy wrapper for qman_poll_dqrr() and qman_poll_slow()
*
* Dispatcher logic on a cpu can use this to trigger any maintenance of the
* affine portal. There are two classes of portal processing in question;
* fast-path (which involves demuxing dequeue ring (DQRR) entries and tracking
* enqueue ring (EQCR) consumption), and slow-path (which involves EQCR
* thresholds, congestion state changes, etc). This function does whatever
* processing is not triggered by interrupts.
*
* Note, if DQRR and some slow-path processing are poll-driven (rather than
* interrupt-driven) then this function uses a heuristic to determine how often
* to run slow-path processing - as slow-path processing introduces at least a
* minimum latency each time it is run, whereas fast-path (DQRR) processing is
* close to zero-cost if there is no work to be done. Applications can tune this
* behaviour themselves by using qman_poll_dqrr() and qman_poll_slow() directly
* rather than going via this wrapper.
*/
void qman_poll(void);
/**
* qman_stop_dequeues - Stop h/w dequeuing to the s/w portal
*
* Disables DQRR processing of the portal. This is reference-counted, so
* qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
* truly re-enable dequeuing.
*/
void qman_stop_dequeues(void);
/**
* qman_start_dequeues - (Re)start h/w dequeuing to the s/w portal
*
* Enables DQRR processing of the portal. This is reference-counted, so
* qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
* truly re-enable dequeuing.
*/
void qman_start_dequeues(void);
/**
* qman_static_dequeue_add - Add pool channels to the portal SDQCR
* @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
*
* Adds a set of pool channels to the portal's static dequeue command register
* (SDQCR). The requested pools are limited to those the portal has dequeue
* access to.
*/
void qman_static_dequeue_add(u32 pools);
/**
* qman_static_dequeue_del - Remove pool channels from the portal SDQCR
* @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
*
* Removes a set of pool channels from the portal's static dequeue command
* register (SDQCR). The requested pools are limited to those the portal has
* dequeue access to.
*/
void qman_static_dequeue_del(u32 pools);
/**
* qman_static_dequeue_get - return the portal's current SDQCR
*
* Returns the portal's current static dequeue command register (SDQCR). The
* entire register is returned, so if only the currently-enabled pool channels
* are desired, mask the return value with QM_SDQCR_CHANNELS_POOL_MASK.
*/
u32 qman_static_dequeue_get(void);
/**
* qman_dca - Perform a Discrete Consumption Acknowledgement
* @dq: the DQRR entry to be consumed
* @park_request: indicates whether the held-active @fq should be parked
*
* Only allowed in DCA-mode portals, for DQRR entries whose handler callback had
* previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this
* does not take a 'portal' argument but implies the core affine portal from the
* cpu that is currently executing the function. For reasons of locking, this
* function must be called from the same CPU as that which processed the DQRR
* entry in the first place.
*/
void qman_dca(struct qm_dqrr_entry *dq, int park_request);
/**
* qman_eqcr_is_empty - Determine if portal's EQCR is empty
*
* For use in situations where a cpu-affine caller needs to determine when all
* enqueues for the local portal have been processed by Qman but can't use the
* QMAN_ENQUEUE_FLAG_WAIT_SYNC flag to do this from the final qman_enqueue().
* The function forces tracking of EQCR consumption (which normally doesn't
* happen until enqueue processing needs to find space to put new enqueue
* commands), and returns zero if the ring still has unprocessed entries,
* non-zero if it is empty.
*/
int qman_eqcr_is_empty(void);
/**
* qman_set_dc_ern - Set the handler for DCP enqueue rejection notifications
* @handler: callback for processing DCP ERNs
* @affine: whether this handler is specific to the locally affine portal
*
* If a hardware block's interface to Qman (ie. its direct-connect portal, or
* DCP) is configured not to receive enqueue rejections, then any enqueues
* through that DCP that are rejected will be sent to a given software portal.
* If @affine is non-zero, then this handler will only be used for DCP ERNs
* received on the portal affine to the current CPU. If multiple CPUs share a
* portal and they all call this function, they will be setting the handler for
* the same portal! If @affine is zero, then this handler will be global to all
* portals handled by this instance of the driver. Only those portals that do
* not have their own affine handler will use the global handler.
*/
void qman_set_dc_ern(qman_cb_dc_ern handler, int affine);
/* FQ management */
/* ------------- */
/**
* qman_create_fq - Allocates a FQ
* @fqid: the index of the FQD to encapsulate, must be "Out of Service"
* @flags: bit-mask of QMAN_FQ_FLAG_*** options
* @fq: memory for storing the 'fq', with callbacks filled in
*
* Creates a frame queue object for the given @fqid, unless the
* QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
* dynamically allocated (or the function fails if none are available). Once
* created, the caller should not touch the memory at 'fq' except as extended to
* adjacent memory for user-defined fields (see the definition of "struct
* qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
* pre-existing frame-queues that aren't to be otherwise interfered with, it
* prevents all other modifications to the frame queue. The TO_DCPORTAL flag
* causes the driver to honour any contextB modifications requested in the
* qm_init_fq() API, as this indicates the frame queue will be consumed by a
* direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
* software portals, the contextB field is controlled by the driver and can't be
* modified by the caller. If the AS_IS flag is specified, management commands
* will be used on portal @p to query state for frame queue @fqid and construct
* a frame queue object based on that, rather than assuming/requiring that it be
* Out of Service.
*/
int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
/**
* qman_destroy_fq - Deallocates a FQ
* @fq: the frame queue object to release
* @flags: bit-mask of QMAN_FQ_FREE_*** options
*
* The memory for this frame queue object ('fq' provided in qman_create_fq()) is
* not deallocated but the caller regains ownership, to do with as desired. The
* FQ must be in the 'out-of-service' state unless the QMAN_FQ_FREE_PARKED flag
* is specified, in which case it may also be in the 'parked' state.
*/
void qman_destroy_fq(struct qman_fq *fq, u32 flags);
/**
* qman_fq_fqid - Queries the frame queue ID of a FQ object
* @fq: the frame queue object to query
*/
u32 qman_fq_fqid(struct qman_fq *fq);
/**
* qman_fq_state - Queries the state of a FQ object
* @fq: the frame queue object to query
* @state: pointer to state enum to return the FQ scheduling state
* @flags: pointer to state flags to receive QMAN_FQ_STATE_*** bitmask
*
* Queries the state of the FQ object, without performing any h/w commands.
* This captures the state, as seen by the driver, at the time the function
* executes.
*/
void qman_fq_state(struct qman_fq *fq, enum qman_fq_state *state, u32 *flags);
/**
* qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
* @fq: the frame queue object to modify, must be 'parked' or new.
* @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
* @opts: the FQ-modification settings, as defined in the low-level API
*
* The @opts parameter comes from the low-level portal API. Select
* QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
* rather than parked. NB, @opts can be NULL.
*
* Note that some fields and options within @opts may be ignored or overwritten
* by the driver;
* 1. the 'count' and 'fqid' fields are always ignored (this operation only
* affects one frame queue: @fq).
* 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
* 'fqd' structure's 'context_b' field are sometimes overwritten;
* - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
* initialised to a value used by the driver for demux.
* - if context_b is initialised for demux, so is context_a in case stashing
* is requested (see item 4).
* (So caller control of context_b is only possible for TO_DCPORTAL frame queue
* objects.)
* 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
* 'dest::channel' field will be overwritten to match the portal used to issue
* the command. If the WE_DESTWQ write-enable bit had already been set by the
* caller, the channel workqueue will be left as-is, otherwise the write-enable
* bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
* isn't set, the destination channel/workqueue fields and the write-enable bit
* are left as-is.
* 4. if the driver overwrites context_a/b for demux, then if
* QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
* context_a.address fields and will leave the stashing fields provided by the
* user alone, otherwise it will zero out the context_a.stashing fields.
*/
int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
/**
* qman_schedule_fq - Schedules a FQ
* @fq: the frame queue object to schedule, must be 'parked'
*
* Schedules the frame queue, which must be Parked, which takes it to
* Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
*/
int qman_schedule_fq(struct qman_fq *fq);
/**
* qman_retire_fq - Retires a FQ
* @fq: the frame queue object to retire
* @flags: FQ flags (as per qman_fq_state) if retirement completes immediately
*
* Retires the frame queue. This returns zero if it succeeds immediately, +1 if
* the retirement was started asynchronously, otherwise it returns negative for
* failure. When this function returns zero, @flags is set to indicate whether
* the retired FQ is empty and/or whether it has any ORL fragments (to show up
* as ERNs). Otherwise the corresponding flags will be known when a subsequent
* FQRN message shows up on the portal's message ring.
*
* NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
* Active state), the completion will be via the message ring as a FQRN - but
* the corresponding callback may occur before this function returns!! Ie. the
* caller should be prepared to accept the callback as the function is called,
* not only once it has returned.
*/
int qman_retire_fq(struct qman_fq *fq, u32 *flags);
/**
* qman_oos_fq - Puts a FQ "out of service"
* @fq: the frame queue object to be put out-of-service, must be 'retired'
*
* The frame queue must be retired and empty, and if any order restoration list
* was released as ERNs at the time of retirement, they must all be consumed.
*/
int qman_oos_fq(struct qman_fq *fq);
/**
* qman_fq_flow_control - Set the XON/XOFF state of a FQ
* @fq: the frame queue object to be set to XON/XOFF state, must not be 'oos',
* or 'retired' or 'parked' state
* @xon: boolean to set fq in XON or XOFF state
*
* The frame should be in Tentatively Scheduled state or Truly Schedule sate,
* otherwise the IFSI interrupt will be asserted.
*/
int qman_fq_flow_control(struct qman_fq *fq, int xon);
/**
* qman_query_fq - Queries FQD fields (via h/w query command)
* @fq: the frame queue object to be queried
* @fqd: storage for the queried FQD fields
*/
int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd);
/**
* qman_query_fq_np - Queries non-programmable FQD fields
* @fq: the frame queue object to be queried
* @np: storage for the queried FQD fields
*/
int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
/**
* qman_query_wq - Queries work queue lengths
* @query_dedicated: If non-zero, query length of WQs in the channel dedicated
* to this software portal. Otherwise, query length of WQs in a
* channel specified in wq.
* @wq: storage for the queried WQs lengths. Also specified the channel to
* to query if query_dedicated is zero.
*/
int qman_query_wq(u8 query_dedicated, struct qm_mcr_querywq *wq);
/**
* qman_volatile_dequeue - Issue a volatile dequeue command
* @fq: the frame queue object to dequeue from
* @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
* @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
*
* Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
* The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
* the VDQCR is already in use, otherwise returns non-zero for failure. If
* QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
* the VDQCR command has finished executing (ie. once the callback for the last
* DQRR entry resulting from the VDQCR command has been called). If not using
* the FINISH flag, completion can be determined either by detecting the
* presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
* in the "stat" field of the "struct qm_dqrr_entry" passed to the FQ's dequeue
* callback, or by waiting for the QMAN_FQ_STATE_VDQCR bit to disappear from the
* "flags" retrieved from qman_fq_state().
*/
int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
/**
* qman_enqueue - Enqueue a frame to a frame queue
* @fq: the frame queue object to enqueue to
* @fd: a descriptor of the frame to be enqueued
* @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
*
* Fills an entry in the EQCR of portal @qm to enqueue the frame described by
* @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
* field is ignored. The return value is non-zero on error, such as ring full
* (and FLAG_WAIT not specified), congestion avoidance (FLAG_WATCH_CGR
* specified), etc. If the ring is full and FLAG_WAIT is specified, this
* function will block. If FLAG_INTERRUPT is set, the EQCI bit of the portal
* interrupt will assert when Qman consumes the EQCR entry (subject to "status
* disable", "enable", and "inhibit" registers). If FLAG_DCA is set, Qman will
* perform an implied "discrete consumption acknowledgement" on the dequeue
* ring's (DQRR) entry, at the ring index specified by the FLAG_DCA_IDX(x)
* macro. (As an alternative to issuing explicit DCA actions on DQRR entries,
* this implicit DCA can delay the release of a "held active" frame queue
* corresponding to a DQRR entry until Qman consumes the EQCR entry - providing
* order-preservation semantics in packet-forwarding scenarios.) If FLAG_DCA is
* set, then FLAG_DCA_PARK can also be set to imply that the DQRR consumption
* acknowledgement should "park request" the "held active" frame queue. Ie.
* when the portal eventually releases that frame queue, it will be left in the
* Parked state rather than Tentatively Scheduled or Truly Scheduled. If the
* portal is watching congestion groups, the QMAN_ENQUEUE_FLAG_WATCH_CGR flag
* is requested, and the FQ is a member of a congestion group, then this
* function returns -EAGAIN if the congestion group is currently congested.
* Note, this does not eliminate ERNs, as the async interface means we can be
* sending enqueue commands to an un-congested FQ that becomes congested before
* the enqueue commands are processed, but it does minimise needless thrashing
* of an already busy hardware resource by throttling many of the to-be-dropped
* enqueues "at the source".
*/
int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd, u32 flags);
typedef int (*qman_cb_precommit) (void *arg);
/**
* qman_enqueue_precommit - Enqueue a frame to a frame queue and call cb
* @fq: the frame queue object to enqueue to
* @fd: a descriptor of the frame to be enqueued
* @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
* @cb: user supplied callback function to invoke before writing commit verb.
* @cb_arg: callback function argument
*
* This is similar to qman_enqueue except that it will invoke a user supplied
* callback function just before writng the commit verb. This is useful
* when the user want to do something *just before* enqueuing the request and
* the enqueue can't fail.
*/
int qman_enqueue_precommit(struct qman_fq *fq, const struct qm_fd *fd,
u32 flags, qman_cb_precommit cb, void *cb_arg);
/**
* qman_enqueue_orp - Enqueue a frame to a frame queue using an ORP
* @fq: the frame queue object to enqueue to
* @fd: a descriptor of the frame to be enqueued
* @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
* @orp: the frame queue object used as an order restoration point.
* @orp_seqnum: the sequence number of this frame in the order restoration path
*
* Similar to qman_enqueue(), but with the addition of an Order Restoration
* Point (@orp) and corresponding sequence number (@orp_seqnum) for this
* enqueue operation to employ order restoration. Each frame queue object acts
* as an Order Definition Point (ODP) by providing each frame dequeued from it
* with an incrementing sequence number, this value is generally ignored unless
* that sequence of dequeued frames will need order restoration later. Each
* frame queue object also encapsulates an Order Restoration Point (ORP), which
* is a re-assembly context for re-ordering frames relative to their sequence
* numbers as they are enqueued. The ORP does not have to be within the frame
* queue that receives the enqueued frame, in fact it is usually the frame
* queue from which the frames were originally dequeued. For the purposes of
* order restoration, multiple frames (or "fragments") can be enqueued for a
* single sequence number by setting the QMAN_ENQUEUE_FLAG_NLIS flag for all
* enqueues except the final fragment of a given sequence number. Ordering
* between sequence numbers is guaranteed, even if fragments of different
* sequence numbers are interlaced with one another. Fragments of the same
* sequence number will retain the order in which they are enqueued. If no
* enqueue is to performed, QMAN_ENQUEUE_FLAG_HOLE indicates that the given
* sequence number is to be "skipped" by the ORP logic (eg. if a frame has been
* dropped from a sequence), or QMAN_ENQUEUE_FLAG_NESN indicates that the given
* sequence number should become the ORP's "Next Expected Sequence Number".
*
* Side note: a frame queue object can be used purely as an ORP, without
* carrying any frames at all. Care should be taken not to deallocate a frame
* queue object that is being actively used as an ORP, as a future allocation
* of the frame queue object may start using the internal ORP before the
* previous use has finished.
*/
int qman_enqueue_orp(struct qman_fq *fq, const struct qm_fd *fd, u32 flags,
struct qman_fq *orp, u16 orp_seqnum);
/**
* qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
* @result: is set by the API to the base FQID of the allocated range
* @count: the number of FQIDs required
* @align: required alignment of the allocated range
* @partial: non-zero if the API can return fewer than @count FQIDs
*
* Returns the number of frame queues allocated, or a negative error code. If
* @partial is non zero, the allocation request may return a smaller range of
* FQs than requested (though alignment will be as requested). If @partial is
* zero, the return value will either be 'count' or negative.
*/
int qman_alloc_fqid_range(u32 *result, u32 count, u32 align, int partial);
static inline int qman_alloc_fqid(u32 *result)
{
int ret = qman_alloc_fqid_range(result, 1, 0, 0);
return (ret > 0) ? 0 : ret;
}
/**
* qman_release_fqid_range - Release the specified range of frame queue IDs
* @fqid: the base FQID of the range to deallocate
* @count: the number of FQIDs in the range
*
* This function can also be used to seed the allocator with ranges of FQIDs
* that it can subsequently allocate from.
*/
void qman_release_fqid_range(u32 fqid, unsigned int count);
static inline void qman_release_fqid(u32 fqid)
{
qman_release_fqid_range(fqid, 1);
}
void qman_seed_fqid_range(u32 fqid, unsigned int count);
int qman_shutdown_fq(u32 fqid);
/**
* qman_reserve_fqid_range - Reserve the specified range of frame queue IDs
* @fqid: the base FQID of the range to deallocate
* @count: the number of FQIDs in the range
*/
int qman_reserve_fqid_range(u32 fqid, unsigned int count);
static inline int qman_reserve_fqid(u32 fqid)
{
return qman_reserve_fqid_range(fqid, 1);
}
/* Pool-channel management */
/* ----------------------- */
/**
* qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
* @result: is set by the API to the base pool-channel ID of the allocated range
* @count: the number of pool-channel IDs required
* @align: required alignment of the allocated range
* @partial: non-zero if the API can return fewer than @count
*
* Returns the number of pool-channel IDs allocated, or a negative error code.
* If @partial is non zero, the allocation request may return a smaller range of
* than requested (though alignment will be as requested). If @partial is zero,
* the return value will either be 'count' or negative.
*/
int qman_alloc_pool_range(u32 *result, u32 count, u32 align, int partial);
static inline int qman_alloc_pool(u32 *result)
{
int ret = qman_alloc_pool_range(result, 1, 0, 0);
return (ret > 0) ? 0 : ret;
}
/**
* qman_release_pool_range - Release the specified range of pool-channel IDs
* @id: the base pool-channel ID of the range to deallocate
* @count: the number of pool-channel IDs in the range
*/
void qman_release_pool_range(u32 id, unsigned int count);
static inline void qman_release_pool(u32 id)
{
qman_release_pool_range(id, 1);
}
/**
* qman_reserve_pool_range - Reserve the specified range of pool-channel IDs
* @id: the base pool-channel ID of the range to reserve
* @count: the number of pool-channel IDs in the range
*/
int qman_reserve_pool_range(u32 id, unsigned int count);
static inline int qman_reserve_pool(u32 id)
{
return qman_reserve_pool_range(id, 1);
}
void qman_seed_pool_range(u32 id, unsigned int count);
/* CGR management */
/* -------------- */
/**
* qman_create_cgr - Register a congestion group object
* @cgr: the 'cgr' object, with fields filled in
* @flags: QMAN_CGR_FLAG_* values
* @opts: optional state of CGR settings
*
* Registers this object to receiving congestion entry/exit callbacks on the
* portal affine to the cpu portal on which this API is executed. If opts is
* NULL then only the callback (cgr->cb) function is registered. If @flags
* contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
* any unspecified parameters) will be used rather than a modify hw hardware
* (which only modifies the specified parameters).
*/
int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
struct qm_mcc_initcgr *opts);
/**
* qman_create_cgr_to_dcp - Register a congestion group object to DCP portal
* @cgr: the 'cgr' object, with fields filled in
* @flags: QMAN_CGR_FLAG_* values
* @dcp_portal: the DCP portal to which the cgr object is registered.
* @opts: optional state of CGR settings
*
*/
int qman_create_cgr_to_dcp(struct qman_cgr *cgr, u32 flags, u16 dcp_portal,
struct qm_mcc_initcgr *opts);
/**
* qman_delete_cgr - Deregisters a congestion group object
* @cgr: the 'cgr' object to deregister
*
* "Unplugs" this CGR object from the portal affine to the cpu on which this API
* is executed. This must be excuted on the same affine portal on which it was
* created.
*/
int qman_delete_cgr(struct qman_cgr *cgr);
/**
* qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
* @cgr: the 'cgr' object to deregister
*
* This will select the proper CPU and run there qman_delete_cgr().
*/
void qman_delete_cgr_safe(struct qman_cgr *cgr);
/**
* qman_modify_cgr - Modify CGR fields
* @cgr: the 'cgr' object to modify
* @flags: QMAN_CGR_FLAG_* values
* @opts: the CGR-modification settings
*
* The @opts parameter comes from the low-level portal API, and can be NULL.
* Note that some fields and options within @opts may be ignored or overwritten
* by the driver, in particular the 'cgrid' field is ignored (this operation
* only affects the given CGR object). If @flags contains
* QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset any
* unspecified parameters) will be used rather than a modify hw hardware (which
* only modifies the specified parameters).
*/
int qman_modify_cgr(struct qman_cgr *cgr, u32 flags,
struct qm_mcc_initcgr *opts);
/**
* qman_query_cgr - Queries CGR fields
* @cgr: the 'cgr' object to query
* @result: storage for the queried congestion group record
*/
int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *result);
/**
* qman_query_congestion - Queries the state of all congestion groups
* @congestion: storage for the queried state of all congestion groups
*/
int qman_query_congestion(struct qm_mcr_querycongestion *congestion);
/**
* qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
* @result: is set by the API to the base CGR ID of the allocated range
* @count: the number of CGR IDs required
* @align: required alignment of the allocated range
* @partial: non-zero if the API can return fewer than @count
*
* Returns the number of CGR IDs allocated, or a negative error code.
* If @partial is non zero, the allocation request may return a smaller range of
* than requested (though alignment will be as requested). If @partial is zero,
* the return value will either be 'count' or negative.
*/
int qman_alloc_cgrid_range(u32 *result, u32 count, u32 align, int partial);
static inline int qman_alloc_cgrid(u32 *result)
{
int ret = qman_alloc_cgrid_range(result, 1, 0, 0);
return (ret > 0) ? 0 : ret;
}
/**
* qman_release_cgrid_range - Release the specified range of CGR IDs
* @id: the base CGR ID of the range to deallocate
* @count: the number of CGR IDs in the range
*/
void qman_release_cgrid_range(u32 id, unsigned int count);
static inline void qman_release_cgrid(u32 id)
{
qman_release_cgrid_range(id, 1);
}
/**
* qman_reserve_cgrid_range - Reserve the specified range of CGR ID
* @id: the base CGR ID of the range to reserve
* @count: the number of CGR IDs in the range
*/
int qman_reserve_cgrid_range(u32 id, unsigned int count);
static inline int qman_reserve_cgrid(u32 id)
{
return qman_reserve_cgrid_range(id, 1);
}
void qman_seed_cgrid_range(u32 id, unsigned int count);
/* Helpers */
/* ------- */
/**
* qman_poll_fq_for_init - Check if an FQ has been initialised from OOS
* @fqid: the FQID that will be initialised by other s/w
*
* In many situations, a FQID is provided for communication between s/w
* entities, and whilst the consumer is responsible for initialising and
* scheduling the FQ, the producer(s) generally create a wrapper FQ object using
* and only call qman_enqueue() (no FQ initialisation, scheduling, etc). Ie;
* qman_create_fq(..., QMAN_FQ_FLAG_NO_MODIFY, ...);
* However, data can not be enqueued to the FQ until it is initialised out of
* the OOS state - this function polls for that condition. It is particularly
* useful for users of IPC functions - each endpoint's Rx FQ is the other
* endpoint's Tx FQ, so each side can initialise and schedule their Rx FQ object
* and then use this API on the (NO_MODIFY) Tx FQ object in order to
* synchronise. The function returns zero for success, +1 if the FQ is still in
* the OOS state, or negative if there was an error.
*/
static inline int qman_poll_fq_for_init(struct qman_fq *fq)
{
struct qm_mcr_queryfq_np np;
int err;
err = qman_query_fq_np(fq, &np);
if (err)
return err;
if ((np.state & QM_MCR_NP_STATE_MASK) == QM_MCR_NP_STATE_OOS)
return 1;
return 0;
}
/* -------------- */
/* CEETM :: types */
/* -------------- */
/**
* Token Rate Structure
* Shaping rates are based on a "credit" system and a pre-configured h/w
* internal timer. The following type represents a shaper "rate" parameter as a
* fractional number of "tokens". Here's how it works. This (fractional) number
* of tokens is added to the shaper's "credit" every time the h/w timer elapses
* (up to a limit which is set by another shaper parameter). Every time a frame
* is enqueued through a shaper, the shaper deducts as many tokens as there are
* bytes of data in the enqueued frame. A shaper will not allow itself to
* enqueue any frames if its token count is negative. As such;
*
* The rate at which data is enqueued is limited by the
* rate at which tokens are added.
*
* Therefore if the user knows the period between these h/w timer updates in
* seconds, they can calculate the maximum traffic rate of the shaper (in
* bytes-per-second) from the token rate. And vice versa, they can calculate
* the token rate to use in order to achieve a given traffic rate.
*/
struct qm_ceetm_rate {
/* The token rate is; whole + (fraction/8192) */
u32 whole:11; /* 0..2047 */
u32 fraction:13; /* 0..8191 */
};
struct qm_ceetm_weight_code {
/* The weight code is; 5 msbits + 3 lsbits */
u8 y:5;
u8 x:3;
};
struct qm_ceetm {
unsigned int idx;
struct list_head sub_portals;
struct list_head lnis;
unsigned int sp_range[2];
unsigned int lni_range[2];
};
struct qm_ceetm_sp {
struct list_head node;
unsigned int idx;
unsigned int dcp_idx;
int is_claimed;
struct qm_ceetm_lni *lni;
};
/* Logical Network Interface */
struct qm_ceetm_lni {
struct list_head node;
unsigned int idx;
unsigned int dcp_idx;
int is_claimed;
struct qm_ceetm_sp *sp;
struct list_head channels;
int shaper_enable;
int shaper_couple;
int oal;
struct qm_ceetm_rate cr_token_rate;
struct qm_ceetm_rate er_token_rate;
u16 cr_token_bucket_limit;
u16 er_token_bucket_limit;
};
/* Class Queue Channel */
struct qm_ceetm_channel {
struct list_head node;
unsigned int idx;
unsigned int lni_idx;
unsigned int dcp_idx;
struct list_head class_queues;
struct list_head ccgs;
u8 shaper_enable;
u8 shaper_couple;
struct qm_ceetm_rate cr_token_rate;
struct qm_ceetm_rate er_token_rate;
u16 cr_token_bucket_limit;
u16 er_token_bucket_limit;
};
struct qm_ceetm_ccg;
/* This callback type is used when handling congestion entry/exit. The
* 'cb_ctx' value is the opaque value associated with ccg object.
* 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
*/
typedef void (*qman_cb_ccgr)(struct qm_ceetm_ccg *ccg, void *cb_ctx,
int congested);
/* Class Congestion Group */
struct qm_ceetm_ccg {
struct qm_ceetm_channel *parent;
struct list_head node;
struct list_head cb_node;
qman_cb_ccgr cb;
void *cb_ctx;
unsigned int idx;
};
/* Class Queue */
struct qm_ceetm_cq {
struct qm_ceetm_channel *parent;
struct qm_ceetm_ccg *ccg;
struct list_head node;
unsigned int idx;
int is_claimed;
struct list_head bound_lfqids;
struct list_head binding_node;
};
/* Logical Frame Queue */
struct qm_ceetm_lfq {
struct qm_ceetm_channel *parent;
struct list_head node;
unsigned int idx;
unsigned int dctidx;
u64 context_a;
u32 context_b;
qman_cb_mr ern;
};
/**
* qman_ceetm_bps2tokenrate - Given a desired rate 'bps' measured in bps
* (ie. bits-per-second), compute the 'token_rate' fraction that best
* approximates that rate.
* @bps: the desired shaper rate in bps.
* @token_rate: the output token rate computed with the given kbps.
* @rounding: dictates how to round if an exact conversion is not possible; if
* it is negative then 'token_rate' will round down to the highest value that
* does not exceed the desired rate, if it is positive then 'token_rate' will
* round up to the lowest value that is greater than or equal to the desired
* rate, and if it is zero then it will round to the nearest approximation,
* whether that be up or down.
*
* Return 0 for success, or -EINVAL if prescaler or qman clock is not available.
*/
int qman_ceetm_bps2tokenrate(u64 bps,
struct qm_ceetm_rate *token_rate,
int rounding);
/**
* qman_ceetm_tokenrate2bps - Given a 'token_rate', compute the
* corresponding number of 'bps'.
* @token_rate: the input desired token_rate fraction.
* @bps: the output shaper rate in bps computed with the give token rate.
* @rounding: has the same semantics as the previous function.
*
* Return 0 for success, or -EINVAL if prescaler or qman clock is not available.
*/
int qman_ceetm_tokenrate2bps(const struct qm_ceetm_rate *token_rate,
u64 *bps,
int rounding);
int qman_alloc_ceetm0_channel_range(u32 *result, u32 count, u32 align,
int partial);
static inline int qman_alloc_ceetm0_channel(u32 *result)
{
int ret = qman_alloc_ceetm0_channel_range(result, 1, 0, 0);
return (ret > 0) ? 0 : ret;
}
void qman_release_ceetm0_channel_range(u32 channelid, u32 count);
static inline void qman_release_ceetm0_channelid(u32 channelid)
{
qman_release_ceetm0_channel_range(channelid, 1);
}
int qman_reserve_ceetm0_channel_range(u32 channelid, u32 count);
static inline int qman_reserve_ceetm0_channelid(u32 channelid)
{
return qman_reserve_ceetm0_channel_range(channelid, 1);
}
void qman_seed_ceetm0_channel_range(u32 channelid, u32 count);
int qman_alloc_ceetm1_channel_range(u32 *result, u32 count, u32 align,
int partial);
static inline int qman_alloc_ceetm1_channel(u32 *result)
{
int ret = qman_alloc_ceetm1_channel_range(result, 1, 0, 0);
return (ret > 0) ? 0 : ret;
}
void qman_release_ceetm1_channel_range(u32 channelid, u32 count);
static inline void qman_release_ceetm1_channelid(u32 channelid)
{
qman_release_ceetm1_channel_range(channelid, 1);
}
int qman_reserve_ceetm1_channel_range(u32 channelid, u32 count);
static inline int qman_reserve_ceetm1_channelid(u32 channelid)
{
return qman_reserve_ceetm1_channel_range(channelid, 1);
}
void qman_seed_ceetm1_channel_range(u32 channelid, u32 count);
int qman_alloc_ceetm0_lfqid_range(u32 *result, u32 count, u32 align,
int partial);
static inline int qman_alloc_ceetm0_lfqid(u32 *result)
{
int ret = qman_alloc_ceetm0_lfqid_range(result, 1, 0, 0);
return (ret > 0) ? 0 : ret;
}
void qman_release_ceetm0_lfqid_range(u32 lfqid, u32 count);
static inline void qman_release_ceetm0_lfqid(u32 lfqid)
{
qman_release_ceetm0_lfqid_range(lfqid, 1);
}
int qman_reserve_ceetm0_lfqid_range(u32 lfqid, u32 count);
static inline int qman_reserve_ceetm0_lfqid(u32 lfqid)
{
return qman_reserve_ceetm0_lfqid_range(lfqid, 1);
}
void qman_seed_ceetm0_lfqid_range(u32 lfqid, u32 count);
int qman_alloc_ceetm1_lfqid_range(u32 *result, u32 count, u32 align,
int partial);
static inline int qman_alloc_ceetm1_lfqid(u32 *result)
{
int ret = qman_alloc_ceetm1_lfqid_range(result, 1, 0, 0);
return (ret > 0) ? 0 : ret;
}
void qman_release_ceetm1_lfqid_range(u32 lfqid, u32 count);
static inline void qman_release_ceetm1_lfqid(u32 lfqid)
{
qman_release_ceetm1_lfqid_range(lfqid, 1);
}
int qman_reserve_ceetm1_lfqid_range(u32 lfqid, u32 count);
static inline int qman_reserve_ceetm1_lfqid(u32 lfqid)
{
return qman_reserve_ceetm1_lfqid_range(lfqid, 1);
}
void qman_seed_ceetm1_lfqid_range(u32 lfqid, u32 count);
/* ----------------------------- */
/* CEETM :: sub-portals */
/* ----------------------------- */
/**
* qman_ceetm_sp_claim - Claims the given sub-portal, provided it is available
* to us and configured for traffic-management.
* @sp: the returned sub-portal object, if successful.
* @dcp_id: specifies the desired Fman block (and thus the relevant CEETM
* instance),
* @sp_idx" is the desired sub-portal index from 0 to 15.
*
* Returns zero for success, or -ENODEV if the sub-portal is in use, or -EINVAL
* if the sp_idx is out of range.
*
* Note that if there are multiple driver domains (eg. a linux kernel versus
* user-space drivers in USDPAA, or multiple guests running under a hypervisor)
* then a sub-portal may be accessible by more than one instance of a qman
* driver and so it may be claimed multiple times. If this is the case, it is
* up to the system architect to prevent conflicting configuration actions
* coming from the different driver domains. The qman drivers do not have any
* behind-the-scenes coordination to prevent this from happening.
*/
int qman_ceetm_sp_claim(struct qm_ceetm_sp **sp,
enum qm_dc_portal dcp_idx,
unsigned int sp_idx);
/**
* qman_ceetm_sp_release - Releases a previously claimed sub-portal.
* @sp: the sub-portal to be released.
*
* Returns 0 for success, or -EBUSY for failure if the dependencies are not
* released.
*/
int qman_ceetm_sp_release(struct qm_ceetm_sp *sp);
/* ----------------------------------- */
/* CEETM :: logical network interfaces */
/* ----------------------------------- */
/**
* qman_ceetm_lni_claim - Claims an unclaimed LNI.
* @lni: the returned LNI object, if successful.
* @dcp_id: specifies the desired Fman block (and thus the relevant CEETM
* instance)
* @lni_idx: is the desired LNI index.
*
* Returns zero for success, or -EINVAL on failure, which will happen if the LNI
* is not available or has already been claimed (and not yet successfully
* released), or lni_dix is out of range.
*
* Note that there may be multiple driver domains (or instances) that need to
* transmit out the same LNI, so this claim is only guaranteeing exclusivity
* within the domain of the driver being called. See qman_ceetm_sp_claim() and
* qman_ceetm_sp_get_lni() for more information.
*/
int qman_ceetm_lni_claim(struct qm_ceetm_lni **lni,
enum qm_dc_portal dcp_id,
unsigned int lni_idx);
/**
* qman_ceetm_lni_releaes - Releases a previously claimed LNI.
* @lni: the lni needs to be released.
*
* This will only succeed if all dependent objects have been released.
* Returns zero for success, or -EBUSY if the dependencies are not released.
*/
int qman_ceetm_lni_release(struct qm_ceetm_lni *lni);
/**
* qman_ceetm_sp_set_lni
* qman_ceetm_sp_get_lni - Set/get the LNI that the sub-portal is currently
* mapped to.
* @sp: the given sub-portal.
* @lni(in "set"function): the LNI object which the sp will be mappaed to.
* @lni_idx(in "get" function): the LNI index which the sp is mapped to.
*
* Returns zero for success, or -EINVAL for the "set" function when this sp-lni
* mapping has been set, or configure mapping command returns error, and
* -EINVAL for "get" function when this sp-lni mapping is not set or the query
* mapping command returns error.
*
* This may be useful in situations where multiple driver domains have access
* to the same sub-portals in order to all be able to transmit out the same
* physical interface (perhaps they're on different IP addresses or VPNs, so
* Fman is splitting Rx traffic and here we need to converge Tx traffic). In
* that case, a control-plane is likely to use qman_ceetm_lni_claim() followed
* by qman_ceetm_sp_set_lni() to configure the sub-portal, and other domains
* are likely to use qman_ceetm_sp_get_lni() followed by qman_ceetm_lni_claim()
* in order to determine the LNI that the control-plane had assigned. This is
* why the "get" returns an index, whereas the "set" takes an (already claimed)
* LNI object.
*/
int qman_ceetm_sp_set_lni(struct qm_ceetm_sp *sp,
struct qm_ceetm_lni *lni);
int qman_ceetm_sp_get_lni(struct qm_ceetm_sp *sp,
unsigned int *lni_idx);
/**
* qman_ceetm_lni_enable_shaper
* qman_ceetm_lni_disable_shaper - Enables/disables shaping on the LNI.
* @lni: the given LNI.
* @coupled: indicates whether CR and ER are coupled.
* @oal: the overhead accounting length which is added to the actual length of
* each frame when performing shaper calculations.
*
* When the number of (unused) committed-rate tokens reach the committed-rate
* token limit, 'coupled' indicates whether surplus tokens should be added to
* the excess-rate token count (up to the excess-rate token limit).
* When LNI is claimed, the shaper is disabled by default. The enable function
* will turn on this shaper for this lni.
* Whenever a claimed LNI is first enabled for shaping, its committed and
* excess token rates and limits are zero, so will need to be changed to do
* anything useful. The shaper can subsequently be enabled/disabled without
* resetting the shaping parameters, but the shaping parameters will be reset
* when the LNI is released.
*
* Returns zero for success, or errno for "enable" function in the cases as:
* a) -EINVAL if the shaper is already enabled,
* b) -EIO if the configure shaper command returns error.
* For "disable" function, returns:
* a) -EINVAL if the shaper is has already disabled.
* b) -EIO if calling configure shaper command returns error.
*/
int qman_ceetm_lni_enable_shaper(struct qm_ceetm_lni *lni, int coupled,
int oal);
int qman_ceetm_lni_disable_shaper(struct qm_ceetm_lni *lni);
/**
* qman_ceetm_lni_is_shaper_enabled - Check LNI shaper status
* @lni: the give LNI
*/
int qman_ceetm_lni_is_shaper_enabled(struct qm_ceetm_lni *lni);
/**
* qman_ceetm_lni_set_commit_rate
* qman_ceetm_lni_get_commit_rate
* qman_ceetm_lni_set_excess_rate
* qman_ceetm_lni_get_excess_rate - Set/get the shaper CR/ER token rate and
* token limit for the given LNI.
* @lni: the given LNI.
* @token_rate: the desired token rate for "set" fuction, or the token rate of
* the LNI queried by "get" function.
* @token_limit: the desired token bucket limit for "set" function, or the token
* limit of the given LNI queried by "get" function.
*
* Returns zero for success. The "set" function returns -EINVAL if the given
* LNI is unshapped or -EIO if the configure shaper command returns error.
* The "get" function returns -EINVAL if the token rate or the token limit is
* not set or the query command returns error.
*/
int qman_ceetm_lni_set_commit_rate(struct qm_ceetm_lni *lni,
const struct qm_ceetm_rate *token_rate,
u16 token_limit);
int qman_ceetm_lni_get_commit_rate(struct qm_ceetm_lni *lni,
struct qm_ceetm_rate *token_rate,
u16 *token_limit);
int qman_ceetm_lni_set_excess_rate(struct qm_ceetm_lni *lni,
const struct qm_ceetm_rate *token_rate,
u16 token_limit);
int qman_ceetm_lni_get_excess_rate(struct qm_ceetm_lni *lni,
struct qm_ceetm_rate *token_rate,
u16 *token_limit);
/**
* qman_ceetm_lni_set_commit_rate_bps
* qman_ceetm_lni_get_commit_rate_bps
* qman_ceetm_lni_set_excess_rate_bps
* qman_ceetm_lni_get_excess_rate_bps - Set/get the shaper CR/ER rate
* and token limit for the given LNI.
* @lni: the given LNI.
* @bps: the desired shaping rate in bps for "set" fuction, or the shaping rate
* of the LNI queried by "get" function.
* @token_limit: the desired token bucket limit for "set" function, or the token
* limit of the given LNI queried by "get" function.
*
* Returns zero for success. The "set" function returns -EINVAL if the given
* LNI is unshapped or -EIO if the configure shaper command returns error.
* The "get" function returns -EINVAL if the token rate or the token limit is
* not set or the query command returns error.
*/
int qman_ceetm_lni_set_commit_rate_bps(struct qm_ceetm_lni *lni,
u64 bps,
u16 token_limit);
int qman_ceetm_lni_get_commit_rate_bps(struct qm_ceetm_lni *lni,
u64 *bps, u16 *token_limit);
int qman_ceetm_lni_set_excess_rate_bps(struct qm_ceetm_lni *lni,
u64 bps,
u16 token_limit);
int qman_ceetm_lni_get_excess_rate_bps(struct qm_ceetm_lni *lni,
u64 *bps, u16 *token_limit);
/**
* qman_ceetm_lni_set_tcfcc
* qman_ceetm_lni_get_tcfcc - Configure/query "Traffic Class Flow Control".
* @lni: the given LNI.
* @cq_level: is between 0 and 15, representing individual class queue levels
* (CQ0 to CQ7 for every channel) and grouped class queue levels (CQ8 to CQ15
* for every channel).
* @traffic_class: is between 0 and 7 when associating a given class queue level
* to a traffic class, or -1 when disabling traffic class flow control for this
* class queue level.
*
* Return zero for success, or -EINVAL if the cq_level or traffic_class is out
* of range as indicated above, or -EIO if the configure/query tcfcc command
* returns error.
*
* Refer to the section of QMan CEETM traffic class flow control in the
* Reference Manual.
*/
int qman_ceetm_lni_set_tcfcc(struct qm_ceetm_lni *lni,
unsigned int cq_level,
int traffic_class);
int qman_ceetm_lni_get_tcfcc(struct qm_ceetm_lni *lni,
unsigned int cq_level,
int *traffic_class);
/* ----------------------------- */
/* CEETM :: class queue channels */
/* ----------------------------- */
/**
* qman_ceetm_channel_claim - Claims an unclaimed CQ channel that is mapped to
* the given LNI.
* @channel: the returned class queue channel object, if successful.
* @lni: the LNI that the channel belongs to.
*
* Channels are always initially "unshaped".
*
* Return zero for success, or -ENODEV if there is no channel available(all 32
* channels are claimed) or -EINVAL if the channel mapping command returns
* error.
*/
int qman_ceetm_channel_claim(struct qm_ceetm_channel **channel,
struct qm_ceetm_lni *lni);
/**
* qman_ceetm_channel_release - Releases a previously claimed CQ channel.
* @channel: the channel needs to be released.
*
* Returns zero for success, or -EBUSY if the dependencies are still in use.
*
* Note any shaping of the channel will be cleared to leave it in an unshaped
* state.
*/
int qman_ceetm_channel_release(struct qm_ceetm_channel *channel);
/**
* qman_ceetm_channel_enable_shaper
* qman_ceetm_channel_disable_shaper - Enables/disables shaping on the channel.
* @channel: the given channel.
* @coupled: indicates whether surplus CR tokens should be added to the
* excess-rate token count (up to the excess-rate token limit) when the number
* of (unused) committed-rate tokens reach the committed_rate token limit.
*
* Whenever a claimed channel is first enabled for shaping, its committed and
* excess token rates and limits are zero, so will need to be changed to do
* anything useful. The shaper can subsequently be enabled/disabled without
* resetting the shaping parameters, but the shaping parameters will be reset
* when the channel is released.
*
* Return 0 for success, or -EINVAL for failure, in the case that the channel
* shaper has been enabled/disabled or the management command returns error.
*/
int qman_ceetm_channel_enable_shaper(struct qm_ceetm_channel *channel,
int coupled);
int qman_ceetm_channel_disable_shaper(struct qm_ceetm_channel *channel);
/**
* qman_ceetm_channel_is_shaper_enabled - Check channel shaper status.
* @channel: the give channel.
*/
int qman_ceetm_channel_is_shaper_enabled(struct qm_ceetm_channel *channel);
/**
* qman_ceetm_channel_set_commit_rate
* qman_ceetm_channel_get_commit_rate
* qman_ceetm_channel_set_excess_rate
* qman_ceetm_channel_get_excess_rate - Set/get channel CR/ER shaper parameters.
* @channel: the given channel.
* @token_rate: the desired token rate for "set" function, or the queried token
* rate for "get" function.
* @token_limit: the desired token limit for "set" function, or the queried
* token limit for "get" function.
*
* Return zero for success. The "set" function returns -EINVAL if the channel
* is unshaped, or -EIO if the configure shapper command returns error. The
* "get" function returns -EINVAL if token rate of token limit is not set, or
* the query shaper command returns error.
*/
int qman_ceetm_channel_set_commit_rate(struct qm_ceetm_channel *channel,
const struct qm_ceetm_rate *token_rate,
u16 token_limit);
int qman_ceetm_channel_get_commit_rate(struct qm_ceetm_channel *channel,
struct qm_ceetm_rate *token_rate,
u16 *token_limit);
int qman_ceetm_channel_set_excess_rate(struct qm_ceetm_channel *channel,
const struct qm_ceetm_rate *token_rate,
u16 token_limit);
int qman_ceetm_channel_get_excess_rate(struct qm_ceetm_channel *channel,
struct qm_ceetm_rate *token_rate,
u16 *token_limit);
/**
* qman_ceetm_channel_set_commit_rate_bps
* qman_ceetm_channel_get_commit_rate_bps
* qman_ceetm_channel_set_excess_rate_bps
* qman_ceetm_channel_get_excess_rate_bps - Set/get channel CR/ER shaper
* parameters.
* @channel: the given channel.
* @token_rate: the desired shaper rate in bps for "set" function, or the
* shaper rate in bps for "get" function.
* @token_limit: the desired token limit for "set" function, or the queried
* token limit for "get" function.
*
* Return zero for success. The "set" function returns -EINVAL if the channel
* is unshaped, or -EIO if the configure shapper command returns error. The
* "get" function returns -EINVAL if token rate of token limit is not set, or
* the query shaper command returns error.
*/
int qman_ceetm_channel_set_commit_rate_bps(struct qm_ceetm_channel *channel,
u64 bps, u16 token_limit);
int qman_ceetm_channel_get_commit_rate_bps(struct qm_ceetm_channel *channel,
u64 *bps, u16 *token_limit);
int qman_ceetm_channel_set_excess_rate_bps(struct qm_ceetm_channel *channel,
u64 bps, u16 token_limit);
int qman_ceetm_channel_get_excess_rate_bps(struct qm_ceetm_channel *channel,
u64 *bps, u16 *token_limit);
/**
* qman_ceetm_channel_set_weight
* qman_ceetm_channel_get_weight - Set/get the weight for unshaped channel
* @channel: the given channel.
* @token_limit: the desired token limit as the weight of the unshaped channel
* for "set" function, or the queried token limit for "get" function.
*
* The algorithm of unshaped fair queuing (uFQ) is used for unshaped channel.
* It allows the unshaped channels to be included in the CR time eligible list,
* and thus use the configured CR token limit value as their fair queuing
* weight.
*
* Return zero for success, or -EINVAL if the channel is a shaped channel or
* the management command returns error.
*/
int qman_ceetm_channel_set_weight(struct qm_ceetm_channel *channel,
u16 token_limit);
int qman_ceetm_channel_get_weight(struct qm_ceetm_channel *channel,
u16 *token_limit);
/**
* qman_ceetm_channel_set_group
* qman_ceetm_channel_get_group - Set/get the grouping of the class scheduler.
* @channel: the given channel.
* @group_b: indicates whether there is group B in this channel.
* @prio_a: the priority of group A.
* @prio_b: the priority of group B.
*
* There are 8 individual class queues (CQ0-CQ7), and 8 grouped class queues
* (CQ8-CQ15). If 'group_b' is zero, then all the grouped class queues are in
* group A, otherwise they are split into group A (CQ8-11) and group B
* (CQ12-C15). The individual class queues and the group(s) are in strict
* priority order relative to each other. Within the group(s), the scheduling
* is not strict priority order, but the result of scheduling within a group
* is in strict priority order relative to the other class queues in the
* channel. 'prio_a' and 'prio_b' control the priority order of the groups
* relative to the individual class queues, and take values from 0-7. Eg. if
* 'group_b' is non-zero, 'prio_a' is 2 and 'prio_b' is 6, then the strict
* priority order would be;
* CQ0, CQ1, CQ2, GROUPA, CQ3, CQ4, CQ5, CQ6, GROUPB, CQ7
*
* Return 0 for success. For "set" function, returns -EINVAL if prio_a or
* prio_b are out of the range 0 - 7 (priority of group A or group B can not
* be 0, CQ0 is always the highest class queue in this channel.), or -EIO if
* the configure scheduler command returns error. For "get" function, return
* -EINVAL if the query scheduler command returns error.
*/
int qman_ceetm_channel_set_group(struct qm_ceetm_channel *channel,
int group_b,
unsigned int prio_a,
unsigned int prio_b);
int qman_ceetm_channel_get_group(struct qm_ceetm_channel *channel,
int *group_b,
unsigned int *prio_a,
unsigned int *prio_b);
/**
* qman_ceetm_channel_set_group_cr_eligibility
* qman_ceetm_channel_set_group_er_eligibility - Set channel group eligibility
* @channel: the given channel object
* @group_b: indicates whether there is group B in this channel.
* @cre: the commit rate eligibility, 1 for enable, 0 for disable.
*
* Return zero for success, or -EINVAL if eligibility setting fails.
*/
int qman_ceetm_channel_set_group_cr_eligibility(struct qm_ceetm_channel
*channel, int group_b, int cre);
int qman_ceetm_channel_set_group_er_eligibility(struct qm_ceetm_channel
*channel, int group_b, int ere);
/**
* qman_ceetm_channel_set_cq_cr_eligibility
* qman_ceetm_channel_set_cq_er_eligibility - Set channel cq eligibility
* @channel: the given channel object
* @idx: is from 0 to 7 (representing CQ0 to CQ7).
* @cre: the commit rate eligibility, 1 for enable, 0 for disable.
*
* Return zero for success, or -EINVAL if eligibility setting fails.
*/
int qman_ceetm_channel_set_cq_cr_eligibility(struct qm_ceetm_channel *channel,
unsigned int idx, int cre);
int qman_ceetm_channel_set_cq_er_eligibility(struct qm_ceetm_channel *channel,
unsigned int idx, int ere);
/* --------------------- */
/* CEETM :: class queues */
/* --------------------- */
/**
* qman_ceetm_cq_claim - Claims an individual class queue.
* @cq: the returned class queue object, if successful.
* @channel: the class queue channel.
* @idx: is from 0 to 7 (representing CQ0 to CQ7).
* @ccg: represents the class congestion group that this class queue should be
* subscribed to, or NULL if no congestion group membership is desired.
*
* Returns zero for success, or -EINVAL if @idx is out of range 0 - 7 or
* if this class queue has been claimed, or configure class queue command
* returns error, or returns -ENOMEM if allocating CQ memory fails.
*/
int qman_ceetm_cq_claim(struct qm_ceetm_cq **cq,
struct qm_ceetm_channel *channel,
unsigned int idx,
struct qm_ceetm_ccg *ccg);
/**
* qman_ceetm_cq_claim_A - Claims a class queue group A.
* @cq: the returned class queue object, if successful.
* @channel: the class queue channel.
* @idx: is from 8 to 15 if only group A exits, otherwise, it is from 8 to 11.
* @ccg: represents the class congestion group that this class queue should be
* subscribed to, or NULL if no congestion group membership is desired.
*
* Return zero for success, or -EINVAL if @idx is out the range or if
* this class queue has been claimed or configure class queue command returns
* error, or returns -ENOMEM if allocating CQ memory fails.
*/
int qman_ceetm_cq_claim_A(struct qm_ceetm_cq **cq,
struct qm_ceetm_channel *channel,
unsigned int idx,
struct qm_ceetm_ccg *ccg);
/**
* qman_ceetm_cq_claim_B - Claims a class queue group B.
* @cq: the returned class queue object, if successful.
* @channel: the class queue channel.
* @idx: is from 0 to 3 (CQ12 to CQ15).
* @ccg: represents the class congestion group that this class queue should be
* subscribed to, or NULL if no congestion group membership is desired.
*
* Return zero for success, or -EINVAL if @idx is out the range or if
* this class queue has been claimed or configure class queue command returns
* error, or returns -ENOMEM if allocating CQ memory fails.
*/
int qman_ceetm_cq_claim_B(struct qm_ceetm_cq **cq,
struct qm_ceetm_channel *channel,
unsigned int idx,
struct qm_ceetm_ccg *ccg);
/**
* qman_ceetm_cq_release - Releases a previously claimed class queue.
* @cq: The class queue to be released.
*
* Return zero for success, or -EBUSY if the dependent objects (eg. logical
* FQIDs) have not been released.
*/
int qman_ceetm_cq_release(struct qm_ceetm_cq *cq);
/**
* qman_ceetm_set_queue_weight
* qman_ceetm_get_queue_weight - Configure/query the weight of a grouped class
* queue.
* @cq: the given class queue.
* @weight_code: the desired weight code to set for the given class queue for
* "set" function or the queired weight code for "get" function.
*
* Grouped class queues have a default weight code of zero, which corresponds to
* a scheduler weighting of 1. This function can be used to modify a grouped
* class queue to another weight, (Use the helpers qman_ceetm_wbfs2ratio()
* and qman_ceetm_ratio2wbfs() to convert between these 'weight_code' values
* and the corresponding sharing weight.)
*
* Returns zero for success, or -EIO if the configure weight command returns
* error for "set" function, or -EINVAL if the query command returns
* error for "get" function.
* See section "CEETM Weighted Scheduling among Grouped Classes" in Reference
* Manual for weight and weight code.
*/
int qman_ceetm_set_queue_weight(struct qm_ceetm_cq *cq,
struct qm_ceetm_weight_code *weight_code);
int qman_ceetm_get_queue_weight(struct qm_ceetm_cq *cq,
struct qm_ceetm_weight_code *weight_code);
/**
* qman_ceetm_set_queue_weight_in_ratio
* qman_ceetm_get_queue_weight_in_ratio - Configure/query the weight of a
* grouped class queue.
* @cq: the given class queue.
* @ratio: the weight in ratio. It should be the real ratio number multiplied
* by 100 to get rid of fraction.
*
* Returns zero for success, or -EIO if the configure weight command returns
* error for "set" function, or -EINVAL if the query command returns
* error for "get" function.
*/
int qman_ceetm_set_queue_weight_in_ratio(struct qm_ceetm_cq *cq, u32 ratio);
int qman_ceetm_get_queue_weight_in_ratio(struct qm_ceetm_cq *cq, u32 *ratio);
/* Weights are encoded using a pseudo-exponential scheme. The weight codes 0,
* 32, 64, [...] correspond to weights of 1, 2, 4, [...]. The weights
* corresponding to intermediate weight codes are calculated using linear
* interpolation on the inverted values. Or put another way, the inverse weights
* for each 32nd weight code are 1, 1/2, 1/4, [...], and so the intervals
* between these are divided linearly into 32 intermediate values, the inverses
* of which form the remaining weight codes.
*
* The Weighted Bandwidth Fair Scheduling (WBFS) algorithm provides a form of
* scheduling within a group of class queues (group A or B). Weights are used to
* normalise the class queues to an underlying BFS algorithm where all class
* queues are assumed to require "equal bandwidth". So the weights referred to
* by the weight codes act as divisors on the size of frames being enqueued. Ie.
* one class queue in a group is assigned a weight of 2 whilst the other class
* queues in the group keep the default weight of 1, then the WBFS scheduler
* will effectively treat all frames enqueued on the weight-2 class queue as
* having half the number of bytes they really have. Ie. if all other things are
* equal, that class queue would get twice as much bytes-per-second bandwidth as
* the others. So weights should be chosen to provide bandwidth ratios between
* members of the same class queue group. These weights have no bearing on
* behaviour outside that group's WBFS mechanism though.
*/
/**
* qman_ceetm_wbfs2ratio - Given a weight code ('wbfs'), an accurate fractional
* representation of the corresponding weight is given (in order to not lose
* any precision).
* @weight_code: The given weight code in WBFS.
* @numerator: the numerator part of the weight computed by the weight code.
* @denominator: the denominator part of the weight computed by the weight code
*
* Returns zero for success or -EINVAL if the given weight code is illegal.
*/
int qman_ceetm_wbfs2ratio(struct qm_ceetm_weight_code *weight_code,
u32 *numerator,
u32 *denominator);
/**
* qman_ceetm_ratio2wbfs - Given a weight, find the nearest possible weight code
* If the user needs to know how close this is, convert the resulting weight
* code back to a weight and compare.
* @numerator: numerator part of the given weight.
* @denominator: denominator part of the given weight.
* @weight_code: the weight code computed from the given weight.
*
* Returns zero for success, or -ERANGE if "numerator/denominator" is outside
* the range of weights.
*/
int qman_ceetm_ratio2wbfs(u32 numerator,
u32 denominator,
struct qm_ceetm_weight_code *weight_code,
int rounding);
#define QMAN_CEETM_FLAG_CLEAR_STATISTICS_COUNTER 0x1
/**
* qman_ceetm_cq_get_dequeue_statistics - Get the statistics provided by CEETM
* CQ counters.
* @cq: the given CQ object.
* @flags: indicates whether the statistics counter will be cleared after query.
* @frame_count: The number of the frames that have been counted since the
* counter was cleared last time.
* @byte_count: the number of bytes in all frames that have been counted.
*
* Return zero for success or -EINVAL if query statistics command returns error.
*
*/
int qman_ceetm_cq_get_dequeue_statistics(struct qm_ceetm_cq *cq, u32 flags,
u64 *frame_count, u64 *byte_count);
/**
* qman_ceetm_drain_cq - drain the CQ till it is empty.
* @cq: the give CQ object.
* Return 0 for success or -EINVAL for unsuccessful command to empty CQ.
*/
int qman_ceetm_drain_cq(struct qm_ceetm_cq *cq);
/* ---------------------- */
/* CEETM :: logical FQIDs */
/* ---------------------- */
/**
* qman_ceetm_lfq_claim - Claims an unused logical FQID, associates it with
* the given class queue.
* @lfq: the returned lfq object, if successful.
* @cq: the class queue which needs to claim a LFQID.
*
* Return zero for success, or -ENODEV if no LFQID is available or -ENOMEM if
* allocating memory for lfq fails, or -EINVAL if configuring LFQMT fails.
*/
int qman_ceetm_lfq_claim(struct qm_ceetm_lfq **lfq,
struct qm_ceetm_cq *cq);
/**
* qman_ceetm_lfq_release - Releases a previously claimed logical FQID.
* @lfq: the lfq to be released.
*
* Return zero for success.
*/
int qman_ceetm_lfq_release(struct qm_ceetm_lfq *lfq);
/**
* qman_ceetm_lfq_set_context
* qman_ceetm_lfq_get_context - Set/get the context_a/context_b pair to the
* "dequeue context table" associated with the logical FQID.
* @lfq: the given logical FQ object.
* @context_a: contextA of the dequeue context.
* @context_b: contextB of the dequeue context.
*
* Returns zero for success, or -EINVAL if there is error to set/get the
* context pair.
*/
int qman_ceetm_lfq_set_context(struct qm_ceetm_lfq *lfq,
u64 context_a,
u32 context_b);
int qman_ceetm_lfq_get_context(struct qm_ceetm_lfq *lfq,
u64 *context_a,
u32 *context_b);
/**
* qman_ceetm_create_fq - Initialise a FQ object for the LFQ.
* @lfq: the given logic fq.
* @fq: the fq object created for the given logic fq.
*
* The FQ object can be used in qman_enqueue() and qman_enqueue_orp() APIs to
* target a logical FQID (and the class queue it is associated with).
* Note that this FQ object can only be used for enqueues, and
* in the case of qman_enqueue_orp() it can not be used as the 'orp' parameter,
* only as 'fq'. This FQ object can not (and shouldn't) be destroyed, it is only
* valid as long as the underlying 'lfq' remains claimed. It is the user's
* responsibility to ensure that the underlying 'lfq' is not released until any
* enqueues to this FQ object have completed. The only field the user needs to
* fill in is fq->cb.ern, as that enqueue rejection handler is the callback that
* could conceivably be called on this FQ object. This API can be called
* multiple times to create multiple FQ objects referring to the same logical
* FQID, and any enqueue rejections will respect the callback of the object that
* issued the enqueue (and will identify the object via the parameter passed to
* the callback too). There is no 'flags' parameter to this API as there is for
* qman_create_fq() - the created FQ object behaves as though qman_create_fq()
* had been called with the single flag QMAN_FQ_FLAG_NO_MODIFY.
*
* Returns 0 for success.
*/
int qman_ceetm_create_fq(struct qm_ceetm_lfq *lfq, struct qman_fq *fq);
/* -------------------------------- */
/* CEETM :: class congestion groups */
/* -------------------------------- */
/**
* qman_ceetm_ccg_claim - Claims an unused CCG.
* @ccg: the returned CCG object, if successful.
* @channel: the given class queue channel
* @cscn: the callback function of this CCG.
* @cb_ctx: the corresponding context to be used used if state change
* notifications are later enabled for this CCG.
*
* The congestion group is local to the given class queue channel, so only
* class queues within the channel can be associated with that congestion group.
* The association of class queues to congestion groups occurs when the class
* queues are claimed, see qman_ceetm_cq_claim() and related functions.
* Congestion groups are in a "zero" state when initially claimed, and they are
* returned to that state when released.
*
* Return zero for success, or -EINVAL if no CCG in the channel is available.
*/
int qman_ceetm_ccg_claim(struct qm_ceetm_ccg **ccg,
struct qm_ceetm_channel *channel,
unsigned int idx,
void (*cscn)(struct qm_ceetm_ccg *,
void *cb_ctx,
int congested),
void *cb_ctx);
/**
* qman_ceetm_ccg_release - Releases a previously claimed CCG.
* @ccg: the given ccg.
*
* Returns zero for success, or -EBUSY if the given ccg's dependent objects
* (class queues that are associated with the CCG) have not been released.
*/
int qman_ceetm_ccg_release(struct qm_ceetm_ccg *ccg);
/* This struct is used to specify attributes for a CCG. The 'we_mask' field
* controls which CCG attributes are to be updated, and the remainder specify
* the values for those attributes. A CCG counts either frames or the bytes
* within those frames, but not both ('mode'). A CCG can optionally cause
* enqueues to be rejected, due to tail-drop or WRED, or both (they are
* independent options, 'td_en' and 'wr_en_g,wr_en_y,wr_en_r'). Tail-drop can be
* level-triggered due to a single threshold ('td_thres') or edge-triggered due
* to a "congestion state", but not both ('td_mode'). Congestion state has
* distinct entry and exit thresholds ('cs_thres_in' and 'cs_thres_out'), and
* notifications can be sent to software the CCG goes in to and out of this
* congested state ('cscn_en'). */
struct qm_ceetm_ccg_params {
/* Boolean fields together in a single bitfield struct */
struct {
/* Whether to count bytes or frames. 1==frames */
u8 mode:1;
/* En/disable tail-drop. 1==enable */
u8 td_en:1;
/* Tail-drop on congestion-state or threshold. 1=threshold */
u8 td_mode:1;
/* Generate congestion state change notifications. 1==enable */
u8 cscn_en:1;
/* Enable WRED rejections (per colour). 1==enable */
u8 wr_en_g:1;
u8 wr_en_y:1;
u8 wr_en_r:1;
} __packed;
/* Tail-drop threshold. See qm_cgr_thres_[gs]et64(). */
struct qm_cgr_cs_thres td_thres;
/* Congestion state thresholds, for entry and exit. */
struct qm_cgr_cs_thres cs_thres_in;
struct qm_cgr_cs_thres cs_thres_out;
/* Overhead accounting length. Per-packet "tax", from -128 to +127 */
signed char oal;
/* Congestion state change notification for DCP portal, virtual CCGID*/
/* WRED parameters. */
struct qm_cgr_wr_parm wr_parm_g;
struct qm_cgr_wr_parm wr_parm_y;
struct qm_cgr_wr_parm wr_parm_r;
};
/* Bits used in 'we_mask' to qman_ceetm_ccg_set(), controls which attributes of
* the CCGR are to be updated. */
#define QM_CCGR_WE_MODE 0x0001 /* mode (bytes/frames) */
#define QM_CCGR_WE_CS_THRES_IN 0x0002 /* congestion state entry threshold */
#define QM_CCGR_WE_TD_EN 0x0004 /* congestion state tail-drop enable */
#define QM_CCGR_WE_CSCN_TUPD 0x0008 /* CSCN target update */
#define QM_CCGR_WE_CSCN_EN 0x0010 /* congestion notification enable */
#define QM_CCGR_WE_WR_EN_R 0x0020 /* WRED enable - red */
#define QM_CCGR_WE_WR_EN_Y 0x0040 /* WRED enable - yellow */
#define QM_CCGR_WE_WR_EN_G 0x0080 /* WRED enable - green */
#define QM_CCGR_WE_WR_PARM_R 0x0100 /* WRED parameters - red */
#define QM_CCGR_WE_WR_PARM_Y 0x0200 /* WRED parameters - yellow */
#define QM_CCGR_WE_WR_PARM_G 0x0400 /* WRED parameters - green */
#define QM_CCGR_WE_OAL 0x0800 /* overhead accounting length */
#define QM_CCGR_WE_CS_THRES_OUT 0x1000 /* congestion state exit threshold */
#define QM_CCGR_WE_TD_THRES 0x2000 /* tail-drop threshold */
#define QM_CCGR_WE_TD_MODE 0x4000 /* tail-drop mode (state/threshold) */
#define QM_CCGR_WE_CDV 0x8000 /* cdv */
/**
* qman_ceetm_ccg_set
* qman_ceetm_ccg_get - Configure/query a subset of CCG attributes.
* @ccg: the given CCG object.
* @we_mask: the write enable mask.
* @params: the parameters setting for this ccg
*
* Return 0 for success, or -EIO if configure ccg command returns error for
* "set" function, or -EINVAL if query ccg command returns error for "get"
* function.
*/
int qman_ceetm_ccg_set(struct qm_ceetm_ccg *ccg,
u16 we_mask,
const struct qm_ceetm_ccg_params *params);
int qman_ceetm_ccg_get(struct qm_ceetm_ccg *ccg,
struct qm_ceetm_ccg_params *params);
/** qman_ceetm_cscn_swp_set - Add or remove a software portal from the target
* mask.
* qman_ceetm_cscn_swp_get - Query whether a given software portal index is
* in the cscn target mask.
* @ccg: the give CCG object.
* @swp_idx: the index of the software portal.
* @cscn_enabled: 1: Set the swp to be cscn target. 0: remove the swp from
* the target mask.
* @we_mask: the write enable mask.
* @params: the parameters setting for this ccg
*
* Return 0 for success, or -EINVAL if command in set/get function fails.
*/
int qman_ceetm_cscn_swp_set(struct qm_ceetm_ccg *ccg,
u16 swp_idx,
unsigned int cscn_enabled,
u16 we_mask,
const struct qm_ceetm_ccg_params *params);
int qman_ceetm_cscn_swp_get(struct qm_ceetm_ccg *ccg,
u16 swp_idx,
unsigned int *cscn_enabled);
/** qman_ceetm_cscn_dcp_set - Add or remove a direct connect portal from the\
* target mask.
* qman_ceetm_cscn_dcp_get - Query whether a given direct connect portal index
* is in the cscn target mask.
* @ccg: the give CCG object.
* @dcp_idx: the index of the direct connect portal.
* @vcgid: congestion state change notification for dcp portal, virtual CGID.
* @cscn_enabled: 1: Set the dcp to be cscn target. 0: remove the dcp from
* the target mask.
* @we_mask: the write enable mask.
* @params: the parameters setting for this ccg
*
* Return 0 for success, or -EINVAL if command in set/get function fails.
*/
int qman_ceetm_cscn_dcp_set(struct qm_ceetm_ccg *ccg,
u16 dcp_idx,
u8 vcgid,
unsigned int cscn_enabled,
u16 we_mask,
const struct qm_ceetm_ccg_params *params);
int qman_ceetm_cscn_dcp_get(struct qm_ceetm_ccg *ccg,
u16 dcp_idx,
u8 *vcgid,
unsigned int *cscn_enabled);
/**
* qman_ceetm_ccg_get_reject_statistics - Get the statistics provided by
* CEETM CCG counters.
* @ccg: the given CCG object.
* @flags: indicates whether the statistics counter will be cleared after query.
* @frame_count: The number of the frames that have been counted since the
* counter was cleared last time.
* @byte_count: the number of bytes in all frames that have been counted.
*
* Return zero for success or -EINVAL if query statistics command returns error.
*
*/
int qman_ceetm_ccg_get_reject_statistics(struct qm_ceetm_ccg *ccg, u32 flags,
u64 *frame_count, u64 *byte_count);
/**
* qman_ceetm_query_lfqmt - Query the logical frame queue mapping table
* @lfqid: Logical Frame Queue ID
* @lfqmt_query: Results of the query command
*
* Returns zero for success or -EIO if the query command returns error.
*
*/
int qman_ceetm_query_lfqmt(int lfqid,
struct qm_mcr_ceetm_lfqmt_query *lfqmt_query);
/**
* qman_ceetm_query_cq - Queries a CEETM CQ
* @cqid: the channel ID (first byte) followed by the CQ idx
* @dcpid: CEETM portal ID
* @cq_query: storage for the queried CQ fields
*
* Returns zero for success or -EIO if the query command returns error.
*
*/
int qman_ceetm_query_cq(unsigned int cqid, unsigned int dcpid,
struct qm_mcr_ceetm_cq_query *cq_query);
/**
* qman_ceetm_query_write_statistics - Query (and optionally write) statistics
* @cid: Target ID (CQID or CCGRID)
* @dcp_idx: CEETM portal ID
* @command_type: One of the following:
* 0 = Query dequeue statistics. CID carries the CQID to be queried.
* 1 = Query and clear dequeue statistics. CID carries the CQID to be queried
* 2 = Write dequeue statistics. CID carries the CQID to be written.
* 3 = Query reject statistics. CID carries the CCGRID to be queried.
* 4 = Query and clear reject statistics. CID carries the CCGRID to be queried
* 5 = Write reject statistics. CID carries the CCGRID to be written
* @frame_count: Frame count value to be written if this is a write command
* @byte_count: Bytes count value to be written if this is a write command
*
* Returns zero for success or -EIO if the query command returns error.
*/
int qman_ceetm_query_write_statistics(u16 cid, enum qm_dc_portal dcp_idx,
u16 command_type, u64 frame_count,
u64 byte_count);
/**
* qman_set_wpm - Set waterfall power management
*
* @wpm_enable: boolean, 1 = enable wpm, 0 = disable wpm.
*
* Return 0 for success, return -ENODEV if QMan misc_cfg register is not
* accessible.
*/
int qman_set_wpm(int wpm_enable);
/**
* qman_get_wpm - Query the waterfall power management setting
*
* @wpm_enable: boolean, 1 = enable wpm, 0 = disable wpm.
*
* Return 0 for success, return -ENODEV if QMan misc_cfg register is not
* accessible.
*/
int qman_get_wpm(int *wpm_enable);
/* The below qman_p_***() variants might be called in a migration situation
* (e.g. cpu hotplug). They are used to continue accessing the portal that
* execution was affine to prior to migration.
* @qman_portal specifies which portal the APIs will use.
*/
const struct qman_portal_config *qman_p_get_portal_config(struct qman_portal
*p);
int qman_p_irqsource_add(struct qman_portal *p, u32 bits);
int qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
u32 qman_p_poll_slow(struct qman_portal *p);
void qman_p_poll(struct qman_portal *p);
void qman_p_stop_dequeues(struct qman_portal *p);
void qman_p_start_dequeues(struct qman_portal *p);
void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
void qman_p_static_dequeue_del(struct qman_portal *p, u32 pools);
u32 qman_p_static_dequeue_get(struct qman_portal *p);
void qman_p_dca(struct qman_portal *p, struct qm_dqrr_entry *dq,
int park_request);
int qman_p_volatile_dequeue(struct qman_portal *p, struct qman_fq *fq,
u32 flags __maybe_unused, u32 vdqcr);
int qman_p_enqueue(struct qman_portal *p, struct qman_fq *fq,
const struct qm_fd *fd, u32 flags);
int qman_p_enqueue_orp(struct qman_portal *p, struct qman_fq *fq,
const struct qm_fd *fd, u32 flags,
struct qman_fq *orp, u16 orp_seqnum);
int qman_p_enqueue_precommit(struct qman_portal *p, struct qman_fq *fq,
const struct qm_fd *fd, u32 flags,
qman_cb_precommit cb, void *cb_arg);
static inline int qman_is_probed(void) {
return 1;
}
static inline int qman_portals_probed(void) {
return 1;
}
#ifdef __cplusplus
}
#endif
#endif /* FSL_QMAN_H */