linux-brain/fs/xfs/libxfs/xfs_inode_fork.c
Dave Chinner 8c355ed619 xfs: fix inode fork extent count overflow
[ Upstream commit 3f8a4f1d876d3e3e49e50b0396eaffcc4ba71b08 ]

[commit message is verbose for discussion purposes - will trim it
down later. Some questions about implementation details at the end.]

Zorro Lang recently ran a new test to stress single inode extent
counts now that they are no longer limited by memory allocation.
The test was simply:

# xfs_io -f -c "falloc 0 40t" /mnt/scratch/big-file
# ~/src/xfstests-dev/punch-alternating /mnt/scratch/big-file

This test uncovered a problem where the hole punching operation
appeared to finish with no error, but apparently only created 268M
extents instead of the 10 billion it was supposed to.

Further, trying to punch out extents that should have been present
resulted in success, but no change in the extent count. It looked
like a silent failure.

While running the test and observing the behaviour in real time,
I observed the extent coutn growing at ~2M extents/minute, and saw
this after about an hour:

# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next ; \
> sleep 60 ; \
> xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 127657993
fsxattr.nextents = 129683339
#

And a few minutes later this:

# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 4177861124
#

Ah, what? Where did that 4 billion extra extents suddenly come from?

Stop the workload, unmount, mount:

# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 166044375
#

And it's back at the expected number. i.e. the extent count is
correct on disk, but it's screwed up in memory. I loaded up the
extent list, and immediately:

# xfs_io -f -c "stat" /mnt/scratch/big-file |grep next
fsxattr.nextents = 4192576215
#

It's bad again. So, where does that number come from?
xfs_fill_fsxattr():

                if (ip->i_df.if_flags & XFS_IFEXTENTS)
                        fa->fsx_nextents = xfs_iext_count(&ip->i_df);
                else
                        fa->fsx_nextents = ip->i_d.di_nextents;

And that's the behaviour I just saw in a nutshell. The on disk count
is correct, but once the tree is loaded into memory, it goes whacky.
Clearly there's something wrong with xfs_iext_count():

inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
{
        return ifp->if_bytes / sizeof(struct xfs_iext_rec);
}

Simple enough, but 134M extents is 2**27, and that's right about
where things went wrong. A struct xfs_iext_rec is 16 bytes in size,
which means 2**27 * 2**4 = 2**31 and we're right on target for an
integer overflow. And, sure enough:

struct xfs_ifork {
        int                     if_bytes;       /* bytes in if_u1 */
....

Once we get 2**27 extents in a file, we overflow if_bytes and the
in-core extent count goes wrong. And when we reach 2**28 extents,
if_bytes wraps back to zero and things really start to go wrong
there. This is where the silent failure comes from - only the first
2**28 extents can be looked up directly due to the overflow, all the
extents above this index wrap back to somewhere in the first 2**28
extents. Hence with a regular pattern, trying to punch a hole in the
range that didn't have holes mapped to a hole in the first 2**28
extents and so "succeeded" without changing anything. Hence "silent
failure"...

Fix this by converting if_bytes to a int64_t and converting all the
index variables and size calculations to use int64_t types to avoid
overflows in future. Signed integers are still used to enable easy
detection of extent count underflows. This enables scalability of
extent counts to the limits of the on-disk format - MAXEXTNUM
(2**31) extents.

Current testing is at over 500M extents and still going:

fsxattr.nextents = 517310478

Reported-by: Zorro Lang <zlang@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:13 +02:00

733 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_bmap.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_dir2_priv.h"
#include "xfs_attr_leaf.h"
kmem_zone_t *xfs_ifork_zone;
STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
/*
* Copy inode type and data and attr format specific information from the
* on-disk inode to the in-core inode and fork structures. For fifos, devices,
* and sockets this means set i_rdev to the proper value. For files,
* directories, and symlinks this means to bring in the in-line data or extent
* pointers as well as the attribute fork. For a fork in B-tree format, only
* the root is immediately brought in-core. The rest will be read in later when
* first referenced (see xfs_iread_extents()).
*/
int
xfs_iformat_fork(
struct xfs_inode *ip,
struct xfs_dinode *dip)
{
struct inode *inode = VFS_I(ip);
struct xfs_attr_shortform *atp;
int size;
int error = 0;
xfs_fsize_t di_size;
switch (inode->i_mode & S_IFMT) {
case S_IFIFO:
case S_IFCHR:
case S_IFBLK:
case S_IFSOCK:
ip->i_d.di_size = 0;
inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
break;
case S_IFREG:
case S_IFLNK:
case S_IFDIR:
switch (dip->di_format) {
case XFS_DINODE_FMT_LOCAL:
di_size = be64_to_cpu(dip->di_size);
size = (int)di_size;
error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
break;
case XFS_DINODE_FMT_EXTENTS:
error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
break;
case XFS_DINODE_FMT_BTREE:
error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
break;
default:
return -EFSCORRUPTED;
}
break;
default:
return -EFSCORRUPTED;
}
if (error)
return error;
if (xfs_is_reflink_inode(ip)) {
ASSERT(ip->i_cowfp == NULL);
xfs_ifork_init_cow(ip);
}
if (!XFS_DFORK_Q(dip))
return 0;
ASSERT(ip->i_afp == NULL);
ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_NOFS);
switch (dip->di_aformat) {
case XFS_DINODE_FMT_LOCAL:
atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
size = be16_to_cpu(atp->hdr.totsize);
error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
break;
case XFS_DINODE_FMT_EXTENTS:
error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
break;
case XFS_DINODE_FMT_BTREE:
error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
break;
default:
error = -EFSCORRUPTED;
break;
}
if (error) {
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
ip->i_afp = NULL;
if (ip->i_cowfp)
kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
ip->i_cowfp = NULL;
xfs_idestroy_fork(ip, XFS_DATA_FORK);
}
return error;
}
void
xfs_init_local_fork(
struct xfs_inode *ip,
int whichfork,
const void *data,
int64_t size)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
int mem_size = size, real_size = 0;
bool zero_terminate;
/*
* If we are using the local fork to store a symlink body we need to
* zero-terminate it so that we can pass it back to the VFS directly.
* Overallocate the in-memory fork by one for that and add a zero
* to terminate it below.
*/
zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
if (zero_terminate)
mem_size++;
if (size) {
real_size = roundup(mem_size, 4);
ifp->if_u1.if_data = kmem_alloc(real_size, KM_NOFS);
memcpy(ifp->if_u1.if_data, data, size);
if (zero_terminate)
ifp->if_u1.if_data[size] = '\0';
} else {
ifp->if_u1.if_data = NULL;
}
ifp->if_bytes = size;
ifp->if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT);
ifp->if_flags |= XFS_IFINLINE;
}
/*
* The file is in-lined in the on-disk inode.
*/
STATIC int
xfs_iformat_local(
xfs_inode_t *ip,
xfs_dinode_t *dip,
int whichfork,
int size)
{
/*
* If the size is unreasonable, then something
* is wrong and we just bail out rather than crash in
* kmem_alloc() or memcpy() below.
*/
if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
xfs_warn(ip->i_mount,
"corrupt inode %Lu (bad size %d for local fork, size = %d).",
(unsigned long long) ip->i_ino, size,
XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
xfs_inode_verifier_error(ip, -EFSCORRUPTED,
"xfs_iformat_local", dip, sizeof(*dip),
__this_address);
return -EFSCORRUPTED;
}
xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
return 0;
}
/*
* The file consists of a set of extents all of which fit into the on-disk
* inode.
*/
STATIC int
xfs_iformat_extents(
struct xfs_inode *ip,
struct xfs_dinode *dip,
int whichfork)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
int state = xfs_bmap_fork_to_state(whichfork);
int nex = XFS_DFORK_NEXTENTS(dip, whichfork);
int size = nex * sizeof(xfs_bmbt_rec_t);
struct xfs_iext_cursor icur;
struct xfs_bmbt_rec *dp;
struct xfs_bmbt_irec new;
int i;
/*
* If the number of extents is unreasonable, then something is wrong and
* we just bail out rather than crash in kmem_alloc() or memcpy() below.
*/
if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
(unsigned long long) ip->i_ino, nex);
xfs_inode_verifier_error(ip, -EFSCORRUPTED,
"xfs_iformat_extents(1)", dip, sizeof(*dip),
__this_address);
return -EFSCORRUPTED;
}
ifp->if_bytes = 0;
ifp->if_u1.if_root = NULL;
ifp->if_height = 0;
if (size) {
dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
xfs_iext_first(ifp, &icur);
for (i = 0; i < nex; i++, dp++) {
xfs_failaddr_t fa;
xfs_bmbt_disk_get_all(dp, &new);
fa = xfs_bmap_validate_extent(ip, whichfork, &new);
if (fa) {
xfs_inode_verifier_error(ip, -EFSCORRUPTED,
"xfs_iformat_extents(2)",
dp, sizeof(*dp), fa);
return -EFSCORRUPTED;
}
xfs_iext_insert(ip, &icur, &new, state);
trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
xfs_iext_next(ifp, &icur);
}
}
ifp->if_flags |= XFS_IFEXTENTS;
return 0;
}
/*
* The file has too many extents to fit into
* the inode, so they are in B-tree format.
* Allocate a buffer for the root of the B-tree
* and copy the root into it. The i_extents
* field will remain NULL until all of the
* extents are read in (when they are needed).
*/
STATIC int
xfs_iformat_btree(
xfs_inode_t *ip,
xfs_dinode_t *dip,
int whichfork)
{
struct xfs_mount *mp = ip->i_mount;
xfs_bmdr_block_t *dfp;
struct xfs_ifork *ifp;
/* REFERENCED */
int nrecs;
int size;
int level;
ifp = XFS_IFORK_PTR(ip, whichfork);
dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
size = XFS_BMAP_BROOT_SPACE(mp, dfp);
nrecs = be16_to_cpu(dfp->bb_numrecs);
level = be16_to_cpu(dfp->bb_level);
/*
* blow out if -- fork has less extents than can fit in
* fork (fork shouldn't be a btree format), root btree
* block has more records than can fit into the fork,
* or the number of extents is greater than the number of
* blocks.
*/
if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
XFS_IFORK_MAXEXT(ip, whichfork) ||
nrecs == 0 ||
XFS_BMDR_SPACE_CALC(nrecs) >
XFS_DFORK_SIZE(dip, mp, whichfork) ||
XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks) ||
level == 0 || level > XFS_BTREE_MAXLEVELS) {
xfs_warn(mp, "corrupt inode %Lu (btree).",
(unsigned long long) ip->i_ino);
xfs_inode_verifier_error(ip, -EFSCORRUPTED,
"xfs_iformat_btree", dfp, size,
__this_address);
return -EFSCORRUPTED;
}
ifp->if_broot_bytes = size;
ifp->if_broot = kmem_alloc(size, KM_NOFS);
ASSERT(ifp->if_broot != NULL);
/*
* Copy and convert from the on-disk structure
* to the in-memory structure.
*/
xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
ifp->if_broot, size);
ifp->if_flags &= ~XFS_IFEXTENTS;
ifp->if_flags |= XFS_IFBROOT;
ifp->if_bytes = 0;
ifp->if_u1.if_root = NULL;
ifp->if_height = 0;
return 0;
}
/*
* Reallocate the space for if_broot based on the number of records
* being added or deleted as indicated in rec_diff. Move the records
* and pointers in if_broot to fit the new size. When shrinking this
* will eliminate holes between the records and pointers created by
* the caller. When growing this will create holes to be filled in
* by the caller.
*
* The caller must not request to add more records than would fit in
* the on-disk inode root. If the if_broot is currently NULL, then
* if we are adding records, one will be allocated. The caller must also
* not request that the number of records go below zero, although
* it can go to zero.
*
* ip -- the inode whose if_broot area is changing
* ext_diff -- the change in the number of records, positive or negative,
* requested for the if_broot array.
*/
void
xfs_iroot_realloc(
xfs_inode_t *ip,
int rec_diff,
int whichfork)
{
struct xfs_mount *mp = ip->i_mount;
int cur_max;
struct xfs_ifork *ifp;
struct xfs_btree_block *new_broot;
int new_max;
size_t new_size;
char *np;
char *op;
/*
* Handle the degenerate case quietly.
*/
if (rec_diff == 0) {
return;
}
ifp = XFS_IFORK_PTR(ip, whichfork);
if (rec_diff > 0) {
/*
* If there wasn't any memory allocated before, just
* allocate it now and get out.
*/
if (ifp->if_broot_bytes == 0) {
new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
ifp->if_broot = kmem_alloc(new_size, KM_NOFS);
ifp->if_broot_bytes = (int)new_size;
return;
}
/*
* If there is already an existing if_broot, then we need
* to realloc() it and shift the pointers to their new
* location. The records don't change location because
* they are kept butted up against the btree block header.
*/
cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
new_max = cur_max + rec_diff;
new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
KM_NOFS);
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
ifp->if_broot_bytes);
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
(int)new_size);
ifp->if_broot_bytes = (int)new_size;
ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
XFS_IFORK_SIZE(ip, whichfork));
memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
return;
}
/*
* rec_diff is less than 0. In this case, we are shrinking the
* if_broot buffer. It must already exist. If we go to zero
* records, just get rid of the root and clear the status bit.
*/
ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
new_max = cur_max + rec_diff;
ASSERT(new_max >= 0);
if (new_max > 0)
new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
else
new_size = 0;
if (new_size > 0) {
new_broot = kmem_alloc(new_size, KM_NOFS);
/*
* First copy over the btree block header.
*/
memcpy(new_broot, ifp->if_broot,
XFS_BMBT_BLOCK_LEN(ip->i_mount));
} else {
new_broot = NULL;
ifp->if_flags &= ~XFS_IFBROOT;
}
/*
* Only copy the records and pointers if there are any.
*/
if (new_max > 0) {
/*
* First copy the records.
*/
op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
/*
* Then copy the pointers.
*/
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
ifp->if_broot_bytes);
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
(int)new_size);
memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
}
kmem_free(ifp->if_broot);
ifp->if_broot = new_broot;
ifp->if_broot_bytes = (int)new_size;
if (ifp->if_broot)
ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
XFS_IFORK_SIZE(ip, whichfork));
return;
}
/*
* This is called when the amount of space needed for if_data
* is increased or decreased. The change in size is indicated by
* the number of bytes that need to be added or deleted in the
* byte_diff parameter.
*
* If the amount of space needed has decreased below the size of the
* inline buffer, then switch to using the inline buffer. Otherwise,
* use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
* to what is needed.
*
* ip -- the inode whose if_data area is changing
* byte_diff -- the change in the number of bytes, positive or negative,
* requested for the if_data array.
*/
void
xfs_idata_realloc(
struct xfs_inode *ip,
int64_t byte_diff,
int whichfork)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
int64_t new_size = ifp->if_bytes + byte_diff;
ASSERT(new_size >= 0);
ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork));
if (byte_diff == 0)
return;
if (new_size == 0) {
kmem_free(ifp->if_u1.if_data);
ifp->if_u1.if_data = NULL;
ifp->if_bytes = 0;
return;
}
/*
* For inline data, the underlying buffer must be a multiple of 4 bytes
* in size so that it can be logged and stay on word boundaries.
* We enforce that here.
*/
ifp->if_u1.if_data = kmem_realloc(ifp->if_u1.if_data,
roundup(new_size, 4), KM_NOFS);
ifp->if_bytes = new_size;
}
void
xfs_idestroy_fork(
xfs_inode_t *ip,
int whichfork)
{
struct xfs_ifork *ifp;
ifp = XFS_IFORK_PTR(ip, whichfork);
if (ifp->if_broot != NULL) {
kmem_free(ifp->if_broot);
ifp->if_broot = NULL;
}
/*
* If the format is local, then we can't have an extents
* array so just look for an inline data array. If we're
* not local then we may or may not have an extents list,
* so check and free it up if we do.
*/
if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
if (ifp->if_u1.if_data != NULL) {
kmem_free(ifp->if_u1.if_data);
ifp->if_u1.if_data = NULL;
}
} else if ((ifp->if_flags & XFS_IFEXTENTS) && ifp->if_height) {
xfs_iext_destroy(ifp);
}
if (whichfork == XFS_ATTR_FORK) {
kmem_zone_free(xfs_ifork_zone, ip->i_afp);
ip->i_afp = NULL;
} else if (whichfork == XFS_COW_FORK) {
kmem_zone_free(xfs_ifork_zone, ip->i_cowfp);
ip->i_cowfp = NULL;
}
}
/*
* Convert in-core extents to on-disk form
*
* In the case of the data fork, the in-core and on-disk fork sizes can be
* different due to delayed allocation extents. We only copy on-disk extents
* here, so callers must always use the physical fork size to determine the
* size of the buffer passed to this routine. We will return the size actually
* used.
*/
int
xfs_iextents_copy(
struct xfs_inode *ip,
struct xfs_bmbt_rec *dp,
int whichfork)
{
int state = xfs_bmap_fork_to_state(whichfork);
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
struct xfs_iext_cursor icur;
struct xfs_bmbt_irec rec;
int64_t copied = 0;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
ASSERT(ifp->if_bytes > 0);
for_each_xfs_iext(ifp, &icur, &rec) {
if (isnullstartblock(rec.br_startblock))
continue;
ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
xfs_bmbt_disk_set_all(dp, &rec);
trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
copied += sizeof(struct xfs_bmbt_rec);
dp++;
}
ASSERT(copied > 0);
ASSERT(copied <= ifp->if_bytes);
return copied;
}
/*
* Each of the following cases stores data into the same region
* of the on-disk inode, so only one of them can be valid at
* any given time. While it is possible to have conflicting formats
* and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
* in EXTENTS format, this can only happen when the fork has
* changed formats after being modified but before being flushed.
* In these cases, the format always takes precedence, because the
* format indicates the current state of the fork.
*/
void
xfs_iflush_fork(
xfs_inode_t *ip,
xfs_dinode_t *dip,
xfs_inode_log_item_t *iip,
int whichfork)
{
char *cp;
struct xfs_ifork *ifp;
xfs_mount_t *mp;
static const short brootflag[2] =
{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
static const short dataflag[2] =
{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
static const short extflag[2] =
{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
if (!iip)
return;
ifp = XFS_IFORK_PTR(ip, whichfork);
/*
* This can happen if we gave up in iformat in an error path,
* for the attribute fork.
*/
if (!ifp) {
ASSERT(whichfork == XFS_ATTR_FORK);
return;
}
cp = XFS_DFORK_PTR(dip, whichfork);
mp = ip->i_mount;
switch (XFS_IFORK_FORMAT(ip, whichfork)) {
case XFS_DINODE_FMT_LOCAL:
if ((iip->ili_fields & dataflag[whichfork]) &&
(ifp->if_bytes > 0)) {
ASSERT(ifp->if_u1.if_data != NULL);
ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
}
break;
case XFS_DINODE_FMT_EXTENTS:
ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
!(iip->ili_fields & extflag[whichfork]));
if ((iip->ili_fields & extflag[whichfork]) &&
(ifp->if_bytes > 0)) {
ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
whichfork);
}
break;
case XFS_DINODE_FMT_BTREE:
if ((iip->ili_fields & brootflag[whichfork]) &&
(ifp->if_broot_bytes > 0)) {
ASSERT(ifp->if_broot != NULL);
ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
XFS_IFORK_SIZE(ip, whichfork));
xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
(xfs_bmdr_block_t *)cp,
XFS_DFORK_SIZE(dip, mp, whichfork));
}
break;
case XFS_DINODE_FMT_DEV:
if (iip->ili_fields & XFS_ILOG_DEV) {
ASSERT(whichfork == XFS_DATA_FORK);
xfs_dinode_put_rdev(dip,
linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
}
break;
default:
ASSERT(0);
break;
}
}
/* Convert bmap state flags to an inode fork. */
struct xfs_ifork *
xfs_iext_state_to_fork(
struct xfs_inode *ip,
int state)
{
if (state & BMAP_COWFORK)
return ip->i_cowfp;
else if (state & BMAP_ATTRFORK)
return ip->i_afp;
return &ip->i_df;
}
/*
* Initialize an inode's copy-on-write fork.
*/
void
xfs_ifork_init_cow(
struct xfs_inode *ip)
{
if (ip->i_cowfp)
return;
ip->i_cowfp = kmem_zone_zalloc(xfs_ifork_zone,
KM_NOFS);
ip->i_cowfp->if_flags = XFS_IFEXTENTS;
ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
ip->i_cnextents = 0;
}
/* Default fork content verifiers. */
struct xfs_ifork_ops xfs_default_ifork_ops = {
.verify_attr = xfs_attr_shortform_verify,
.verify_dir = xfs_dir2_sf_verify,
.verify_symlink = xfs_symlink_shortform_verify,
};
/* Verify the inline contents of the data fork of an inode. */
xfs_failaddr_t
xfs_ifork_verify_data(
struct xfs_inode *ip,
struct xfs_ifork_ops *ops)
{
/* Non-local data fork, we're done. */
if (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
return NULL;
/* Check the inline data fork if there is one. */
switch (VFS_I(ip)->i_mode & S_IFMT) {
case S_IFDIR:
return ops->verify_dir(ip);
case S_IFLNK:
return ops->verify_symlink(ip);
default:
return NULL;
}
}
/* Verify the inline contents of the attr fork of an inode. */
xfs_failaddr_t
xfs_ifork_verify_attr(
struct xfs_inode *ip,
struct xfs_ifork_ops *ops)
{
/* There has to be an attr fork allocated if aformat is local. */
if (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
return NULL;
if (!XFS_IFORK_PTR(ip, XFS_ATTR_FORK))
return __this_address;
return ops->verify_attr(ip);
}