linux-brain/drivers/staging/fsl_ppfe/pfe_hif.c

1061 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2015-2016 Freescale Semiconductor, Inc.
* Copyright 2017 NXP
*/
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <asm/irq.h>
#include "pfe_mod.h"
#define HIF_INT_MASK (HIF_INT | HIF_RXPKT_INT | HIF_TXPKT_INT)
unsigned char napi_first_batch;
static void pfe_tx_do_cleanup(unsigned long data);
static int pfe_hif_alloc_descr(struct pfe_hif *hif)
{
void *addr;
dma_addr_t dma_addr;
int err = 0;
pr_info("%s\n", __func__);
addr = dma_alloc_coherent(pfe->dev,
HIF_RX_DESC_NT * sizeof(struct hif_desc) +
HIF_TX_DESC_NT * sizeof(struct hif_desc),
&dma_addr, GFP_KERNEL);
if (!addr) {
pr_err("%s: Could not allocate buffer descriptors!\n"
, __func__);
err = -ENOMEM;
goto err0;
}
hif->descr_baseaddr_p = dma_addr;
hif->descr_baseaddr_v = addr;
hif->rx_ring_size = HIF_RX_DESC_NT;
hif->tx_ring_size = HIF_TX_DESC_NT;
return 0;
err0:
return err;
}
#if defined(LS1012A_PFE_RESET_WA)
static void pfe_hif_disable_rx_desc(struct pfe_hif *hif)
{
int ii;
struct hif_desc *desc = hif->rx_base;
/*Mark all descriptors as LAST_BD */
for (ii = 0; ii < hif->rx_ring_size; ii++) {
desc->ctrl |= BD_CTRL_LAST_BD;
desc++;
}
}
struct class_rx_hdr_t {
u32 next_ptr; /* ptr to the start of the first DDR buffer */
u16 length; /* total packet length */
u16 phyno; /* input physical port number */
u32 status; /* gemac status bits */
u32 status2; /* reserved for software usage */
};
/* STATUS_BAD_FRAME_ERR is set for all errors (including checksums if enabled)
* except overflow
*/
#define STATUS_BAD_FRAME_ERR BIT(16)
#define STATUS_LENGTH_ERR BIT(17)
#define STATUS_CRC_ERR BIT(18)
#define STATUS_TOO_SHORT_ERR BIT(19)
#define STATUS_TOO_LONG_ERR BIT(20)
#define STATUS_CODE_ERR BIT(21)
#define STATUS_MC_HASH_MATCH BIT(22)
#define STATUS_CUMULATIVE_ARC_HIT BIT(23)
#define STATUS_UNICAST_HASH_MATCH BIT(24)
#define STATUS_IP_CHECKSUM_CORRECT BIT(25)
#define STATUS_TCP_CHECKSUM_CORRECT BIT(26)
#define STATUS_UDP_CHECKSUM_CORRECT BIT(27)
#define STATUS_OVERFLOW_ERR BIT(28) /* GPI error */
#define MIN_PKT_SIZE 64
static inline void copy_to_lmem(u32 *dst, u32 *src, int len)
{
int i;
for (i = 0; i < len; i += sizeof(u32)) {
*dst = htonl(*src);
dst++; src++;
}
}
static void send_dummy_pkt_to_hif(void)
{
void *lmem_ptr, *ddr_ptr, *lmem_virt_addr;
u32 physaddr;
struct class_rx_hdr_t local_hdr;
static u32 dummy_pkt[] = {
0x33221100, 0x2b785544, 0xd73093cb, 0x01000608,
0x04060008, 0x2b780200, 0xd73093cb, 0x0a01a8c0,
0x33221100, 0xa8c05544, 0x00000301, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0xbe86c51f };
ddr_ptr = (void *)((u64)readl(BMU2_BASE_ADDR + BMU_ALLOC_CTRL));
if (!ddr_ptr)
return;
lmem_ptr = (void *)((u64)readl(BMU1_BASE_ADDR + BMU_ALLOC_CTRL));
if (!lmem_ptr)
return;
pr_info("Sending a dummy pkt to HIF %p %p\n", ddr_ptr, lmem_ptr);
physaddr = (u32)DDR_VIRT_TO_PFE(ddr_ptr);
lmem_virt_addr = (void *)CBUS_PFE_TO_VIRT((unsigned long int)lmem_ptr);
local_hdr.phyno = htons(0); /* RX_PHY_0 */
local_hdr.length = htons(MIN_PKT_SIZE);
local_hdr.next_ptr = htonl((u32)physaddr);
/*Mark checksum is correct */
local_hdr.status = htonl((STATUS_IP_CHECKSUM_CORRECT |
STATUS_UDP_CHECKSUM_CORRECT |
STATUS_TCP_CHECKSUM_CORRECT |
STATUS_UNICAST_HASH_MATCH |
STATUS_CUMULATIVE_ARC_HIT));
copy_to_lmem((u32 *)lmem_virt_addr, (u32 *)&local_hdr,
sizeof(local_hdr));
copy_to_lmem((u32 *)(lmem_virt_addr + LMEM_HDR_SIZE), (u32 *)dummy_pkt,
0x40);
writel((unsigned long int)lmem_ptr, CLASS_INQ_PKTPTR);
}
void pfe_hif_rx_idle(struct pfe_hif *hif)
{
int hif_stop_loop = 10;
u32 rx_status;
pfe_hif_disable_rx_desc(hif);
pr_info("Bringing hif to idle state...");
writel(0, HIF_INT_ENABLE);
/*If HIF Rx BDP is busy send a dummy packet */
do {
rx_status = readl(HIF_RX_STATUS);
if (rx_status & BDP_CSR_RX_DMA_ACTV)
send_dummy_pkt_to_hif();
usleep_range(100, 150);
} while (--hif_stop_loop);
if (readl(HIF_RX_STATUS) & BDP_CSR_RX_DMA_ACTV)
pr_info("Failed\n");
else
pr_info("Done\n");
}
#endif
static void pfe_hif_free_descr(struct pfe_hif *hif)
{
pr_info("%s\n", __func__);
dma_free_coherent(pfe->dev,
hif->rx_ring_size * sizeof(struct hif_desc) +
hif->tx_ring_size * sizeof(struct hif_desc),
hif->descr_baseaddr_v, hif->descr_baseaddr_p);
}
void pfe_hif_desc_dump(struct pfe_hif *hif)
{
struct hif_desc *desc;
unsigned long desc_p;
int ii = 0;
pr_info("%s\n", __func__);
desc = hif->rx_base;
desc_p = (u32)((u64)desc - (u64)hif->descr_baseaddr_v +
hif->descr_baseaddr_p);
pr_info("HIF Rx desc base %p physical %x\n", desc, (u32)desc_p);
for (ii = 0; ii < hif->rx_ring_size; ii++) {
pr_info("status: %08x, ctrl: %08x, data: %08x, next: %x\n",
readl(&desc->status), readl(&desc->ctrl),
readl(&desc->data), readl(&desc->next));
desc++;
}
desc = hif->tx_base;
desc_p = ((u64)desc - (u64)hif->descr_baseaddr_v +
hif->descr_baseaddr_p);
pr_info("HIF Tx desc base %p physical %x\n", desc, (u32)desc_p);
for (ii = 0; ii < hif->tx_ring_size; ii++) {
pr_info("status: %08x, ctrl: %08x, data: %08x, next: %x\n",
readl(&desc->status), readl(&desc->ctrl),
readl(&desc->data), readl(&desc->next));
desc++;
}
}
/* pfe_hif_release_buffers */
static void pfe_hif_release_buffers(struct pfe_hif *hif)
{
struct hif_desc *desc;
int i = 0;
hif->rx_base = hif->descr_baseaddr_v;
pr_info("%s\n", __func__);
/*Free Rx buffers */
desc = hif->rx_base;
for (i = 0; i < hif->rx_ring_size; i++) {
if (readl(&desc->data)) {
if ((i < hif->shm->rx_buf_pool_cnt) &&
(!hif->shm->rx_buf_pool[i])) {
/*
* dma_unmap_single(hif->dev, desc->data,
* hif->rx_buf_len[i], DMA_FROM_DEVICE);
*/
dma_unmap_single(hif->dev,
DDR_PFE_TO_PHYS(
readl(&desc->data)),
hif->rx_buf_len[i],
DMA_FROM_DEVICE);
hif->shm->rx_buf_pool[i] = hif->rx_buf_addr[i];
} else {
pr_err("%s: buffer pool already full\n"
, __func__);
}
}
writel(0, &desc->data);
writel(0, &desc->status);
writel(0, &desc->ctrl);
desc++;
}
}
/*
* pfe_hif_init_buffers
* This function initializes the HIF Rx/Tx ring descriptors and
* initialize Rx queue with buffers.
*/
static int pfe_hif_init_buffers(struct pfe_hif *hif)
{
struct hif_desc *desc, *first_desc_p;
u32 data;
int i = 0;
pr_info("%s\n", __func__);
/* Check enough Rx buffers available in the shared memory */
if (hif->shm->rx_buf_pool_cnt < hif->rx_ring_size)
return -ENOMEM;
hif->rx_base = hif->descr_baseaddr_v;
memset(hif->rx_base, 0, hif->rx_ring_size * sizeof(struct hif_desc));
/*Initialize Rx descriptors */
desc = hif->rx_base;
first_desc_p = (struct hif_desc *)hif->descr_baseaddr_p;
for (i = 0; i < hif->rx_ring_size; i++) {
/* Initialize Rx buffers from the shared memory */
data = (u32)dma_map_single(hif->dev, hif->shm->rx_buf_pool[i],
pfe_pkt_size, DMA_FROM_DEVICE);
hif->rx_buf_addr[i] = hif->shm->rx_buf_pool[i];
hif->rx_buf_len[i] = pfe_pkt_size;
hif->shm->rx_buf_pool[i] = NULL;
if (likely(dma_mapping_error(hif->dev, data) == 0)) {
writel(DDR_PHYS_TO_PFE(data), &desc->data);
} else {
pr_err("%s : low on mem\n", __func__);
goto err;
}
writel(0, &desc->status);
/*
* Ensure everything else is written to DDR before
* writing bd->ctrl
*/
wmb();
writel((BD_CTRL_PKT_INT_EN | BD_CTRL_LIFM
| BD_CTRL_DIR | BD_CTRL_DESC_EN
| BD_BUF_LEN(pfe_pkt_size)), &desc->ctrl);
/* Chain descriptors */
writel((u32)DDR_PHYS_TO_PFE(first_desc_p + i + 1), &desc->next);
desc++;
}
/* Overwrite last descriptor to chain it to first one*/
desc--;
writel((u32)DDR_PHYS_TO_PFE(first_desc_p), &desc->next);
hif->rxtoclean_index = 0;
/*Initialize Rx buffer descriptor ring base address */
writel(DDR_PHYS_TO_PFE(hif->descr_baseaddr_p), HIF_RX_BDP_ADDR);
hif->tx_base = hif->rx_base + hif->rx_ring_size;
first_desc_p = (struct hif_desc *)hif->descr_baseaddr_p +
hif->rx_ring_size;
memset(hif->tx_base, 0, hif->tx_ring_size * sizeof(struct hif_desc));
/*Initialize tx descriptors */
desc = hif->tx_base;
for (i = 0; i < hif->tx_ring_size; i++) {
/* Chain descriptors */
writel((u32)DDR_PHYS_TO_PFE(first_desc_p + i + 1), &desc->next);
writel(0, &desc->ctrl);
desc++;
}
/* Overwrite last descriptor to chain it to first one */
desc--;
writel((u32)DDR_PHYS_TO_PFE(first_desc_p), &desc->next);
hif->txavail = hif->tx_ring_size;
hif->txtosend = 0;
hif->txtoclean = 0;
hif->txtoflush = 0;
/*Initialize Tx buffer descriptor ring base address */
writel((u32)DDR_PHYS_TO_PFE(first_desc_p), HIF_TX_BDP_ADDR);
return 0;
err:
pfe_hif_release_buffers(hif);
return -ENOMEM;
}
/*
* pfe_hif_client_register
*
* This function used to register a client driver with the HIF driver.
*
* Return value:
* 0 - on Successful registration
*/
static int pfe_hif_client_register(struct pfe_hif *hif, u32 client_id,
struct hif_client_shm *client_shm)
{
struct hif_client *client = &hif->client[client_id];
u32 i, cnt;
struct rx_queue_desc *rx_qbase;
struct tx_queue_desc *tx_qbase;
struct hif_rx_queue *rx_queue;
struct hif_tx_queue *tx_queue;
int err = 0;
pr_info("%s\n", __func__);
spin_lock_bh(&hif->tx_lock);
if (test_bit(client_id, &hif->shm->g_client_status[0])) {
pr_err("%s: client %d already registered\n",
__func__, client_id);
err = -1;
goto unlock;
}
memset(client, 0, sizeof(struct hif_client));
/* Initialize client Rx queues baseaddr, size */
cnt = CLIENT_CTRL_RX_Q_CNT(client_shm->ctrl);
/* Check if client is requesting for more queues than supported */
if (cnt > HIF_CLIENT_QUEUES_MAX)
cnt = HIF_CLIENT_QUEUES_MAX;
client->rx_qn = cnt;
rx_qbase = (struct rx_queue_desc *)client_shm->rx_qbase;
for (i = 0; i < cnt; i++) {
rx_queue = &client->rx_q[i];
rx_queue->base = rx_qbase + i * client_shm->rx_qsize;
rx_queue->size = client_shm->rx_qsize;
rx_queue->write_idx = 0;
}
/* Initialize client Tx queues baseaddr, size */
cnt = CLIENT_CTRL_TX_Q_CNT(client_shm->ctrl);
/* Check if client is requesting for more queues than supported */
if (cnt > HIF_CLIENT_QUEUES_MAX)
cnt = HIF_CLIENT_QUEUES_MAX;
client->tx_qn = cnt;
tx_qbase = (struct tx_queue_desc *)client_shm->tx_qbase;
for (i = 0; i < cnt; i++) {
tx_queue = &client->tx_q[i];
tx_queue->base = tx_qbase + i * client_shm->tx_qsize;
tx_queue->size = client_shm->tx_qsize;
tx_queue->ack_idx = 0;
}
set_bit(client_id, &hif->shm->g_client_status[0]);
unlock:
spin_unlock_bh(&hif->tx_lock);
return err;
}
/*
* pfe_hif_client_unregister
*
* This function used to unregister a client from the HIF driver.
*
*/
static void pfe_hif_client_unregister(struct pfe_hif *hif, u32 client_id)
{
pr_info("%s\n", __func__);
/*
* Mark client as no longer available (which prevents further packet
* receive for this client)
*/
spin_lock_bh(&hif->tx_lock);
if (!test_bit(client_id, &hif->shm->g_client_status[0])) {
pr_err("%s: client %d not registered\n", __func__,
client_id);
spin_unlock_bh(&hif->tx_lock);
return;
}
clear_bit(client_id, &hif->shm->g_client_status[0]);
spin_unlock_bh(&hif->tx_lock);
}
/*
* client_put_rxpacket-
* This functions puts the Rx pkt in the given client Rx queue.
* It actually swap the Rx pkt in the client Rx descriptor buffer
* and returns the free buffer from it.
*
* If the function returns NULL means client Rx queue is full and
* packet couldn't send to client queue.
*/
static void *client_put_rxpacket(struct hif_rx_queue *queue, void *pkt, u32 len,
u32 flags, u32 client_ctrl, u32 *rem_len)
{
void *free_pkt = NULL;
struct rx_queue_desc *desc = queue->base + queue->write_idx;
if (readl(&desc->ctrl) & CL_DESC_OWN) {
if (page_mode) {
int rem_page_size = PAGE_SIZE -
PRESENT_OFST_IN_PAGE(pkt);
int cur_pkt_size = ROUND_MIN_RX_SIZE(len +
pfe_pkt_headroom);
*rem_len = (rem_page_size - cur_pkt_size);
if (*rem_len) {
free_pkt = pkt + cur_pkt_size;
get_page(virt_to_page(free_pkt));
} else {
free_pkt = (void
*)__get_free_page(GFP_ATOMIC | GFP_DMA_PFE);
*rem_len = pfe_pkt_size;
}
} else {
free_pkt = kmalloc(PFE_BUF_SIZE, GFP_ATOMIC |
GFP_DMA_PFE);
*rem_len = PFE_BUF_SIZE - pfe_pkt_headroom;
}
if (free_pkt) {
desc->data = pkt;
desc->client_ctrl = client_ctrl;
/*
* Ensure everything else is written to DDR before
* writing bd->ctrl
*/
smp_wmb();
writel(CL_DESC_BUF_LEN(len) | flags, &desc->ctrl);
queue->write_idx = (queue->write_idx + 1)
& (queue->size - 1);
free_pkt += pfe_pkt_headroom;
}
}
return free_pkt;
}
/*
* pfe_hif_rx_process-
* This function does pfe hif rx queue processing.
* Dequeue packet from Rx queue and send it to corresponding client queue
*/
static int pfe_hif_rx_process(struct pfe_hif *hif, int budget)
{
struct hif_desc *desc;
struct hif_hdr *pkt_hdr;
struct __hif_hdr hif_hdr;
void *free_buf;
int rtc, len, rx_processed = 0;
struct __hif_desc local_desc;
int flags;
unsigned int desc_p;
unsigned int buf_size = 0;
spin_lock_bh(&hif->lock);
rtc = hif->rxtoclean_index;
while (rx_processed < budget) {
desc = hif->rx_base + rtc;
__memcpy12(&local_desc, desc);
/* ACK pending Rx interrupt */
if (local_desc.ctrl & BD_CTRL_DESC_EN) {
writel(HIF_INT | HIF_RXPKT_INT, HIF_INT_SRC);
if (rx_processed == 0) {
if (napi_first_batch == 1) {
desc_p = hif->descr_baseaddr_p +
((unsigned long int)(desc) -
(unsigned long
int)hif->descr_baseaddr_v);
napi_first_batch = 0;
}
}
__memcpy12(&local_desc, desc);
if (local_desc.ctrl & BD_CTRL_DESC_EN)
break;
}
napi_first_batch = 0;
#ifdef HIF_NAPI_STATS
hif->napi_counters[NAPI_DESC_COUNT]++;
#endif
len = BD_BUF_LEN(local_desc.ctrl);
/*
* dma_unmap_single(hif->dev, DDR_PFE_TO_PHYS(local_desc.data),
* hif->rx_buf_len[rtc], DMA_FROM_DEVICE);
*/
dma_unmap_single(hif->dev, DDR_PFE_TO_PHYS(local_desc.data),
hif->rx_buf_len[rtc], DMA_FROM_DEVICE);
pkt_hdr = (struct hif_hdr *)hif->rx_buf_addr[rtc];
/* Track last HIF header received */
if (!hif->started) {
hif->started = 1;
__memcpy8(&hif_hdr, pkt_hdr);
hif->qno = hif_hdr.hdr.q_num;
hif->client_id = hif_hdr.hdr.client_id;
hif->client_ctrl = (hif_hdr.hdr.client_ctrl1 << 16) |
hif_hdr.hdr.client_ctrl;
flags = CL_DESC_FIRST;
} else {
flags = 0;
}
if (local_desc.ctrl & BD_CTRL_LIFM)
flags |= CL_DESC_LAST;
/* Check for valid client id and still registered */
if ((hif->client_id >= HIF_CLIENTS_MAX) ||
!(test_bit(hif->client_id,
&hif->shm->g_client_status[0]))) {
printk_ratelimited("%s: packet with invalid client id %d q_num %d\n",
__func__,
hif->client_id,
hif->qno);
free_buf = pkt_hdr;
goto pkt_drop;
}
/* Check to valid queue number */
if (hif->client[hif->client_id].rx_qn <= hif->qno) {
pr_info("%s: packet with invalid queue: %d\n"
, __func__, hif->qno);
hif->qno = 0;
}
free_buf =
client_put_rxpacket(&hif->client[hif->client_id].rx_q[hif->qno],
(void *)pkt_hdr, len, flags,
hif->client_ctrl, &buf_size);
hif_lib_indicate_client(hif->client_id, EVENT_RX_PKT_IND,
hif->qno);
if (unlikely(!free_buf)) {
#ifdef HIF_NAPI_STATS
hif->napi_counters[NAPI_CLIENT_FULL_COUNT]++;
#endif
/*
* If we want to keep in polling mode to retry later,
* we need to tell napi that we consumed
* the full budget or we will hit a livelock scenario.
* The core code keeps this napi instance
* at the head of the list and none of the other
* instances get to run
*/
rx_processed = budget;
if (flags & CL_DESC_FIRST)
hif->started = 0;
break;
}
pkt_drop:
/*Fill free buffer in the descriptor */
hif->rx_buf_addr[rtc] = free_buf;
hif->rx_buf_len[rtc] = min(pfe_pkt_size, buf_size);
writel((DDR_PHYS_TO_PFE
((u32)dma_map_single(hif->dev,
free_buf, hif->rx_buf_len[rtc], DMA_FROM_DEVICE))),
&desc->data);
/*
* Ensure everything else is written to DDR before
* writing bd->ctrl
*/
wmb();
writel((BD_CTRL_PKT_INT_EN | BD_CTRL_LIFM | BD_CTRL_DIR |
BD_CTRL_DESC_EN | BD_BUF_LEN(hif->rx_buf_len[rtc])),
&desc->ctrl);
rtc = (rtc + 1) & (hif->rx_ring_size - 1);
if (local_desc.ctrl & BD_CTRL_LIFM) {
if (!(hif->client_ctrl & HIF_CTRL_RX_CONTINUED)) {
rx_processed++;
#ifdef HIF_NAPI_STATS
hif->napi_counters[NAPI_PACKET_COUNT]++;
#endif
}
hif->started = 0;
}
}
hif->rxtoclean_index = rtc;
spin_unlock_bh(&hif->lock);
/* we made some progress, re-start rx dma in case it stopped */
hif_rx_dma_start();
return rx_processed;
}
/*
* client_ack_txpacket-
* This function ack the Tx packet in the give client Tx queue by resetting
* ownership bit in the descriptor.
*/
static int client_ack_txpacket(struct pfe_hif *hif, unsigned int client_id,
unsigned int q_no)
{
struct hif_tx_queue *queue = &hif->client[client_id].tx_q[q_no];
struct tx_queue_desc *desc = queue->base + queue->ack_idx;
if (readl(&desc->ctrl) & CL_DESC_OWN) {
writel((readl(&desc->ctrl) & ~CL_DESC_OWN), &desc->ctrl);
queue->ack_idx = (queue->ack_idx + 1) & (queue->size - 1);
return 0;
} else {
/*This should not happen */
pr_err("%s: %d %d %d %d %d %p %d\n", __func__,
hif->txtosend, hif->txtoclean, hif->txavail,
client_id, q_no, queue, queue->ack_idx);
WARN(1, "%s: doesn't own this descriptor", __func__);
return 1;
}
}
void __hif_tx_done_process(struct pfe_hif *hif, int count)
{
struct hif_desc *desc;
struct hif_desc_sw *desc_sw;
int ttc, tx_avl;
int pkts_done[HIF_CLIENTS_MAX] = {0, 0};
ttc = hif->txtoclean;
tx_avl = hif->txavail;
while ((tx_avl < hif->tx_ring_size) && count--) {
desc = hif->tx_base + ttc;
if (readl(&desc->ctrl) & BD_CTRL_DESC_EN)
break;
desc_sw = &hif->tx_sw_queue[ttc];
if (desc_sw->data) {
/*
* dmap_unmap_single(hif->dev, desc_sw->data,
* desc_sw->len, DMA_TO_DEVICE);
*/
dma_unmap_single(hif->dev, desc_sw->data,
desc_sw->len, DMA_TO_DEVICE);
}
if (desc_sw->client_id > HIF_CLIENTS_MAX)
pr_err("Invalid cl id %d\n", desc_sw->client_id);
pkts_done[desc_sw->client_id]++;
client_ack_txpacket(hif, desc_sw->client_id, desc_sw->q_no);
ttc = (ttc + 1) & (hif->tx_ring_size - 1);
tx_avl++;
}
if (pkts_done[0])
hif_lib_indicate_client(0, EVENT_TXDONE_IND, 0);
if (pkts_done[1])
hif_lib_indicate_client(1, EVENT_TXDONE_IND, 0);
hif->txtoclean = ttc;
hif->txavail = tx_avl;
if (!count) {
tasklet_schedule(&hif->tx_cleanup_tasklet);
} else {
/*Enable Tx done interrupt */
writel(readl_relaxed(HIF_INT_ENABLE) | HIF_TXPKT_INT,
HIF_INT_ENABLE);
}
}
static void pfe_tx_do_cleanup(unsigned long data)
{
struct pfe_hif *hif = (struct pfe_hif *)data;
writel(HIF_INT | HIF_TXPKT_INT, HIF_INT_SRC);
hif_tx_done_process(hif, 64);
}
/*
* __hif_xmit_pkt -
* This function puts one packet in the HIF Tx queue
*/
void __hif_xmit_pkt(struct pfe_hif *hif, unsigned int client_id, unsigned int
q_no, void *data, u32 len, unsigned int flags)
{
struct hif_desc *desc;
struct hif_desc_sw *desc_sw;
desc = hif->tx_base + hif->txtosend;
desc_sw = &hif->tx_sw_queue[hif->txtosend];
desc_sw->len = len;
desc_sw->client_id = client_id;
desc_sw->q_no = q_no;
desc_sw->flags = flags;
if (flags & HIF_DONT_DMA_MAP) {
desc_sw->data = 0;
writel((u32)DDR_PHYS_TO_PFE(data), &desc->data);
} else {
desc_sw->data = dma_map_single(hif->dev, data, len,
DMA_TO_DEVICE);
writel((u32)DDR_PHYS_TO_PFE(desc_sw->data), &desc->data);
}
hif->txtosend = (hif->txtosend + 1) & (hif->tx_ring_size - 1);
hif->txavail--;
if ((!((flags & HIF_DATA_VALID) && (flags &
HIF_LAST_BUFFER))))
goto skip_tx;
/*
* Ensure everything else is written to DDR before
* writing bd->ctrl
*/
wmb();
do {
desc_sw = &hif->tx_sw_queue[hif->txtoflush];
desc = hif->tx_base + hif->txtoflush;
if (desc_sw->flags & HIF_LAST_BUFFER) {
writel((BD_CTRL_LIFM |
BD_CTRL_BRFETCH_DISABLE | BD_CTRL_RTFETCH_DISABLE
| BD_CTRL_PARSE_DISABLE | BD_CTRL_DESC_EN |
BD_CTRL_PKT_INT_EN | BD_BUF_LEN(desc_sw->len)),
&desc->ctrl);
} else {
writel((BD_CTRL_DESC_EN |
BD_BUF_LEN(desc_sw->len)), &desc->ctrl);
}
hif->txtoflush = (hif->txtoflush + 1) & (hif->tx_ring_size - 1);
}
while (hif->txtoflush != hif->txtosend)
;
skip_tx:
return;
}
static irqreturn_t wol_isr(int irq, void *dev_id)
{
pr_info("WoL\n");
gemac_set_wol(EMAC1_BASE_ADDR, 0);
gemac_set_wol(EMAC2_BASE_ADDR, 0);
return IRQ_HANDLED;
}
/*
* hif_isr-
* This ISR routine processes Rx/Tx done interrupts from the HIF hardware block
*/
static irqreturn_t hif_isr(int irq, void *dev_id)
{
struct pfe_hif *hif = (struct pfe_hif *)dev_id;
int int_status;
int int_enable_mask;
/*Read hif interrupt source register */
int_status = readl_relaxed(HIF_INT_SRC);
int_enable_mask = readl_relaxed(HIF_INT_ENABLE);
if ((int_status & HIF_INT) == 0)
return IRQ_NONE;
int_status &= ~(HIF_INT);
if (int_status & HIF_RXPKT_INT) {
int_status &= ~(HIF_RXPKT_INT);
int_enable_mask &= ~(HIF_RXPKT_INT);
napi_first_batch = 1;
if (napi_schedule_prep(&hif->napi)) {
#ifdef HIF_NAPI_STATS
hif->napi_counters[NAPI_SCHED_COUNT]++;
#endif
__napi_schedule(&hif->napi);
}
}
if (int_status & HIF_TXPKT_INT) {
int_status &= ~(HIF_TXPKT_INT);
int_enable_mask &= ~(HIF_TXPKT_INT);
/*Schedule tx cleanup tassklet */
tasklet_schedule(&hif->tx_cleanup_tasklet);
}
/*Disable interrupts, they will be enabled after they are serviced */
writel_relaxed(int_enable_mask, HIF_INT_ENABLE);
if (int_status) {
pr_info("%s : Invalid interrupt : %d\n", __func__,
int_status);
writel(int_status, HIF_INT_SRC);
}
return IRQ_HANDLED;
}
void hif_process_client_req(struct pfe_hif *hif, int req, int data1, int data2)
{
unsigned int client_id = data1;
if (client_id >= HIF_CLIENTS_MAX) {
pr_err("%s: client id %d out of bounds\n", __func__,
client_id);
return;
}
switch (req) {
case REQUEST_CL_REGISTER:
/* Request for register a client */
pr_info("%s: register client_id %d\n",
__func__, client_id);
pfe_hif_client_register(hif, client_id, (struct
hif_client_shm *)&hif->shm->client[client_id]);
break;
case REQUEST_CL_UNREGISTER:
pr_info("%s: unregister client_id %d\n",
__func__, client_id);
/* Request for unregister a client */
pfe_hif_client_unregister(hif, client_id);
break;
default:
pr_err("%s: unsupported request %d\n",
__func__, req);
break;
}
/*
* Process client Tx queues
* Currently we don't have checking for tx pending
*/
}
/*
* pfe_hif_rx_poll
* This function is NAPI poll function to process HIF Rx queue.
*/
static int pfe_hif_rx_poll(struct napi_struct *napi, int budget)
{
struct pfe_hif *hif = container_of(napi, struct pfe_hif, napi);
int work_done;
#ifdef HIF_NAPI_STATS
hif->napi_counters[NAPI_POLL_COUNT]++;
#endif
work_done = pfe_hif_rx_process(hif, budget);
if (work_done < budget) {
napi_complete(napi);
writel(readl_relaxed(HIF_INT_ENABLE) | HIF_RXPKT_INT,
HIF_INT_ENABLE);
}
#ifdef HIF_NAPI_STATS
else
hif->napi_counters[NAPI_FULL_BUDGET_COUNT]++;
#endif
return work_done;
}
/*
* pfe_hif_init
* This function initializes the baseaddresses and irq, etc.
*/
int pfe_hif_init(struct pfe *pfe)
{
struct pfe_hif *hif = &pfe->hif;
int err;
pr_info("%s\n", __func__);
hif->dev = pfe->dev;
hif->irq = pfe->hif_irq;
err = pfe_hif_alloc_descr(hif);
if (err)
goto err0;
if (pfe_hif_init_buffers(hif)) {
pr_err("%s: Could not initialize buffer descriptors\n"
, __func__);
err = -ENOMEM;
goto err1;
}
/* Initialize NAPI for Rx processing */
init_dummy_netdev(&hif->dummy_dev);
netif_napi_add(&hif->dummy_dev, &hif->napi, pfe_hif_rx_poll,
HIF_RX_POLL_WEIGHT);
napi_enable(&hif->napi);
spin_lock_init(&hif->tx_lock);
spin_lock_init(&hif->lock);
hif_init();
hif_rx_enable();
hif_tx_enable();
/* Disable tx done interrupt */
writel(HIF_INT_MASK, HIF_INT_ENABLE);
gpi_enable(HGPI_BASE_ADDR);
err = request_irq(hif->irq, hif_isr, 0, "pfe_hif", hif);
if (err) {
pr_err("%s: failed to get the hif IRQ = %d\n",
__func__, hif->irq);
goto err1;
}
err = request_irq(pfe->wol_irq, wol_isr, 0, "pfe_wol", pfe);
if (err) {
pr_err("%s: failed to get the wol IRQ = %d\n",
__func__, pfe->wol_irq);
goto err1;
}
tasklet_init(&hif->tx_cleanup_tasklet,
(void(*)(unsigned long))pfe_tx_do_cleanup,
(unsigned long)hif);
return 0;
err1:
pfe_hif_free_descr(hif);
err0:
return err;
}
/* pfe_hif_exit- */
void pfe_hif_exit(struct pfe *pfe)
{
struct pfe_hif *hif = &pfe->hif;
pr_info("%s\n", __func__);
tasklet_kill(&hif->tx_cleanup_tasklet);
spin_lock_bh(&hif->lock);
hif->shm->g_client_status[0] = 0;
/* Make sure all clients are disabled*/
hif->shm->g_client_status[1] = 0;
spin_unlock_bh(&hif->lock);
/*Disable Rx/Tx */
gpi_disable(HGPI_BASE_ADDR);
hif_rx_disable();
hif_tx_disable();
napi_disable(&hif->napi);
netif_napi_del(&hif->napi);
free_irq(pfe->wol_irq, pfe);
free_irq(hif->irq, hif);
pfe_hif_release_buffers(hif);
pfe_hif_free_descr(hif);
}