linux-brain/arch/s390/kernel/sthyi.c
Janosch Frank b5130dc222 s390/sthyi: Fix machine name validity indication
When running as a level 3 guest with no host provided sthyi support
sclp_ocf_cpc_name_copy() will only return zeroes. Zeroes are not a
valid group name, so let's not indicate that the group name field is
valid.

Also the group name is not dependent on stsi, let's not return based
on stsi before setting it.

Fixes: 95ca2cb579 ("KVM: s390: Add sthyi emulation")
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-10-15 12:17:00 +02:00

517 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* store hypervisor information instruction emulation functions.
*
* Copyright IBM Corp. 2016
* Author(s): Janosch Frank <frankja@linux.vnet.ibm.com>
*/
#include <linux/errno.h>
#include <linux/pagemap.h>
#include <linux/vmalloc.h>
#include <linux/syscalls.h>
#include <linux/mutex.h>
#include <asm/asm-offsets.h>
#include <asm/sclp.h>
#include <asm/diag.h>
#include <asm/sysinfo.h>
#include <asm/ebcdic.h>
#include <asm/facility.h>
#include <asm/sthyi.h>
#include "entry.h"
#define DED_WEIGHT 0xffff
/*
* CP and IFL as EBCDIC strings, SP/0x40 determines the end of string
* as they are justified with spaces.
*/
#define CP 0xc3d7404040404040UL
#define IFL 0xc9c6d34040404040UL
enum hdr_flags {
HDR_NOT_LPAR = 0x10,
HDR_STACK_INCM = 0x20,
HDR_STSI_UNAV = 0x40,
HDR_PERF_UNAV = 0x80,
};
enum mac_validity {
MAC_NAME_VLD = 0x20,
MAC_ID_VLD = 0x40,
MAC_CNT_VLD = 0x80,
};
enum par_flag {
PAR_MT_EN = 0x80,
};
enum par_validity {
PAR_GRP_VLD = 0x08,
PAR_ID_VLD = 0x10,
PAR_ABS_VLD = 0x20,
PAR_WGHT_VLD = 0x40,
PAR_PCNT_VLD = 0x80,
};
struct hdr_sctn {
u8 infhflg1;
u8 infhflg2; /* reserved */
u8 infhval1; /* reserved */
u8 infhval2; /* reserved */
u8 reserved[3];
u8 infhygct;
u16 infhtotl;
u16 infhdln;
u16 infmoff;
u16 infmlen;
u16 infpoff;
u16 infplen;
u16 infhoff1;
u16 infhlen1;
u16 infgoff1;
u16 infglen1;
u16 infhoff2;
u16 infhlen2;
u16 infgoff2;
u16 infglen2;
u16 infhoff3;
u16 infhlen3;
u16 infgoff3;
u16 infglen3;
u8 reserved2[4];
} __packed;
struct mac_sctn {
u8 infmflg1; /* reserved */
u8 infmflg2; /* reserved */
u8 infmval1;
u8 infmval2; /* reserved */
u16 infmscps;
u16 infmdcps;
u16 infmsifl;
u16 infmdifl;
char infmname[8];
char infmtype[4];
char infmmanu[16];
char infmseq[16];
char infmpman[4];
u8 reserved[4];
} __packed;
struct par_sctn {
u8 infpflg1;
u8 infpflg2; /* reserved */
u8 infpval1;
u8 infpval2; /* reserved */
u16 infppnum;
u16 infpscps;
u16 infpdcps;
u16 infpsifl;
u16 infpdifl;
u16 reserved;
char infppnam[8];
u32 infpwbcp;
u32 infpabcp;
u32 infpwbif;
u32 infpabif;
char infplgnm[8];
u32 infplgcp;
u32 infplgif;
} __packed;
struct sthyi_sctns {
struct hdr_sctn hdr;
struct mac_sctn mac;
struct par_sctn par;
} __packed;
struct cpu_inf {
u64 lpar_cap;
u64 lpar_grp_cap;
u64 lpar_weight;
u64 all_weight;
int cpu_num_ded;
int cpu_num_shd;
};
struct lpar_cpu_inf {
struct cpu_inf cp;
struct cpu_inf ifl;
};
/*
* STHYI requires extensive locking in the higher hypervisors
* and is very computational/memory expensive. Therefore we
* cache the retrieved data whose valid period is 1s.
*/
#define CACHE_VALID_JIFFIES HZ
struct sthyi_info {
void *info;
unsigned long end;
};
static DEFINE_MUTEX(sthyi_mutex);
static struct sthyi_info sthyi_cache;
static inline u64 cpu_id(u8 ctidx, void *diag224_buf)
{
return *((u64 *)(diag224_buf + (ctidx + 1) * DIAG204_CPU_NAME_LEN));
}
/*
* Scales the cpu capping from the lpar range to the one expected in
* sthyi data.
*
* diag204 reports a cap in hundredths of processor units.
* z/VM's range for one core is 0 - 0x10000.
*/
static u32 scale_cap(u32 in)
{
return (0x10000 * in) / 100;
}
static void fill_hdr(struct sthyi_sctns *sctns)
{
sctns->hdr.infhdln = sizeof(sctns->hdr);
sctns->hdr.infmoff = sizeof(sctns->hdr);
sctns->hdr.infmlen = sizeof(sctns->mac);
sctns->hdr.infplen = sizeof(sctns->par);
sctns->hdr.infpoff = sctns->hdr.infhdln + sctns->hdr.infmlen;
sctns->hdr.infhtotl = sctns->hdr.infpoff + sctns->hdr.infplen;
}
static void fill_stsi_mac(struct sthyi_sctns *sctns,
struct sysinfo_1_1_1 *sysinfo)
{
sclp_ocf_cpc_name_copy(sctns->mac.infmname);
if (*(u64 *)sctns->mac.infmname != 0)
sctns->mac.infmval1 |= MAC_NAME_VLD;
if (stsi(sysinfo, 1, 1, 1))
return;
memcpy(sctns->mac.infmtype, sysinfo->type, sizeof(sctns->mac.infmtype));
memcpy(sctns->mac.infmmanu, sysinfo->manufacturer, sizeof(sctns->mac.infmmanu));
memcpy(sctns->mac.infmpman, sysinfo->plant, sizeof(sctns->mac.infmpman));
memcpy(sctns->mac.infmseq, sysinfo->sequence, sizeof(sctns->mac.infmseq));
sctns->mac.infmval1 |= MAC_ID_VLD;
}
static void fill_stsi_par(struct sthyi_sctns *sctns,
struct sysinfo_2_2_2 *sysinfo)
{
if (stsi(sysinfo, 2, 2, 2))
return;
sctns->par.infppnum = sysinfo->lpar_number;
memcpy(sctns->par.infppnam, sysinfo->name, sizeof(sctns->par.infppnam));
sctns->par.infpval1 |= PAR_ID_VLD;
}
static void fill_stsi(struct sthyi_sctns *sctns)
{
void *sysinfo;
/* Errors are handled through the validity bits in the response. */
sysinfo = (void *)__get_free_page(GFP_KERNEL);
if (!sysinfo)
return;
fill_stsi_mac(sctns, sysinfo);
fill_stsi_par(sctns, sysinfo);
free_pages((unsigned long)sysinfo, 0);
}
static void fill_diag_mac(struct sthyi_sctns *sctns,
struct diag204_x_phys_block *block,
void *diag224_buf)
{
int i;
for (i = 0; i < block->hdr.cpus; i++) {
switch (cpu_id(block->cpus[i].ctidx, diag224_buf)) {
case CP:
if (block->cpus[i].weight == DED_WEIGHT)
sctns->mac.infmdcps++;
else
sctns->mac.infmscps++;
break;
case IFL:
if (block->cpus[i].weight == DED_WEIGHT)
sctns->mac.infmdifl++;
else
sctns->mac.infmsifl++;
break;
}
}
sctns->mac.infmval1 |= MAC_CNT_VLD;
}
/* Returns a pointer to the the next partition block. */
static struct diag204_x_part_block *lpar_cpu_inf(struct lpar_cpu_inf *part_inf,
bool this_lpar,
void *diag224_buf,
struct diag204_x_part_block *block)
{
int i, capped = 0, weight_cp = 0, weight_ifl = 0;
struct cpu_inf *cpu_inf;
for (i = 0; i < block->hdr.rcpus; i++) {
if (!(block->cpus[i].cflag & DIAG204_CPU_ONLINE))
continue;
switch (cpu_id(block->cpus[i].ctidx, diag224_buf)) {
case CP:
cpu_inf = &part_inf->cp;
if (block->cpus[i].cur_weight < DED_WEIGHT)
weight_cp |= block->cpus[i].cur_weight;
break;
case IFL:
cpu_inf = &part_inf->ifl;
if (block->cpus[i].cur_weight < DED_WEIGHT)
weight_ifl |= block->cpus[i].cur_weight;
break;
default:
continue;
}
if (!this_lpar)
continue;
capped |= block->cpus[i].cflag & DIAG204_CPU_CAPPED;
cpu_inf->lpar_cap |= block->cpus[i].cpu_type_cap;
cpu_inf->lpar_grp_cap |= block->cpus[i].group_cpu_type_cap;
if (block->cpus[i].weight == DED_WEIGHT)
cpu_inf->cpu_num_ded += 1;
else
cpu_inf->cpu_num_shd += 1;
}
if (this_lpar && capped) {
part_inf->cp.lpar_weight = weight_cp;
part_inf->ifl.lpar_weight = weight_ifl;
}
part_inf->cp.all_weight += weight_cp;
part_inf->ifl.all_weight += weight_ifl;
return (struct diag204_x_part_block *)&block->cpus[i];
}
static void fill_diag(struct sthyi_sctns *sctns)
{
int i, r, pages;
bool this_lpar;
void *diag204_buf;
void *diag224_buf = NULL;
struct diag204_x_info_blk_hdr *ti_hdr;
struct diag204_x_part_block *part_block;
struct diag204_x_phys_block *phys_block;
struct lpar_cpu_inf lpar_inf = {};
/* Errors are handled through the validity bits in the response. */
pages = diag204((unsigned long)DIAG204_SUBC_RSI |
(unsigned long)DIAG204_INFO_EXT, 0, NULL);
if (pages <= 0)
return;
diag204_buf = vmalloc(array_size(pages, PAGE_SIZE));
if (!diag204_buf)
return;
r = diag204((unsigned long)DIAG204_SUBC_STIB7 |
(unsigned long)DIAG204_INFO_EXT, pages, diag204_buf);
if (r < 0)
goto out;
diag224_buf = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
if (!diag224_buf || diag224(diag224_buf))
goto out;
ti_hdr = diag204_buf;
part_block = diag204_buf + sizeof(*ti_hdr);
for (i = 0; i < ti_hdr->npar; i++) {
/*
* For the calling lpar we also need to get the cpu
* caps and weights. The time information block header
* specifies the offset to the partition block of the
* caller lpar, so we know when we process its data.
*/
this_lpar = (void *)part_block - diag204_buf == ti_hdr->this_part;
part_block = lpar_cpu_inf(&lpar_inf, this_lpar, diag224_buf,
part_block);
}
phys_block = (struct diag204_x_phys_block *)part_block;
part_block = diag204_buf + ti_hdr->this_part;
if (part_block->hdr.mtid)
sctns->par.infpflg1 = PAR_MT_EN;
sctns->par.infpval1 |= PAR_GRP_VLD;
sctns->par.infplgcp = scale_cap(lpar_inf.cp.lpar_grp_cap);
sctns->par.infplgif = scale_cap(lpar_inf.ifl.lpar_grp_cap);
memcpy(sctns->par.infplgnm, part_block->hdr.hardware_group_name,
sizeof(sctns->par.infplgnm));
sctns->par.infpscps = lpar_inf.cp.cpu_num_shd;
sctns->par.infpdcps = lpar_inf.cp.cpu_num_ded;
sctns->par.infpsifl = lpar_inf.ifl.cpu_num_shd;
sctns->par.infpdifl = lpar_inf.ifl.cpu_num_ded;
sctns->par.infpval1 |= PAR_PCNT_VLD;
sctns->par.infpabcp = scale_cap(lpar_inf.cp.lpar_cap);
sctns->par.infpabif = scale_cap(lpar_inf.ifl.lpar_cap);
sctns->par.infpval1 |= PAR_ABS_VLD;
/*
* Everything below needs global performance data to be
* meaningful.
*/
if (!(ti_hdr->flags & DIAG204_LPAR_PHYS_FLG)) {
sctns->hdr.infhflg1 |= HDR_PERF_UNAV;
goto out;
}
fill_diag_mac(sctns, phys_block, diag224_buf);
if (lpar_inf.cp.lpar_weight) {
sctns->par.infpwbcp = sctns->mac.infmscps * 0x10000 *
lpar_inf.cp.lpar_weight / lpar_inf.cp.all_weight;
}
if (lpar_inf.ifl.lpar_weight) {
sctns->par.infpwbif = sctns->mac.infmsifl * 0x10000 *
lpar_inf.ifl.lpar_weight / lpar_inf.ifl.all_weight;
}
sctns->par.infpval1 |= PAR_WGHT_VLD;
out:
free_page((unsigned long)diag224_buf);
vfree(diag204_buf);
}
static int sthyi(u64 vaddr, u64 *rc)
{
register u64 code asm("0") = 0;
register u64 addr asm("2") = vaddr;
register u64 rcode asm("3");
int cc;
asm volatile(
".insn rre,0xB2560000,%[code],%[addr]\n"
"ipm %[cc]\n"
"srl %[cc],28\n"
: [cc] "=d" (cc), "=d" (rcode)
: [code] "d" (code), [addr] "a" (addr)
: "memory", "cc");
*rc = rcode;
return cc;
}
static int fill_dst(void *dst, u64 *rc)
{
struct sthyi_sctns *sctns = (struct sthyi_sctns *)dst;
/*
* If the facility is on, we don't want to emulate the instruction.
* We ask the hypervisor to provide the data.
*/
if (test_facility(74))
return sthyi((u64)dst, rc);
fill_hdr(sctns);
fill_stsi(sctns);
fill_diag(sctns);
*rc = 0;
return 0;
}
static int sthyi_init_cache(void)
{
if (sthyi_cache.info)
return 0;
sthyi_cache.info = (void *)get_zeroed_page(GFP_KERNEL);
if (!sthyi_cache.info)
return -ENOMEM;
sthyi_cache.end = jiffies - 1; /* expired */
return 0;
}
static int sthyi_update_cache(u64 *rc)
{
int r;
memset(sthyi_cache.info, 0, PAGE_SIZE);
r = fill_dst(sthyi_cache.info, rc);
if (r)
return r;
sthyi_cache.end = jiffies + CACHE_VALID_JIFFIES;
return r;
}
/*
* sthyi_fill - Fill page with data returned by the STHYI instruction
*
* @dst: Pointer to zeroed page
* @rc: Pointer for storing the return code of the instruction
*
* Fills the destination with system information returned by the STHYI
* instruction. The data is generated by emulation or execution of STHYI,
* if available. The return value is the condition code that would be
* returned, the rc parameter is the return code which is passed in
* register R2 + 1.
*/
int sthyi_fill(void *dst, u64 *rc)
{
int r;
mutex_lock(&sthyi_mutex);
r = sthyi_init_cache();
if (r)
goto out;
if (time_is_before_jiffies(sthyi_cache.end)) {
/* cache expired */
r = sthyi_update_cache(rc);
if (r)
goto out;
}
*rc = 0;
memcpy(dst, sthyi_cache.info, PAGE_SIZE);
out:
mutex_unlock(&sthyi_mutex);
return r;
}
EXPORT_SYMBOL_GPL(sthyi_fill);
SYSCALL_DEFINE4(s390_sthyi, unsigned long, function_code, void __user *, buffer,
u64 __user *, return_code, unsigned long, flags)
{
u64 sthyi_rc;
void *info;
int r;
if (flags)
return -EINVAL;
if (function_code != STHYI_FC_CP_IFL_CAP)
return -EOPNOTSUPP;
info = (void *)get_zeroed_page(GFP_KERNEL);
if (!info)
return -ENOMEM;
r = sthyi_fill(info, &sthyi_rc);
if (r < 0)
goto out;
if (return_code && put_user(sthyi_rc, return_code)) {
r = -EFAULT;
goto out;
}
if (copy_to_user(buffer, info, PAGE_SIZE))
r = -EFAULT;
out:
free_page((unsigned long)info);
return r;
}