linux-brain/arch/powerpc/mm/hugetlbpage.c
Christophe Leroy 723a44f228 powerpc/hugetlb: Fix 512k hugepages on 8xx with 16k page size
commit f2b67ef90b0d5eca0f2255e02cf2f620bc0ddcdb upstream.

Commit 55c8fc3f49 ("powerpc/8xx: reintroduce 16K pages with HW
assistance") redefined pte_t as a struct of 4 pte_basic_t, because
in 16K pages mode there are four identical entries in the
page table. But the size of hugepage tables is calculated based
of the size of (void *). Therefore, we end up with page tables
of size 1k instead of 4k for 512k pages.

As 512k hugepage tables are the same size as standard page tables,
ie 4k, use the standard page tables instead of PGT_CACHE tables.

Fixes: 3fb69c6a1a ("powerpc/8xx: Enable 512k hugepage support with HW assistance")
Cc: stable@vger.kernel.org # v5.0+
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/90ec56a2315be602494619ed0223bba3b0b8d619.1580997007.git.christophe.leroy@c-s.fr
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 17:22:18 +01:00

687 lines
16 KiB
C

/*
* PPC Huge TLB Page Support for Kernel.
*
* Copyright (C) 2003 David Gibson, IBM Corporation.
* Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
*
* Based on the IA-32 version:
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
*/
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
#include <linux/export.h>
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/moduleparam.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/kmemleak.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/setup.h>
#include <asm/hugetlb.h>
#include <asm/pte-walk.h>
bool hugetlb_disabled = false;
#define hugepd_none(hpd) (hpd_val(hpd) == 0)
#define PTE_T_ORDER (__builtin_ffs(sizeof(pte_t)) - __builtin_ffs(sizeof(void *)))
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
/*
* Only called for hugetlbfs pages, hence can ignore THP and the
* irq disabled walk.
*/
return __find_linux_pte(mm->pgd, addr, NULL, NULL);
}
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
unsigned long address, unsigned int pdshift,
unsigned int pshift, spinlock_t *ptl)
{
struct kmem_cache *cachep;
pte_t *new;
int i;
int num_hugepd;
if (pshift >= pdshift) {
cachep = PGT_CACHE(PTE_T_ORDER);
num_hugepd = 1 << (pshift - pdshift);
new = NULL;
} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
cachep = NULL;
num_hugepd = 1;
new = pte_alloc_one(mm);
} else {
cachep = PGT_CACHE(pdshift - pshift);
num_hugepd = 1;
new = NULL;
}
if (!cachep && !new) {
WARN_ONCE(1, "No page table cache created for hugetlb tables");
return -ENOMEM;
}
if (cachep)
new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
BUG_ON(pshift > HUGEPD_SHIFT_MASK);
BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
if (!new)
return -ENOMEM;
/*
* Make sure other cpus find the hugepd set only after a
* properly initialized page table is visible to them.
* For more details look for comment in __pte_alloc().
*/
smp_wmb();
spin_lock(ptl);
/*
* We have multiple higher-level entries that point to the same
* actual pte location. Fill in each as we go and backtrack on error.
* We need all of these so the DTLB pgtable walk code can find the
* right higher-level entry without knowing if it's a hugepage or not.
*/
for (i = 0; i < num_hugepd; i++, hpdp++) {
if (unlikely(!hugepd_none(*hpdp)))
break;
hugepd_populate(hpdp, new, pshift);
}
/* If we bailed from the for loop early, an error occurred, clean up */
if (i < num_hugepd) {
for (i = i - 1 ; i >= 0; i--, hpdp--)
*hpdp = __hugepd(0);
if (cachep)
kmem_cache_free(cachep, new);
else
pte_free(mm, new);
} else {
kmemleak_ignore(new);
}
spin_unlock(ptl);
return 0;
}
/*
* At this point we do the placement change only for BOOK3S 64. This would
* possibly work on other subarchs.
*/
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
pgd_t *pg;
pud_t *pu;
pmd_t *pm;
hugepd_t *hpdp = NULL;
unsigned pshift = __ffs(sz);
unsigned pdshift = PGDIR_SHIFT;
spinlock_t *ptl;
addr &= ~(sz-1);
pg = pgd_offset(mm, addr);
#ifdef CONFIG_PPC_BOOK3S_64
if (pshift == PGDIR_SHIFT)
/* 16GB huge page */
return (pte_t *) pg;
else if (pshift > PUD_SHIFT) {
/*
* We need to use hugepd table
*/
ptl = &mm->page_table_lock;
hpdp = (hugepd_t *)pg;
} else {
pdshift = PUD_SHIFT;
pu = pud_alloc(mm, pg, addr);
if (!pu)
return NULL;
if (pshift == PUD_SHIFT)
return (pte_t *)pu;
else if (pshift > PMD_SHIFT) {
ptl = pud_lockptr(mm, pu);
hpdp = (hugepd_t *)pu;
} else {
pdshift = PMD_SHIFT;
pm = pmd_alloc(mm, pu, addr);
if (!pm)
return NULL;
if (pshift == PMD_SHIFT)
/* 16MB hugepage */
return (pte_t *)pm;
else {
ptl = pmd_lockptr(mm, pm);
hpdp = (hugepd_t *)pm;
}
}
}
#else
if (pshift >= PGDIR_SHIFT) {
ptl = &mm->page_table_lock;
hpdp = (hugepd_t *)pg;
} else {
pdshift = PUD_SHIFT;
pu = pud_alloc(mm, pg, addr);
if (!pu)
return NULL;
if (pshift >= PUD_SHIFT) {
ptl = pud_lockptr(mm, pu);
hpdp = (hugepd_t *)pu;
} else {
pdshift = PMD_SHIFT;
pm = pmd_alloc(mm, pu, addr);
if (!pm)
return NULL;
ptl = pmd_lockptr(mm, pm);
hpdp = (hugepd_t *)pm;
}
}
#endif
if (!hpdp)
return NULL;
BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
pdshift, pshift, ptl))
return NULL;
return hugepte_offset(*hpdp, addr, pdshift);
}
#ifdef CONFIG_PPC_BOOK3S_64
/*
* Tracks gpages after the device tree is scanned and before the
* huge_boot_pages list is ready on pseries.
*/
#define MAX_NUMBER_GPAGES 1024
__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
__initdata static unsigned nr_gpages;
/*
* Build list of addresses of gigantic pages. This function is used in early
* boot before the buddy allocator is setup.
*/
void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
if (!addr)
return;
while (number_of_pages > 0) {
gpage_freearray[nr_gpages] = addr;
nr_gpages++;
number_of_pages--;
addr += page_size;
}
}
int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
{
struct huge_bootmem_page *m;
if (nr_gpages == 0)
return 0;
m = phys_to_virt(gpage_freearray[--nr_gpages]);
gpage_freearray[nr_gpages] = 0;
list_add(&m->list, &huge_boot_pages);
m->hstate = hstate;
return 1;
}
#endif
int __init alloc_bootmem_huge_page(struct hstate *h)
{
#ifdef CONFIG_PPC_BOOK3S_64
if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
return pseries_alloc_bootmem_huge_page(h);
#endif
return __alloc_bootmem_huge_page(h);
}
#ifndef CONFIG_PPC_BOOK3S_64
#define HUGEPD_FREELIST_SIZE \
((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
struct hugepd_freelist {
struct rcu_head rcu;
unsigned int index;
void *ptes[0];
};
static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
static void hugepd_free_rcu_callback(struct rcu_head *head)
{
struct hugepd_freelist *batch =
container_of(head, struct hugepd_freelist, rcu);
unsigned int i;
for (i = 0; i < batch->index; i++)
kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
free_page((unsigned long)batch);
}
static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
struct hugepd_freelist **batchp;
batchp = &get_cpu_var(hugepd_freelist_cur);
if (atomic_read(&tlb->mm->mm_users) < 2 ||
mm_is_thread_local(tlb->mm)) {
kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
put_cpu_var(hugepd_freelist_cur);
return;
}
if (*batchp == NULL) {
*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
(*batchp)->index = 0;
}
(*batchp)->ptes[(*batchp)->index++] = hugepte;
if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
*batchp = NULL;
}
put_cpu_var(hugepd_freelist_cur);
}
#else
static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
#endif
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
unsigned long start, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pte_t *hugepte = hugepd_page(*hpdp);
int i;
unsigned long pdmask = ~((1UL << pdshift) - 1);
unsigned int num_hugepd = 1;
unsigned int shift = hugepd_shift(*hpdp);
/* Note: On fsl the hpdp may be the first of several */
if (shift > pdshift)
num_hugepd = 1 << (shift - pdshift);
start &= pdmask;
if (start < floor)
return;
if (ceiling) {
ceiling &= pdmask;
if (! ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
for (i = 0; i < num_hugepd; i++, hpdp++)
*hpdp = __hugepd(0);
if (shift >= pdshift)
hugepd_free(tlb, hugepte);
else if (IS_ENABLED(CONFIG_PPC_8xx))
pgtable_free_tlb(tlb, hugepte, 0);
else
pgtable_free_tlb(tlb, hugepte,
get_hugepd_cache_index(pdshift - shift));
}
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pmd_t *pmd;
unsigned long next;
unsigned long start;
start = addr;
do {
unsigned long more;
pmd = pmd_offset(pud, addr);
next = pmd_addr_end(addr, end);
if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
/*
* if it is not hugepd pointer, we should already find
* it cleared.
*/
WARN_ON(!pmd_none_or_clear_bad(pmd));
continue;
}
/*
* Increment next by the size of the huge mapping since
* there may be more than one entry at this level for a
* single hugepage, but all of them point to
* the same kmem cache that holds the hugepte.
*/
more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
if (more > next)
next = more;
free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
addr, next, floor, ceiling);
} while (addr = next, addr != end);
start &= PUD_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PUD_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
pmd = pmd_offset(pud, start);
pud_clear(pud);
pmd_free_tlb(tlb, pmd, start);
mm_dec_nr_pmds(tlb->mm);
}
static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pud_t *pud;
unsigned long next;
unsigned long start;
start = addr;
do {
pud = pud_offset(pgd, addr);
next = pud_addr_end(addr, end);
if (!is_hugepd(__hugepd(pud_val(*pud)))) {
if (pud_none_or_clear_bad(pud))
continue;
hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
ceiling);
} else {
unsigned long more;
/*
* Increment next by the size of the huge mapping since
* there may be more than one entry at this level for a
* single hugepage, but all of them point to
* the same kmem cache that holds the hugepte.
*/
more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
if (more > next)
next = more;
free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
addr, next, floor, ceiling);
}
} while (addr = next, addr != end);
start &= PGDIR_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PGDIR_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
pud = pud_offset(pgd, start);
pgd_clear(pgd);
pud_free_tlb(tlb, pud, start);
mm_dec_nr_puds(tlb->mm);
}
/*
* This function frees user-level page tables of a process.
*/
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pgd_t *pgd;
unsigned long next;
/*
* Because there are a number of different possible pagetable
* layouts for hugepage ranges, we limit knowledge of how
* things should be laid out to the allocation path
* (huge_pte_alloc(), above). Everything else works out the
* structure as it goes from information in the hugepd
* pointers. That means that we can't here use the
* optimization used in the normal page free_pgd_range(), of
* checking whether we're actually covering a large enough
* range to have to do anything at the top level of the walk
* instead of at the bottom.
*
* To make sense of this, you should probably go read the big
* block comment at the top of the normal free_pgd_range(),
* too.
*/
do {
next = pgd_addr_end(addr, end);
pgd = pgd_offset(tlb->mm, addr);
if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
if (pgd_none_or_clear_bad(pgd))
continue;
hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
} else {
unsigned long more;
/*
* Increment next by the size of the huge mapping since
* there may be more than one entry at the pgd level
* for a single hugepage, but all of them point to the
* same kmem cache that holds the hugepte.
*/
more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
if (more > next)
next = more;
free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
addr, next, floor, ceiling);
}
} while (addr = next, addr != end);
}
struct page *follow_huge_pd(struct vm_area_struct *vma,
unsigned long address, hugepd_t hpd,
int flags, int pdshift)
{
pte_t *ptep;
spinlock_t *ptl;
struct page *page = NULL;
unsigned long mask;
int shift = hugepd_shift(hpd);
struct mm_struct *mm = vma->vm_mm;
retry:
/*
* hugepage directory entries are protected by mm->page_table_lock
* Use this instead of huge_pte_lockptr
*/
ptl = &mm->page_table_lock;
spin_lock(ptl);
ptep = hugepte_offset(hpd, address, pdshift);
if (pte_present(*ptep)) {
mask = (1UL << shift) - 1;
page = pte_page(*ptep);
page += ((address & mask) >> PAGE_SHIFT);
if (flags & FOLL_GET)
get_page(page);
} else {
if (is_hugetlb_entry_migration(*ptep)) {
spin_unlock(ptl);
__migration_entry_wait(mm, ptep, ptl);
goto retry;
}
}
spin_unlock(ptl);
return page;
}
#ifdef CONFIG_PPC_MM_SLICES
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct hstate *hstate = hstate_file(file);
int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
#ifdef CONFIG_PPC_RADIX_MMU
if (radix_enabled())
return radix__hugetlb_get_unmapped_area(file, addr, len,
pgoff, flags);
#endif
return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
}
#endif
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
/* With radix we don't use slice, so derive it from vma*/
if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
return 1UL << mmu_psize_to_shift(psize);
}
return vma_kernel_pagesize(vma);
}
static int __init add_huge_page_size(unsigned long long size)
{
int shift = __ffs(size);
int mmu_psize;
/* Check that it is a page size supported by the hardware and
* that it fits within pagetable and slice limits. */
if (size <= PAGE_SIZE || !is_power_of_2(size))
return -EINVAL;
mmu_psize = check_and_get_huge_psize(shift);
if (mmu_psize < 0)
return -EINVAL;
BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
/* Return if huge page size has already been setup */
if (size_to_hstate(size))
return 0;
hugetlb_add_hstate(shift - PAGE_SHIFT);
return 0;
}
static int __init hugepage_setup_sz(char *str)
{
unsigned long long size;
size = memparse(str, &str);
if (add_huge_page_size(size) != 0) {
hugetlb_bad_size();
pr_err("Invalid huge page size specified(%llu)\n", size);
}
return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);
static int __init hugetlbpage_init(void)
{
bool configured = false;
int psize;
if (hugetlb_disabled) {
pr_info("HugeTLB support is disabled!\n");
return 0;
}
if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
!mmu_has_feature(MMU_FTR_16M_PAGE))
return -ENODEV;
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
unsigned shift;
unsigned pdshift;
if (!mmu_psize_defs[psize].shift)
continue;
shift = mmu_psize_to_shift(psize);
#ifdef CONFIG_PPC_BOOK3S_64
if (shift > PGDIR_SHIFT)
continue;
else if (shift > PUD_SHIFT)
pdshift = PGDIR_SHIFT;
else if (shift > PMD_SHIFT)
pdshift = PUD_SHIFT;
else
pdshift = PMD_SHIFT;
#else
if (shift < PUD_SHIFT)
pdshift = PMD_SHIFT;
else if (shift < PGDIR_SHIFT)
pdshift = PUD_SHIFT;
else
pdshift = PGDIR_SHIFT;
#endif
if (add_huge_page_size(1ULL << shift) < 0)
continue;
/*
* if we have pdshift and shift value same, we don't
* use pgt cache for hugepd.
*/
if (pdshift > shift) {
if (!IS_ENABLED(CONFIG_PPC_8xx))
pgtable_cache_add(pdshift - shift);
} else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
IS_ENABLED(CONFIG_PPC_8xx)) {
pgtable_cache_add(PTE_T_ORDER);
}
configured = true;
}
if (configured) {
if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
hugetlbpage_init_default();
} else
pr_info("Failed to initialize. Disabling HugeTLB");
return 0;
}
arch_initcall(hugetlbpage_init);
void flush_dcache_icache_hugepage(struct page *page)
{
int i;
void *start;
BUG_ON(!PageCompound(page));
for (i = 0; i < compound_nr(page); i++) {
if (!PageHighMem(page)) {
__flush_dcache_icache(page_address(page+i));
} else {
start = kmap_atomic(page+i);
__flush_dcache_icache(start);
kunmap_atomic(start);
}
}
}