linux-brain/arch/powerpc/kvm/booke.c
Thomas Gleixner d94d71cb45 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 266
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not write to the free
  software foundation 51 franklin street fifth floor boston ma 02110
  1301 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 67 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141333.953658117@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:30:28 +02:00

2200 lines
56 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
*
* Copyright IBM Corp. 2007
* Copyright 2010-2011 Freescale Semiconductor, Inc.
*
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
* Scott Wood <scottwood@freescale.com>
* Varun Sethi <varun.sethi@freescale.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/gfp.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <asm/cputable.h>
#include <linux/uaccess.h>
#include <asm/kvm_ppc.h>
#include <asm/cacheflush.h>
#include <asm/dbell.h>
#include <asm/hw_irq.h>
#include <asm/irq.h>
#include <asm/time.h>
#include "timing.h"
#include "booke.h"
#define CREATE_TRACE_POINTS
#include "trace_booke.h"
unsigned long kvmppc_booke_handlers;
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "mmio", VCPU_STAT(mmio_exits) },
{ "sig", VCPU_STAT(signal_exits) },
{ "itlb_r", VCPU_STAT(itlb_real_miss_exits) },
{ "itlb_v", VCPU_STAT(itlb_virt_miss_exits) },
{ "dtlb_r", VCPU_STAT(dtlb_real_miss_exits) },
{ "dtlb_v", VCPU_STAT(dtlb_virt_miss_exits) },
{ "sysc", VCPU_STAT(syscall_exits) },
{ "isi", VCPU_STAT(isi_exits) },
{ "dsi", VCPU_STAT(dsi_exits) },
{ "inst_emu", VCPU_STAT(emulated_inst_exits) },
{ "dec", VCPU_STAT(dec_exits) },
{ "ext_intr", VCPU_STAT(ext_intr_exits) },
{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "doorbell", VCPU_STAT(dbell_exits) },
{ "guest doorbell", VCPU_STAT(gdbell_exits) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ NULL }
};
/* TODO: use vcpu_printf() */
void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu)
{
int i;
printk("pc: %08lx msr: %08llx\n", vcpu->arch.regs.nip,
vcpu->arch.shared->msr);
printk("lr: %08lx ctr: %08lx\n", vcpu->arch.regs.link,
vcpu->arch.regs.ctr);
printk("srr0: %08llx srr1: %08llx\n", vcpu->arch.shared->srr0,
vcpu->arch.shared->srr1);
printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions);
for (i = 0; i < 32; i += 4) {
printk("gpr%02d: %08lx %08lx %08lx %08lx\n", i,
kvmppc_get_gpr(vcpu, i),
kvmppc_get_gpr(vcpu, i+1),
kvmppc_get_gpr(vcpu, i+2),
kvmppc_get_gpr(vcpu, i+3));
}
}
#ifdef CONFIG_SPE
void kvmppc_vcpu_disable_spe(struct kvm_vcpu *vcpu)
{
preempt_disable();
enable_kernel_spe();
kvmppc_save_guest_spe(vcpu);
disable_kernel_spe();
vcpu->arch.shadow_msr &= ~MSR_SPE;
preempt_enable();
}
static void kvmppc_vcpu_enable_spe(struct kvm_vcpu *vcpu)
{
preempt_disable();
enable_kernel_spe();
kvmppc_load_guest_spe(vcpu);
disable_kernel_spe();
vcpu->arch.shadow_msr |= MSR_SPE;
preempt_enable();
}
static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.shared->msr & MSR_SPE) {
if (!(vcpu->arch.shadow_msr & MSR_SPE))
kvmppc_vcpu_enable_spe(vcpu);
} else if (vcpu->arch.shadow_msr & MSR_SPE) {
kvmppc_vcpu_disable_spe(vcpu);
}
}
#else
static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
{
}
#endif
/*
* Load up guest vcpu FP state if it's needed.
* It also set the MSR_FP in thread so that host know
* we're holding FPU, and then host can help to save
* guest vcpu FP state if other threads require to use FPU.
* This simulates an FP unavailable fault.
*
* It requires to be called with preemption disabled.
*/
static inline void kvmppc_load_guest_fp(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PPC_FPU
if (!(current->thread.regs->msr & MSR_FP)) {
enable_kernel_fp();
load_fp_state(&vcpu->arch.fp);
disable_kernel_fp();
current->thread.fp_save_area = &vcpu->arch.fp;
current->thread.regs->msr |= MSR_FP;
}
#endif
}
/*
* Save guest vcpu FP state into thread.
* It requires to be called with preemption disabled.
*/
static inline void kvmppc_save_guest_fp(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PPC_FPU
if (current->thread.regs->msr & MSR_FP)
giveup_fpu(current);
current->thread.fp_save_area = NULL;
#endif
}
static void kvmppc_vcpu_sync_fpu(struct kvm_vcpu *vcpu)
{
#if defined(CONFIG_PPC_FPU) && !defined(CONFIG_KVM_BOOKE_HV)
/* We always treat the FP bit as enabled from the host
perspective, so only need to adjust the shadow MSR */
vcpu->arch.shadow_msr &= ~MSR_FP;
vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_FP;
#endif
}
/*
* Simulate AltiVec unavailable fault to load guest state
* from thread to AltiVec unit.
* It requires to be called with preemption disabled.
*/
static inline void kvmppc_load_guest_altivec(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC)) {
if (!(current->thread.regs->msr & MSR_VEC)) {
enable_kernel_altivec();
load_vr_state(&vcpu->arch.vr);
disable_kernel_altivec();
current->thread.vr_save_area = &vcpu->arch.vr;
current->thread.regs->msr |= MSR_VEC;
}
}
#endif
}
/*
* Save guest vcpu AltiVec state into thread.
* It requires to be called with preemption disabled.
*/
static inline void kvmppc_save_guest_altivec(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC)) {
if (current->thread.regs->msr & MSR_VEC)
giveup_altivec(current);
current->thread.vr_save_area = NULL;
}
#endif
}
static void kvmppc_vcpu_sync_debug(struct kvm_vcpu *vcpu)
{
/* Synchronize guest's desire to get debug interrupts into shadow MSR */
#ifndef CONFIG_KVM_BOOKE_HV
vcpu->arch.shadow_msr &= ~MSR_DE;
vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_DE;
#endif
/* Force enable debug interrupts when user space wants to debug */
if (vcpu->guest_debug) {
#ifdef CONFIG_KVM_BOOKE_HV
/*
* Since there is no shadow MSR, sync MSR_DE into the guest
* visible MSR.
*/
vcpu->arch.shared->msr |= MSR_DE;
#else
vcpu->arch.shadow_msr |= MSR_DE;
vcpu->arch.shared->msr &= ~MSR_DE;
#endif
}
}
/*
* Helper function for "full" MSR writes. No need to call this if only
* EE/CE/ME/DE/RI are changing.
*/
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr)
{
u32 old_msr = vcpu->arch.shared->msr;
#ifdef CONFIG_KVM_BOOKE_HV
new_msr |= MSR_GS;
#endif
vcpu->arch.shared->msr = new_msr;
kvmppc_mmu_msr_notify(vcpu, old_msr);
kvmppc_vcpu_sync_spe(vcpu);
kvmppc_vcpu_sync_fpu(vcpu);
kvmppc_vcpu_sync_debug(vcpu);
}
static void kvmppc_booke_queue_irqprio(struct kvm_vcpu *vcpu,
unsigned int priority)
{
trace_kvm_booke_queue_irqprio(vcpu, priority);
set_bit(priority, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_queue_dtlb_miss(struct kvm_vcpu *vcpu,
ulong dear_flags, ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DTLB_MISS);
}
void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu,
ulong dear_flags, ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DATA_STORAGE);
}
void kvmppc_core_queue_itlb_miss(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS);
}
void kvmppc_core_queue_inst_storage(struct kvm_vcpu *vcpu, ulong esr_flags)
{
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_INST_STORAGE);
}
static void kvmppc_core_queue_alignment(struct kvm_vcpu *vcpu, ulong dear_flags,
ulong esr_flags)
{
vcpu->arch.queued_dear = dear_flags;
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALIGNMENT);
}
void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong esr_flags)
{
vcpu->arch.queued_esr = esr_flags;
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_PROGRAM);
}
void kvmppc_core_queue_fpunavail(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL);
}
#ifdef CONFIG_ALTIVEC
void kvmppc_core_queue_vec_unavail(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_UNAVAIL);
}
#endif
void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DECREMENTER);
}
int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
return test_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
unsigned int prio = BOOKE_IRQPRIO_EXTERNAL;
if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
prio = BOOKE_IRQPRIO_EXTERNAL_LEVEL;
kvmppc_booke_queue_irqprio(vcpu, prio);
}
void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
clear_bit(BOOKE_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions);
}
static void kvmppc_core_queue_watchdog(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_WATCHDOG);
}
static void kvmppc_core_dequeue_watchdog(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_WATCHDOG, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_queue_debug(struct kvm_vcpu *vcpu)
{
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DEBUG);
}
void kvmppc_core_dequeue_debug(struct kvm_vcpu *vcpu)
{
clear_bit(BOOKE_IRQPRIO_DEBUG, &vcpu->arch.pending_exceptions);
}
static void set_guest_srr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
kvmppc_set_srr0(vcpu, srr0);
kvmppc_set_srr1(vcpu, srr1);
}
static void set_guest_csrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
vcpu->arch.csrr0 = srr0;
vcpu->arch.csrr1 = srr1;
}
static void set_guest_dsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) {
vcpu->arch.dsrr0 = srr0;
vcpu->arch.dsrr1 = srr1;
} else {
set_guest_csrr(vcpu, srr0, srr1);
}
}
static void set_guest_mcsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
vcpu->arch.mcsrr0 = srr0;
vcpu->arch.mcsrr1 = srr1;
}
/* Deliver the interrupt of the corresponding priority, if possible. */
static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu,
unsigned int priority)
{
int allowed = 0;
ulong msr_mask = 0;
bool update_esr = false, update_dear = false, update_epr = false;
ulong crit_raw = vcpu->arch.shared->critical;
ulong crit_r1 = kvmppc_get_gpr(vcpu, 1);
bool crit;
bool keep_irq = false;
enum int_class int_class;
ulong new_msr = vcpu->arch.shared->msr;
/* Truncate crit indicators in 32 bit mode */
if (!(vcpu->arch.shared->msr & MSR_SF)) {
crit_raw &= 0xffffffff;
crit_r1 &= 0xffffffff;
}
/* Critical section when crit == r1 */
crit = (crit_raw == crit_r1);
/* ... and we're in supervisor mode */
crit = crit && !(vcpu->arch.shared->msr & MSR_PR);
if (priority == BOOKE_IRQPRIO_EXTERNAL_LEVEL) {
priority = BOOKE_IRQPRIO_EXTERNAL;
keep_irq = true;
}
if ((priority == BOOKE_IRQPRIO_EXTERNAL) && vcpu->arch.epr_flags)
update_epr = true;
switch (priority) {
case BOOKE_IRQPRIO_DTLB_MISS:
case BOOKE_IRQPRIO_DATA_STORAGE:
case BOOKE_IRQPRIO_ALIGNMENT:
update_dear = true;
/* fall through */
case BOOKE_IRQPRIO_INST_STORAGE:
case BOOKE_IRQPRIO_PROGRAM:
update_esr = true;
/* fall through */
case BOOKE_IRQPRIO_ITLB_MISS:
case BOOKE_IRQPRIO_SYSCALL:
case BOOKE_IRQPRIO_FP_UNAVAIL:
#ifdef CONFIG_SPE_POSSIBLE
case BOOKE_IRQPRIO_SPE_UNAVAIL:
case BOOKE_IRQPRIO_SPE_FP_DATA:
case BOOKE_IRQPRIO_SPE_FP_ROUND:
#endif
#ifdef CONFIG_ALTIVEC
case BOOKE_IRQPRIO_ALTIVEC_UNAVAIL:
case BOOKE_IRQPRIO_ALTIVEC_ASSIST:
#endif
case BOOKE_IRQPRIO_AP_UNAVAIL:
allowed = 1;
msr_mask = MSR_CE | MSR_ME | MSR_DE;
int_class = INT_CLASS_NONCRIT;
break;
case BOOKE_IRQPRIO_WATCHDOG:
case BOOKE_IRQPRIO_CRITICAL:
case BOOKE_IRQPRIO_DBELL_CRIT:
allowed = vcpu->arch.shared->msr & MSR_CE;
allowed = allowed && !crit;
msr_mask = MSR_ME;
int_class = INT_CLASS_CRIT;
break;
case BOOKE_IRQPRIO_MACHINE_CHECK:
allowed = vcpu->arch.shared->msr & MSR_ME;
allowed = allowed && !crit;
int_class = INT_CLASS_MC;
break;
case BOOKE_IRQPRIO_DECREMENTER:
case BOOKE_IRQPRIO_FIT:
keep_irq = true;
/* fall through */
case BOOKE_IRQPRIO_EXTERNAL:
case BOOKE_IRQPRIO_DBELL:
allowed = vcpu->arch.shared->msr & MSR_EE;
allowed = allowed && !crit;
msr_mask = MSR_CE | MSR_ME | MSR_DE;
int_class = INT_CLASS_NONCRIT;
break;
case BOOKE_IRQPRIO_DEBUG:
allowed = vcpu->arch.shared->msr & MSR_DE;
allowed = allowed && !crit;
msr_mask = MSR_ME;
if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
int_class = INT_CLASS_DBG;
else
int_class = INT_CLASS_CRIT;
break;
}
if (allowed) {
switch (int_class) {
case INT_CLASS_NONCRIT:
set_guest_srr(vcpu, vcpu->arch.regs.nip,
vcpu->arch.shared->msr);
break;
case INT_CLASS_CRIT:
set_guest_csrr(vcpu, vcpu->arch.regs.nip,
vcpu->arch.shared->msr);
break;
case INT_CLASS_DBG:
set_guest_dsrr(vcpu, vcpu->arch.regs.nip,
vcpu->arch.shared->msr);
break;
case INT_CLASS_MC:
set_guest_mcsrr(vcpu, vcpu->arch.regs.nip,
vcpu->arch.shared->msr);
break;
}
vcpu->arch.regs.nip = vcpu->arch.ivpr |
vcpu->arch.ivor[priority];
if (update_esr == true)
kvmppc_set_esr(vcpu, vcpu->arch.queued_esr);
if (update_dear == true)
kvmppc_set_dar(vcpu, vcpu->arch.queued_dear);
if (update_epr == true) {
if (vcpu->arch.epr_flags & KVMPPC_EPR_USER)
kvm_make_request(KVM_REQ_EPR_EXIT, vcpu);
else if (vcpu->arch.epr_flags & KVMPPC_EPR_KERNEL) {
BUG_ON(vcpu->arch.irq_type != KVMPPC_IRQ_MPIC);
kvmppc_mpic_set_epr(vcpu);
}
}
new_msr &= msr_mask;
#if defined(CONFIG_64BIT)
if (vcpu->arch.epcr & SPRN_EPCR_ICM)
new_msr |= MSR_CM;
#endif
kvmppc_set_msr(vcpu, new_msr);
if (!keep_irq)
clear_bit(priority, &vcpu->arch.pending_exceptions);
}
#ifdef CONFIG_KVM_BOOKE_HV
/*
* If an interrupt is pending but masked, raise a guest doorbell
* so that we are notified when the guest enables the relevant
* MSR bit.
*/
if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_EE)
kvmppc_set_pending_interrupt(vcpu, INT_CLASS_NONCRIT);
if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_CE)
kvmppc_set_pending_interrupt(vcpu, INT_CLASS_CRIT);
if (vcpu->arch.pending_exceptions & BOOKE_IRQPRIO_MACHINE_CHECK)
kvmppc_set_pending_interrupt(vcpu, INT_CLASS_MC);
#endif
return allowed;
}
/*
* Return the number of jiffies until the next timeout. If the timeout is
* longer than the NEXT_TIMER_MAX_DELTA, then return NEXT_TIMER_MAX_DELTA
* because the larger value can break the timer APIs.
*/
static unsigned long watchdog_next_timeout(struct kvm_vcpu *vcpu)
{
u64 tb, wdt_tb, wdt_ticks = 0;
u64 nr_jiffies = 0;
u32 period = TCR_GET_WP(vcpu->arch.tcr);
wdt_tb = 1ULL << (63 - period);
tb = get_tb();
/*
* The watchdog timeout will hapeen when TB bit corresponding
* to watchdog will toggle from 0 to 1.
*/
if (tb & wdt_tb)
wdt_ticks = wdt_tb;
wdt_ticks += wdt_tb - (tb & (wdt_tb - 1));
/* Convert timebase ticks to jiffies */
nr_jiffies = wdt_ticks;
if (do_div(nr_jiffies, tb_ticks_per_jiffy))
nr_jiffies++;
return min_t(unsigned long long, nr_jiffies, NEXT_TIMER_MAX_DELTA);
}
static void arm_next_watchdog(struct kvm_vcpu *vcpu)
{
unsigned long nr_jiffies;
unsigned long flags;
/*
* If TSR_ENW and TSR_WIS are not set then no need to exit to
* userspace, so clear the KVM_REQ_WATCHDOG request.
*/
if ((vcpu->arch.tsr & (TSR_ENW | TSR_WIS)) != (TSR_ENW | TSR_WIS))
kvm_clear_request(KVM_REQ_WATCHDOG, vcpu);
spin_lock_irqsave(&vcpu->arch.wdt_lock, flags);
nr_jiffies = watchdog_next_timeout(vcpu);
/*
* If the number of jiffies of watchdog timer >= NEXT_TIMER_MAX_DELTA
* then do not run the watchdog timer as this can break timer APIs.
*/
if (nr_jiffies < NEXT_TIMER_MAX_DELTA)
mod_timer(&vcpu->arch.wdt_timer, jiffies + nr_jiffies);
else
del_timer(&vcpu->arch.wdt_timer);
spin_unlock_irqrestore(&vcpu->arch.wdt_lock, flags);
}
void kvmppc_watchdog_func(struct timer_list *t)
{
struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.wdt_timer);
u32 tsr, new_tsr;
int final;
do {
new_tsr = tsr = vcpu->arch.tsr;
final = 0;
/* Time out event */
if (tsr & TSR_ENW) {
if (tsr & TSR_WIS)
final = 1;
else
new_tsr = tsr | TSR_WIS;
} else {
new_tsr = tsr | TSR_ENW;
}
} while (cmpxchg(&vcpu->arch.tsr, tsr, new_tsr) != tsr);
if (new_tsr & TSR_WIS) {
smp_wmb();
kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
kvm_vcpu_kick(vcpu);
}
/*
* If this is final watchdog expiry and some action is required
* then exit to userspace.
*/
if (final && (vcpu->arch.tcr & TCR_WRC_MASK) &&
vcpu->arch.watchdog_enabled) {
smp_wmb();
kvm_make_request(KVM_REQ_WATCHDOG, vcpu);
kvm_vcpu_kick(vcpu);
}
/*
* Stop running the watchdog timer after final expiration to
* prevent the host from being flooded with timers if the
* guest sets a short period.
* Timers will resume when TSR/TCR is updated next time.
*/
if (!final)
arm_next_watchdog(vcpu);
}
static void update_timer_ints(struct kvm_vcpu *vcpu)
{
if ((vcpu->arch.tcr & TCR_DIE) && (vcpu->arch.tsr & TSR_DIS))
kvmppc_core_queue_dec(vcpu);
else
kvmppc_core_dequeue_dec(vcpu);
if ((vcpu->arch.tcr & TCR_WIE) && (vcpu->arch.tsr & TSR_WIS))
kvmppc_core_queue_watchdog(vcpu);
else
kvmppc_core_dequeue_watchdog(vcpu);
}
static void kvmppc_core_check_exceptions(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned int priority;
priority = __ffs(*pending);
while (priority < BOOKE_IRQPRIO_MAX) {
if (kvmppc_booke_irqprio_deliver(vcpu, priority))
break;
priority = find_next_bit(pending,
BITS_PER_BYTE * sizeof(*pending),
priority + 1);
}
/* Tell the guest about our interrupt status */
vcpu->arch.shared->int_pending = !!*pending;
}
/* Check pending exceptions and deliver one, if possible. */
int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
{
int r = 0;
WARN_ON_ONCE(!irqs_disabled());
kvmppc_core_check_exceptions(vcpu);
if (kvm_request_pending(vcpu)) {
/* Exception delivery raised request; start over */
return 1;
}
if (vcpu->arch.shared->msr & MSR_WE) {
local_irq_enable();
kvm_vcpu_block(vcpu);
kvm_clear_request(KVM_REQ_UNHALT, vcpu);
hard_irq_disable();
kvmppc_set_exit_type(vcpu, EMULATED_MTMSRWE_EXITS);
r = 1;
};
return r;
}
int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
{
int r = 1; /* Indicate we want to get back into the guest */
if (kvm_check_request(KVM_REQ_PENDING_TIMER, vcpu))
update_timer_ints(vcpu);
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
kvmppc_core_flush_tlb(vcpu);
#endif
if (kvm_check_request(KVM_REQ_WATCHDOG, vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_WATCHDOG;
r = 0;
}
if (kvm_check_request(KVM_REQ_EPR_EXIT, vcpu)) {
vcpu->run->epr.epr = 0;
vcpu->arch.epr_needed = true;
vcpu->run->exit_reason = KVM_EXIT_EPR;
r = 0;
}
return r;
}
int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int ret, s;
struct debug_reg debug;
if (!vcpu->arch.sane) {
kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
return -EINVAL;
}
s = kvmppc_prepare_to_enter(vcpu);
if (s <= 0) {
ret = s;
goto out;
}
/* interrupts now hard-disabled */
#ifdef CONFIG_PPC_FPU
/* Save userspace FPU state in stack */
enable_kernel_fp();
/*
* Since we can't trap on MSR_FP in GS-mode, we consider the guest
* as always using the FPU.
*/
kvmppc_load_guest_fp(vcpu);
#endif
#ifdef CONFIG_ALTIVEC
/* Save userspace AltiVec state in stack */
if (cpu_has_feature(CPU_FTR_ALTIVEC))
enable_kernel_altivec();
/*
* Since we can't trap on MSR_VEC in GS-mode, we consider the guest
* as always using the AltiVec.
*/
kvmppc_load_guest_altivec(vcpu);
#endif
/* Switch to guest debug context */
debug = vcpu->arch.dbg_reg;
switch_booke_debug_regs(&debug);
debug = current->thread.debug;
current->thread.debug = vcpu->arch.dbg_reg;
vcpu->arch.pgdir = current->mm->pgd;
kvmppc_fix_ee_before_entry();
ret = __kvmppc_vcpu_run(kvm_run, vcpu);
/* No need for guest_exit. It's done in handle_exit.
We also get here with interrupts enabled. */
/* Switch back to user space debug context */
switch_booke_debug_regs(&debug);
current->thread.debug = debug;
#ifdef CONFIG_PPC_FPU
kvmppc_save_guest_fp(vcpu);
#endif
#ifdef CONFIG_ALTIVEC
kvmppc_save_guest_altivec(vcpu);
#endif
out:
vcpu->mode = OUTSIDE_GUEST_MODE;
return ret;
}
static int emulation_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
enum emulation_result er;
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
/* don't overwrite subtypes, just account kvm_stats */
kvmppc_account_exit_stat(vcpu, EMULATED_INST_EXITS);
/* Future optimization: only reload non-volatiles if
* they were actually modified by emulation. */
return RESUME_GUEST_NV;
case EMULATE_AGAIN:
return RESUME_GUEST;
case EMULATE_FAIL:
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
__func__, vcpu->arch.regs.nip, vcpu->arch.last_inst);
/* For debugging, encode the failing instruction and
* report it to userspace. */
run->hw.hardware_exit_reason = ~0ULL << 32;
run->hw.hardware_exit_reason |= vcpu->arch.last_inst;
kvmppc_core_queue_program(vcpu, ESR_PIL);
return RESUME_HOST;
case EMULATE_EXIT_USER:
return RESUME_HOST;
default:
BUG();
}
}
static int kvmppc_handle_debug(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
struct debug_reg *dbg_reg = &(vcpu->arch.dbg_reg);
u32 dbsr = vcpu->arch.dbsr;
if (vcpu->guest_debug == 0) {
/*
* Debug resources belong to Guest.
* Imprecise debug event is not injected
*/
if (dbsr & DBSR_IDE) {
dbsr &= ~DBSR_IDE;
if (!dbsr)
return RESUME_GUEST;
}
if (dbsr && (vcpu->arch.shared->msr & MSR_DE) &&
(vcpu->arch.dbg_reg.dbcr0 & DBCR0_IDM))
kvmppc_core_queue_debug(vcpu);
/* Inject a program interrupt if trap debug is not allowed */
if ((dbsr & DBSR_TIE) && !(vcpu->arch.shared->msr & MSR_DE))
kvmppc_core_queue_program(vcpu, ESR_PTR);
return RESUME_GUEST;
}
/*
* Debug resource owned by userspace.
* Clear guest dbsr (vcpu->arch.dbsr)
*/
vcpu->arch.dbsr = 0;
run->debug.arch.status = 0;
run->debug.arch.address = vcpu->arch.regs.nip;
if (dbsr & (DBSR_IAC1 | DBSR_IAC2 | DBSR_IAC3 | DBSR_IAC4)) {
run->debug.arch.status |= KVMPPC_DEBUG_BREAKPOINT;
} else {
if (dbsr & (DBSR_DAC1W | DBSR_DAC2W))
run->debug.arch.status |= KVMPPC_DEBUG_WATCH_WRITE;
else if (dbsr & (DBSR_DAC1R | DBSR_DAC2R))
run->debug.arch.status |= KVMPPC_DEBUG_WATCH_READ;
if (dbsr & (DBSR_DAC1R | DBSR_DAC1W))
run->debug.arch.address = dbg_reg->dac1;
else if (dbsr & (DBSR_DAC2R | DBSR_DAC2W))
run->debug.arch.address = dbg_reg->dac2;
}
return RESUME_HOST;
}
static void kvmppc_fill_pt_regs(struct pt_regs *regs)
{
ulong r1, ip, msr, lr;
asm("mr %0, 1" : "=r"(r1));
asm("mflr %0" : "=r"(lr));
asm("mfmsr %0" : "=r"(msr));
asm("bl 1f; 1: mflr %0" : "=r"(ip));
memset(regs, 0, sizeof(*regs));
regs->gpr[1] = r1;
regs->nip = ip;
regs->msr = msr;
regs->link = lr;
}
/*
* For interrupts needed to be handled by host interrupt handlers,
* corresponding host handler are called from here in similar way
* (but not exact) as they are called from low level handler
* (such as from arch/powerpc/kernel/head_fsl_booke.S).
*/
static void kvmppc_restart_interrupt(struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
struct pt_regs regs;
switch (exit_nr) {
case BOOKE_INTERRUPT_EXTERNAL:
kvmppc_fill_pt_regs(&regs);
do_IRQ(&regs);
break;
case BOOKE_INTERRUPT_DECREMENTER:
kvmppc_fill_pt_regs(&regs);
timer_interrupt(&regs);
break;
#if defined(CONFIG_PPC_DOORBELL)
case BOOKE_INTERRUPT_DOORBELL:
kvmppc_fill_pt_regs(&regs);
doorbell_exception(&regs);
break;
#endif
case BOOKE_INTERRUPT_MACHINE_CHECK:
/* FIXME */
break;
case BOOKE_INTERRUPT_PERFORMANCE_MONITOR:
kvmppc_fill_pt_regs(&regs);
performance_monitor_exception(&regs);
break;
case BOOKE_INTERRUPT_WATCHDOG:
kvmppc_fill_pt_regs(&regs);
#ifdef CONFIG_BOOKE_WDT
WatchdogException(&regs);
#else
unknown_exception(&regs);
#endif
break;
case BOOKE_INTERRUPT_CRITICAL:
kvmppc_fill_pt_regs(&regs);
unknown_exception(&regs);
break;
case BOOKE_INTERRUPT_DEBUG:
/* Save DBSR before preemption is enabled */
vcpu->arch.dbsr = mfspr(SPRN_DBSR);
kvmppc_clear_dbsr();
break;
}
}
static int kvmppc_resume_inst_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
enum emulation_result emulated, u32 last_inst)
{
switch (emulated) {
case EMULATE_AGAIN:
return RESUME_GUEST;
case EMULATE_FAIL:
pr_debug("%s: load instruction from guest address %lx failed\n",
__func__, vcpu->arch.regs.nip);
/* For debugging, encode the failing instruction and
* report it to userspace. */
run->hw.hardware_exit_reason = ~0ULL << 32;
run->hw.hardware_exit_reason |= last_inst;
kvmppc_core_queue_program(vcpu, ESR_PIL);
return RESUME_HOST;
default:
BUG();
}
}
/**
* kvmppc_handle_exit
*
* Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
*/
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
int r = RESUME_HOST;
int s;
int idx;
u32 last_inst = KVM_INST_FETCH_FAILED;
enum emulation_result emulated = EMULATE_DONE;
/* update before a new last_exit_type is rewritten */
kvmppc_update_timing_stats(vcpu);
/* restart interrupts if they were meant for the host */
kvmppc_restart_interrupt(vcpu, exit_nr);
/*
* get last instruction before being preempted
* TODO: for e6500 check also BOOKE_INTERRUPT_LRAT_ERROR & ESR_DATA
*/
switch (exit_nr) {
case BOOKE_INTERRUPT_DATA_STORAGE:
case BOOKE_INTERRUPT_DTLB_MISS:
case BOOKE_INTERRUPT_HV_PRIV:
emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
break;
case BOOKE_INTERRUPT_PROGRAM:
/* SW breakpoints arrive as illegal instructions on HV */
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
break;
default:
break;
}
trace_kvm_exit(exit_nr, vcpu);
guest_exit_irqoff();
local_irq_enable();
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
if (emulated != EMULATE_DONE) {
r = kvmppc_resume_inst_load(run, vcpu, emulated, last_inst);
goto out;
}
switch (exit_nr) {
case BOOKE_INTERRUPT_MACHINE_CHECK:
printk("MACHINE CHECK: %lx\n", mfspr(SPRN_MCSR));
kvmppc_dump_vcpu(vcpu);
/* For debugging, send invalid exit reason to user space */
run->hw.hardware_exit_reason = ~1ULL << 32;
run->hw.hardware_exit_reason |= mfspr(SPRN_MCSR);
r = RESUME_HOST;
break;
case BOOKE_INTERRUPT_EXTERNAL:
kvmppc_account_exit(vcpu, EXT_INTR_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_DECREMENTER:
kvmppc_account_exit(vcpu, DEC_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_WATCHDOG:
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_DOORBELL:
kvmppc_account_exit(vcpu, DBELL_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_GUEST_DBELL_CRIT:
kvmppc_account_exit(vcpu, GDBELL_EXITS);
/*
* We are here because there is a pending guest interrupt
* which could not be delivered as MSR_CE or MSR_ME was not
* set. Once we break from here we will retry delivery.
*/
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_GUEST_DBELL:
kvmppc_account_exit(vcpu, GDBELL_EXITS);
/*
* We are here because there is a pending guest interrupt
* which could not be delivered as MSR_EE was not set. Once
* we break from here we will retry delivery.
*/
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_PERFORMANCE_MONITOR:
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_HV_PRIV:
r = emulation_exit(run, vcpu);
break;
case BOOKE_INTERRUPT_PROGRAM:
if ((vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) &&
(last_inst == KVMPPC_INST_SW_BREAKPOINT)) {
/*
* We are here because of an SW breakpoint instr,
* so lets return to host to handle.
*/
r = kvmppc_handle_debug(run, vcpu);
run->exit_reason = KVM_EXIT_DEBUG;
kvmppc_account_exit(vcpu, DEBUG_EXITS);
break;
}
if (vcpu->arch.shared->msr & (MSR_PR | MSR_GS)) {
/*
* Program traps generated by user-level software must
* be handled by the guest kernel.
*
* In GS mode, hypervisor privileged instructions trap
* on BOOKE_INTERRUPT_HV_PRIV, not here, so these are
* actual program interrupts, handled by the guest.
*/
kvmppc_core_queue_program(vcpu, vcpu->arch.fault_esr);
r = RESUME_GUEST;
kvmppc_account_exit(vcpu, USR_PR_INST);
break;
}
r = emulation_exit(run, vcpu);
break;
case BOOKE_INTERRUPT_FP_UNAVAIL:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL);
kvmppc_account_exit(vcpu, FP_UNAVAIL);
r = RESUME_GUEST;
break;
#ifdef CONFIG_SPE
case BOOKE_INTERRUPT_SPE_UNAVAIL: {
if (vcpu->arch.shared->msr & MSR_SPE)
kvmppc_vcpu_enable_spe(vcpu);
else
kvmppc_booke_queue_irqprio(vcpu,
BOOKE_IRQPRIO_SPE_UNAVAIL);
r = RESUME_GUEST;
break;
}
case BOOKE_INTERRUPT_SPE_FP_DATA:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_DATA);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_SPE_FP_ROUND:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_ROUND);
r = RESUME_GUEST;
break;
#elif defined(CONFIG_SPE_POSSIBLE)
case BOOKE_INTERRUPT_SPE_UNAVAIL:
/*
* Guest wants SPE, but host kernel doesn't support it. Send
* an "unimplemented operation" program check to the guest.
*/
kvmppc_core_queue_program(vcpu, ESR_PUO | ESR_SPV);
r = RESUME_GUEST;
break;
/*
* These really should never happen without CONFIG_SPE,
* as we should never enable the real MSR[SPE] in the guest.
*/
case BOOKE_INTERRUPT_SPE_FP_DATA:
case BOOKE_INTERRUPT_SPE_FP_ROUND:
printk(KERN_CRIT "%s: unexpected SPE interrupt %u at %08lx\n",
__func__, exit_nr, vcpu->arch.regs.nip);
run->hw.hardware_exit_reason = exit_nr;
r = RESUME_HOST;
break;
#endif /* CONFIG_SPE_POSSIBLE */
/*
* On cores with Vector category, KVM is loaded only if CONFIG_ALTIVEC,
* see kvmppc_core_check_processor_compat().
*/
#ifdef CONFIG_ALTIVEC
case BOOKE_INTERRUPT_ALTIVEC_UNAVAIL:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_UNAVAIL);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_ALTIVEC_ASSIST:
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_ASSIST);
r = RESUME_GUEST;
break;
#endif
case BOOKE_INTERRUPT_DATA_STORAGE:
kvmppc_core_queue_data_storage(vcpu, vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
kvmppc_account_exit(vcpu, DSI_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_INST_STORAGE:
kvmppc_core_queue_inst_storage(vcpu, vcpu->arch.fault_esr);
kvmppc_account_exit(vcpu, ISI_EXITS);
r = RESUME_GUEST;
break;
case BOOKE_INTERRUPT_ALIGNMENT:
kvmppc_core_queue_alignment(vcpu, vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
r = RESUME_GUEST;
break;
#ifdef CONFIG_KVM_BOOKE_HV
case BOOKE_INTERRUPT_HV_SYSCALL:
if (!(vcpu->arch.shared->msr & MSR_PR)) {
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
} else {
/*
* hcall from guest userspace -- send privileged
* instruction program check.
*/
kvmppc_core_queue_program(vcpu, ESR_PPR);
}
r = RESUME_GUEST;
break;
#else
case BOOKE_INTERRUPT_SYSCALL:
if (!(vcpu->arch.shared->msr & MSR_PR) &&
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
/* KVM PV hypercalls */
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
r = RESUME_GUEST;
} else {
/* Guest syscalls */
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL);
}
kvmppc_account_exit(vcpu, SYSCALL_EXITS);
r = RESUME_GUEST;
break;
#endif
case BOOKE_INTERRUPT_DTLB_MISS: {
unsigned long eaddr = vcpu->arch.fault_dear;
int gtlb_index;
gpa_t gpaddr;
gfn_t gfn;
#ifdef CONFIG_KVM_E500V2
if (!(vcpu->arch.shared->msr & MSR_PR) &&
(eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) {
kvmppc_map_magic(vcpu);
kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
r = RESUME_GUEST;
break;
}
#endif
/* Check the guest TLB. */
gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr);
if (gtlb_index < 0) {
/* The guest didn't have a mapping for it. */
kvmppc_core_queue_dtlb_miss(vcpu,
vcpu->arch.fault_dear,
vcpu->arch.fault_esr);
kvmppc_mmu_dtlb_miss(vcpu);
kvmppc_account_exit(vcpu, DTLB_REAL_MISS_EXITS);
r = RESUME_GUEST;
break;
}
idx = srcu_read_lock(&vcpu->kvm->srcu);
gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
gfn = gpaddr >> PAGE_SHIFT;
if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
/* The guest TLB had a mapping, but the shadow TLB
* didn't, and it is RAM. This could be because:
* a) the entry is mapping the host kernel, or
* b) the guest used a large mapping which we're faking
* Either way, we need to satisfy the fault without
* invoking the guest. */
kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
r = RESUME_GUEST;
} else {
/* Guest has mapped and accessed a page which is not
* actually RAM. */
vcpu->arch.paddr_accessed = gpaddr;
vcpu->arch.vaddr_accessed = eaddr;
r = kvmppc_emulate_mmio(run, vcpu);
kvmppc_account_exit(vcpu, MMIO_EXITS);
}
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
case BOOKE_INTERRUPT_ITLB_MISS: {
unsigned long eaddr = vcpu->arch.regs.nip;
gpa_t gpaddr;
gfn_t gfn;
int gtlb_index;
r = RESUME_GUEST;
/* Check the guest TLB. */
gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr);
if (gtlb_index < 0) {
/* The guest didn't have a mapping for it. */
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS);
kvmppc_mmu_itlb_miss(vcpu);
kvmppc_account_exit(vcpu, ITLB_REAL_MISS_EXITS);
break;
}
kvmppc_account_exit(vcpu, ITLB_VIRT_MISS_EXITS);
idx = srcu_read_lock(&vcpu->kvm->srcu);
gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
gfn = gpaddr >> PAGE_SHIFT;
if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
/* The guest TLB had a mapping, but the shadow TLB
* didn't. This could be because:
* a) the entry is mapping the host kernel, or
* b) the guest used a large mapping which we're faking
* Either way, we need to satisfy the fault without
* invoking the guest. */
kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
} else {
/* Guest mapped and leaped at non-RAM! */
kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_MACHINE_CHECK);
}
srcu_read_unlock(&vcpu->kvm->srcu, idx);
break;
}
case BOOKE_INTERRUPT_DEBUG: {
r = kvmppc_handle_debug(run, vcpu);
if (r == RESUME_HOST)
run->exit_reason = KVM_EXIT_DEBUG;
kvmppc_account_exit(vcpu, DEBUG_EXITS);
break;
}
default:
printk(KERN_EMERG "exit_nr %d\n", exit_nr);
BUG();
}
out:
/*
* To avoid clobbering exit_reason, only check for signals if we
* aren't already exiting to userspace for some other reason.
*/
if (!(r & RESUME_HOST)) {
s = kvmppc_prepare_to_enter(vcpu);
if (s <= 0)
r = (s << 2) | RESUME_HOST | (r & RESUME_FLAG_NV);
else {
/* interrupts now hard-disabled */
kvmppc_fix_ee_before_entry();
kvmppc_load_guest_fp(vcpu);
kvmppc_load_guest_altivec(vcpu);
}
}
return r;
}
static void kvmppc_set_tsr(struct kvm_vcpu *vcpu, u32 new_tsr)
{
u32 old_tsr = vcpu->arch.tsr;
vcpu->arch.tsr = new_tsr;
if ((old_tsr ^ vcpu->arch.tsr) & (TSR_ENW | TSR_WIS))
arm_next_watchdog(vcpu);
update_timer_ints(vcpu);
}
/* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
int i;
int r;
vcpu->arch.regs.nip = 0;
vcpu->arch.shared->pir = vcpu->vcpu_id;
kvmppc_set_gpr(vcpu, 1, (16<<20) - 8); /* -8 for the callee-save LR slot */
kvmppc_set_msr(vcpu, 0);
#ifndef CONFIG_KVM_BOOKE_HV
vcpu->arch.shadow_msr = MSR_USER | MSR_IS | MSR_DS;
vcpu->arch.shadow_pid = 1;
vcpu->arch.shared->msr = 0;
#endif
/* Eye-catching numbers so we know if the guest takes an interrupt
* before it's programmed its own IVPR/IVORs. */
vcpu->arch.ivpr = 0x55550000;
for (i = 0; i < BOOKE_IRQPRIO_MAX; i++)
vcpu->arch.ivor[i] = 0x7700 | i * 4;
kvmppc_init_timing_stats(vcpu);
r = kvmppc_core_vcpu_setup(vcpu);
kvmppc_sanity_check(vcpu);
return r;
}
int kvmppc_subarch_vcpu_init(struct kvm_vcpu *vcpu)
{
/* setup watchdog timer once */
spin_lock_init(&vcpu->arch.wdt_lock);
timer_setup(&vcpu->arch.wdt_timer, kvmppc_watchdog_func, 0);
/*
* Clear DBSR.MRR to avoid guest debug interrupt as
* this is of host interest
*/
mtspr(SPRN_DBSR, DBSR_MRR);
return 0;
}
void kvmppc_subarch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
del_timer_sync(&vcpu->arch.wdt_timer);
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
vcpu_load(vcpu);
regs->pc = vcpu->arch.regs.nip;
regs->cr = kvmppc_get_cr(vcpu);
regs->ctr = vcpu->arch.regs.ctr;
regs->lr = vcpu->arch.regs.link;
regs->xer = kvmppc_get_xer(vcpu);
regs->msr = vcpu->arch.shared->msr;
regs->srr0 = kvmppc_get_srr0(vcpu);
regs->srr1 = kvmppc_get_srr1(vcpu);
regs->pid = vcpu->arch.pid;
regs->sprg0 = kvmppc_get_sprg0(vcpu);
regs->sprg1 = kvmppc_get_sprg1(vcpu);
regs->sprg2 = kvmppc_get_sprg2(vcpu);
regs->sprg3 = kvmppc_get_sprg3(vcpu);
regs->sprg4 = kvmppc_get_sprg4(vcpu);
regs->sprg5 = kvmppc_get_sprg5(vcpu);
regs->sprg6 = kvmppc_get_sprg6(vcpu);
regs->sprg7 = kvmppc_get_sprg7(vcpu);
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
vcpu_put(vcpu);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
vcpu_load(vcpu);
vcpu->arch.regs.nip = regs->pc;
kvmppc_set_cr(vcpu, regs->cr);
vcpu->arch.regs.ctr = regs->ctr;
vcpu->arch.regs.link = regs->lr;
kvmppc_set_xer(vcpu, regs->xer);
kvmppc_set_msr(vcpu, regs->msr);
kvmppc_set_srr0(vcpu, regs->srr0);
kvmppc_set_srr1(vcpu, regs->srr1);
kvmppc_set_pid(vcpu, regs->pid);
kvmppc_set_sprg0(vcpu, regs->sprg0);
kvmppc_set_sprg1(vcpu, regs->sprg1);
kvmppc_set_sprg2(vcpu, regs->sprg2);
kvmppc_set_sprg3(vcpu, regs->sprg3);
kvmppc_set_sprg4(vcpu, regs->sprg4);
kvmppc_set_sprg5(vcpu, regs->sprg5);
kvmppc_set_sprg6(vcpu, regs->sprg6);
kvmppc_set_sprg7(vcpu, regs->sprg7);
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
vcpu_put(vcpu);
return 0;
}
static void get_sregs_base(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
u64 tb = get_tb();
sregs->u.e.features |= KVM_SREGS_E_BASE;
sregs->u.e.csrr0 = vcpu->arch.csrr0;
sregs->u.e.csrr1 = vcpu->arch.csrr1;
sregs->u.e.mcsr = vcpu->arch.mcsr;
sregs->u.e.esr = kvmppc_get_esr(vcpu);
sregs->u.e.dear = kvmppc_get_dar(vcpu);
sregs->u.e.tsr = vcpu->arch.tsr;
sregs->u.e.tcr = vcpu->arch.tcr;
sregs->u.e.dec = kvmppc_get_dec(vcpu, tb);
sregs->u.e.tb = tb;
sregs->u.e.vrsave = vcpu->arch.vrsave;
}
static int set_sregs_base(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_BASE))
return 0;
vcpu->arch.csrr0 = sregs->u.e.csrr0;
vcpu->arch.csrr1 = sregs->u.e.csrr1;
vcpu->arch.mcsr = sregs->u.e.mcsr;
kvmppc_set_esr(vcpu, sregs->u.e.esr);
kvmppc_set_dar(vcpu, sregs->u.e.dear);
vcpu->arch.vrsave = sregs->u.e.vrsave;
kvmppc_set_tcr(vcpu, sregs->u.e.tcr);
if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_DEC) {
vcpu->arch.dec = sregs->u.e.dec;
kvmppc_emulate_dec(vcpu);
}
if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_TSR)
kvmppc_set_tsr(vcpu, sregs->u.e.tsr);
return 0;
}
static void get_sregs_arch206(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
sregs->u.e.features |= KVM_SREGS_E_ARCH206;
sregs->u.e.pir = vcpu->vcpu_id;
sregs->u.e.mcsrr0 = vcpu->arch.mcsrr0;
sregs->u.e.mcsrr1 = vcpu->arch.mcsrr1;
sregs->u.e.decar = vcpu->arch.decar;
sregs->u.e.ivpr = vcpu->arch.ivpr;
}
static int set_sregs_arch206(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_ARCH206))
return 0;
if (sregs->u.e.pir != vcpu->vcpu_id)
return -EINVAL;
vcpu->arch.mcsrr0 = sregs->u.e.mcsrr0;
vcpu->arch.mcsrr1 = sregs->u.e.mcsrr1;
vcpu->arch.decar = sregs->u.e.decar;
vcpu->arch.ivpr = sregs->u.e.ivpr;
return 0;
}
int kvmppc_get_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
sregs->u.e.features |= KVM_SREGS_E_IVOR;
sregs->u.e.ivor_low[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL];
sregs->u.e.ivor_low[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK];
sregs->u.e.ivor_low[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE];
sregs->u.e.ivor_low[3] = vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE];
sregs->u.e.ivor_low[4] = vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL];
sregs->u.e.ivor_low[5] = vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT];
sregs->u.e.ivor_low[6] = vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM];
sregs->u.e.ivor_low[7] = vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL];
sregs->u.e.ivor_low[8] = vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL];
sregs->u.e.ivor_low[9] = vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL];
sregs->u.e.ivor_low[10] = vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER];
sregs->u.e.ivor_low[11] = vcpu->arch.ivor[BOOKE_IRQPRIO_FIT];
sregs->u.e.ivor_low[12] = vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG];
sregs->u.e.ivor_low[13] = vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS];
sregs->u.e.ivor_low[14] = vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS];
sregs->u.e.ivor_low[15] = vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG];
return 0;
}
int kvmppc_set_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
return 0;
vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL] = sregs->u.e.ivor_low[0];
vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK] = sregs->u.e.ivor_low[1];
vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE] = sregs->u.e.ivor_low[2];
vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE] = sregs->u.e.ivor_low[3];
vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL] = sregs->u.e.ivor_low[4];
vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT] = sregs->u.e.ivor_low[5];
vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM] = sregs->u.e.ivor_low[6];
vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL] = sregs->u.e.ivor_low[7];
vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL] = sregs->u.e.ivor_low[8];
vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL] = sregs->u.e.ivor_low[9];
vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER] = sregs->u.e.ivor_low[10];
vcpu->arch.ivor[BOOKE_IRQPRIO_FIT] = sregs->u.e.ivor_low[11];
vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG] = sregs->u.e.ivor_low[12];
vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS] = sregs->u.e.ivor_low[13];
vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS] = sregs->u.e.ivor_low[14];
vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG] = sregs->u.e.ivor_low[15];
return 0;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int ret;
vcpu_load(vcpu);
sregs->pvr = vcpu->arch.pvr;
get_sregs_base(vcpu, sregs);
get_sregs_arch206(vcpu, sregs);
ret = vcpu->kvm->arch.kvm_ops->get_sregs(vcpu, sregs);
vcpu_put(vcpu);
return ret;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int ret = -EINVAL;
vcpu_load(vcpu);
if (vcpu->arch.pvr != sregs->pvr)
goto out;
ret = set_sregs_base(vcpu, sregs);
if (ret < 0)
goto out;
ret = set_sregs_arch206(vcpu, sregs);
if (ret < 0)
goto out;
ret = vcpu->kvm->arch.kvm_ops->set_sregs(vcpu, sregs);
out:
vcpu_put(vcpu);
return ret;
}
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
switch (id) {
case KVM_REG_PPC_IAC1:
*val = get_reg_val(id, vcpu->arch.dbg_reg.iac1);
break;
case KVM_REG_PPC_IAC2:
*val = get_reg_val(id, vcpu->arch.dbg_reg.iac2);
break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
case KVM_REG_PPC_IAC3:
*val = get_reg_val(id, vcpu->arch.dbg_reg.iac3);
break;
case KVM_REG_PPC_IAC4:
*val = get_reg_val(id, vcpu->arch.dbg_reg.iac4);
break;
#endif
case KVM_REG_PPC_DAC1:
*val = get_reg_val(id, vcpu->arch.dbg_reg.dac1);
break;
case KVM_REG_PPC_DAC2:
*val = get_reg_val(id, vcpu->arch.dbg_reg.dac2);
break;
case KVM_REG_PPC_EPR: {
u32 epr = kvmppc_get_epr(vcpu);
*val = get_reg_val(id, epr);
break;
}
#if defined(CONFIG_64BIT)
case KVM_REG_PPC_EPCR:
*val = get_reg_val(id, vcpu->arch.epcr);
break;
#endif
case KVM_REG_PPC_TCR:
*val = get_reg_val(id, vcpu->arch.tcr);
break;
case KVM_REG_PPC_TSR:
*val = get_reg_val(id, vcpu->arch.tsr);
break;
case KVM_REG_PPC_DEBUG_INST:
*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
break;
case KVM_REG_PPC_VRSAVE:
*val = get_reg_val(id, vcpu->arch.vrsave);
break;
default:
r = vcpu->kvm->arch.kvm_ops->get_one_reg(vcpu, id, val);
break;
}
return r;
}
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
switch (id) {
case KVM_REG_PPC_IAC1:
vcpu->arch.dbg_reg.iac1 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_IAC2:
vcpu->arch.dbg_reg.iac2 = set_reg_val(id, *val);
break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
case KVM_REG_PPC_IAC3:
vcpu->arch.dbg_reg.iac3 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_IAC4:
vcpu->arch.dbg_reg.iac4 = set_reg_val(id, *val);
break;
#endif
case KVM_REG_PPC_DAC1:
vcpu->arch.dbg_reg.dac1 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_DAC2:
vcpu->arch.dbg_reg.dac2 = set_reg_val(id, *val);
break;
case KVM_REG_PPC_EPR: {
u32 new_epr = set_reg_val(id, *val);
kvmppc_set_epr(vcpu, new_epr);
break;
}
#if defined(CONFIG_64BIT)
case KVM_REG_PPC_EPCR: {
u32 new_epcr = set_reg_val(id, *val);
kvmppc_set_epcr(vcpu, new_epcr);
break;
}
#endif
case KVM_REG_PPC_OR_TSR: {
u32 tsr_bits = set_reg_val(id, *val);
kvmppc_set_tsr_bits(vcpu, tsr_bits);
break;
}
case KVM_REG_PPC_CLEAR_TSR: {
u32 tsr_bits = set_reg_val(id, *val);
kvmppc_clr_tsr_bits(vcpu, tsr_bits);
break;
}
case KVM_REG_PPC_TSR: {
u32 tsr = set_reg_val(id, *val);
kvmppc_set_tsr(vcpu, tsr);
break;
}
case KVM_REG_PPC_TCR: {
u32 tcr = set_reg_val(id, *val);
kvmppc_set_tcr(vcpu, tcr);
break;
}
case KVM_REG_PPC_VRSAVE:
vcpu->arch.vrsave = set_reg_val(id, *val);
break;
default:
r = vcpu->kvm->arch.kvm_ops->set_one_reg(vcpu, id, val);
break;
}
return r;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
int r;
vcpu_load(vcpu);
r = kvmppc_core_vcpu_translate(vcpu, tr);
vcpu_put(vcpu);
return r;
}
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
return -ENOTSUPP;
}
void kvmppc_core_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
}
int kvmppc_core_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
unsigned long npages)
{
return 0;
}
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
const struct kvm_userspace_memory_region *mem)
{
return 0;
}
void kvmppc_core_commit_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
}
void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
}
void kvmppc_set_epcr(struct kvm_vcpu *vcpu, u32 new_epcr)
{
#if defined(CONFIG_64BIT)
vcpu->arch.epcr = new_epcr;
#ifdef CONFIG_KVM_BOOKE_HV
vcpu->arch.shadow_epcr &= ~SPRN_EPCR_GICM;
if (vcpu->arch.epcr & SPRN_EPCR_ICM)
vcpu->arch.shadow_epcr |= SPRN_EPCR_GICM;
#endif
#endif
}
void kvmppc_set_tcr(struct kvm_vcpu *vcpu, u32 new_tcr)
{
vcpu->arch.tcr = new_tcr;
arm_next_watchdog(vcpu);
update_timer_ints(vcpu);
}
void kvmppc_set_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits)
{
set_bits(tsr_bits, &vcpu->arch.tsr);
smp_wmb();
kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
kvm_vcpu_kick(vcpu);
}
void kvmppc_clr_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits)
{
clear_bits(tsr_bits, &vcpu->arch.tsr);
/*
* We may have stopped the watchdog due to
* being stuck on final expiration.
*/
if (tsr_bits & (TSR_ENW | TSR_WIS))
arm_next_watchdog(vcpu);
update_timer_ints(vcpu);
}
void kvmppc_decrementer_func(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.tcr & TCR_ARE) {
vcpu->arch.dec = vcpu->arch.decar;
kvmppc_emulate_dec(vcpu);
}
kvmppc_set_tsr_bits(vcpu, TSR_DIS);
}
static int kvmppc_booke_add_breakpoint(struct debug_reg *dbg_reg,
uint64_t addr, int index)
{
switch (index) {
case 0:
dbg_reg->dbcr0 |= DBCR0_IAC1;
dbg_reg->iac1 = addr;
break;
case 1:
dbg_reg->dbcr0 |= DBCR0_IAC2;
dbg_reg->iac2 = addr;
break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
case 2:
dbg_reg->dbcr0 |= DBCR0_IAC3;
dbg_reg->iac3 = addr;
break;
case 3:
dbg_reg->dbcr0 |= DBCR0_IAC4;
dbg_reg->iac4 = addr;
break;
#endif
default:
return -EINVAL;
}
dbg_reg->dbcr0 |= DBCR0_IDM;
return 0;
}
static int kvmppc_booke_add_watchpoint(struct debug_reg *dbg_reg, uint64_t addr,
int type, int index)
{
switch (index) {
case 0:
if (type & KVMPPC_DEBUG_WATCH_READ)
dbg_reg->dbcr0 |= DBCR0_DAC1R;
if (type & KVMPPC_DEBUG_WATCH_WRITE)
dbg_reg->dbcr0 |= DBCR0_DAC1W;
dbg_reg->dac1 = addr;
break;
case 1:
if (type & KVMPPC_DEBUG_WATCH_READ)
dbg_reg->dbcr0 |= DBCR0_DAC2R;
if (type & KVMPPC_DEBUG_WATCH_WRITE)
dbg_reg->dbcr0 |= DBCR0_DAC2W;
dbg_reg->dac2 = addr;
break;
default:
return -EINVAL;
}
dbg_reg->dbcr0 |= DBCR0_IDM;
return 0;
}
void kvm_guest_protect_msr(struct kvm_vcpu *vcpu, ulong prot_bitmap, bool set)
{
/* XXX: Add similar MSR protection for BookE-PR */
#ifdef CONFIG_KVM_BOOKE_HV
BUG_ON(prot_bitmap & ~(MSRP_UCLEP | MSRP_DEP | MSRP_PMMP));
if (set) {
if (prot_bitmap & MSR_UCLE)
vcpu->arch.shadow_msrp |= MSRP_UCLEP;
if (prot_bitmap & MSR_DE)
vcpu->arch.shadow_msrp |= MSRP_DEP;
if (prot_bitmap & MSR_PMM)
vcpu->arch.shadow_msrp |= MSRP_PMMP;
} else {
if (prot_bitmap & MSR_UCLE)
vcpu->arch.shadow_msrp &= ~MSRP_UCLEP;
if (prot_bitmap & MSR_DE)
vcpu->arch.shadow_msrp &= ~MSRP_DEP;
if (prot_bitmap & MSR_PMM)
vcpu->arch.shadow_msrp &= ~MSRP_PMMP;
}
#endif
}
int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, enum xlate_instdata xlid,
enum xlate_readwrite xlrw, struct kvmppc_pte *pte)
{
int gtlb_index;
gpa_t gpaddr;
#ifdef CONFIG_KVM_E500V2
if (!(vcpu->arch.shared->msr & MSR_PR) &&
(eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) {
pte->eaddr = eaddr;
pte->raddr = (vcpu->arch.magic_page_pa & PAGE_MASK) |
(eaddr & ~PAGE_MASK);
pte->vpage = eaddr >> PAGE_SHIFT;
pte->may_read = true;
pte->may_write = true;
pte->may_execute = true;
return 0;
}
#endif
/* Check the guest TLB. */
switch (xlid) {
case XLATE_INST:
gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr);
break;
case XLATE_DATA:
gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr);
break;
default:
BUG();
}
/* Do we have a TLB entry at all? */
if (gtlb_index < 0)
return -ENOENT;
gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
pte->eaddr = eaddr;
pte->raddr = (gpaddr & PAGE_MASK) | (eaddr & ~PAGE_MASK);
pte->vpage = eaddr >> PAGE_SHIFT;
/* XXX read permissions from the guest TLB */
pte->may_read = true;
pte->may_write = true;
pte->may_execute = true;
return 0;
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
struct debug_reg *dbg_reg;
int n, b = 0, w = 0;
int ret = 0;
vcpu_load(vcpu);
if (!(dbg->control & KVM_GUESTDBG_ENABLE)) {
vcpu->arch.dbg_reg.dbcr0 = 0;
vcpu->guest_debug = 0;
kvm_guest_protect_msr(vcpu, MSR_DE, false);
goto out;
}
kvm_guest_protect_msr(vcpu, MSR_DE, true);
vcpu->guest_debug = dbg->control;
vcpu->arch.dbg_reg.dbcr0 = 0;
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vcpu->arch.dbg_reg.dbcr0 |= DBCR0_IDM | DBCR0_IC;
/* Code below handles only HW breakpoints */
dbg_reg = &(vcpu->arch.dbg_reg);
#ifdef CONFIG_KVM_BOOKE_HV
/*
* On BookE-HV (e500mc) the guest is always executed with MSR.GS=1
* DBCR1 and DBCR2 are set to trigger debug events when MSR.PR is 0
*/
dbg_reg->dbcr1 = 0;
dbg_reg->dbcr2 = 0;
#else
/*
* On BookE-PR (e500v2) the guest is always executed with MSR.PR=1
* We set DBCR1 and DBCR2 to only trigger debug events when MSR.PR
* is set.
*/
dbg_reg->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | DBCR1_IAC3US |
DBCR1_IAC4US;
dbg_reg->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#endif
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
goto out;
ret = -EINVAL;
for (n = 0; n < (KVMPPC_BOOKE_IAC_NUM + KVMPPC_BOOKE_DAC_NUM); n++) {
uint64_t addr = dbg->arch.bp[n].addr;
uint32_t type = dbg->arch.bp[n].type;
if (type == KVMPPC_DEBUG_NONE)
continue;
if (type & ~(KVMPPC_DEBUG_WATCH_READ |
KVMPPC_DEBUG_WATCH_WRITE |
KVMPPC_DEBUG_BREAKPOINT))
goto out;
if (type & KVMPPC_DEBUG_BREAKPOINT) {
/* Setting H/W breakpoint */
if (kvmppc_booke_add_breakpoint(dbg_reg, addr, b++))
goto out;
} else {
/* Setting H/W watchpoint */
if (kvmppc_booke_add_watchpoint(dbg_reg, addr,
type, w++))
goto out;
}
}
ret = 0;
out:
vcpu_put(vcpu);
return ret;
}
void kvmppc_booke_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
vcpu->cpu = smp_processor_id();
current->thread.kvm_vcpu = vcpu;
}
void kvmppc_booke_vcpu_put(struct kvm_vcpu *vcpu)
{
current->thread.kvm_vcpu = NULL;
vcpu->cpu = -1;
/* Clear pending debug event in DBSR */
kvmppc_clear_dbsr();
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->mmu_destroy(vcpu);
}
int kvmppc_core_init_vm(struct kvm *kvm)
{
return kvm->arch.kvm_ops->init_vm(kvm);
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
return kvm->arch.kvm_ops->vcpu_create(kvm, id);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_free(vcpu);
}
void kvmppc_core_destroy_vm(struct kvm *kvm)
{
kvm->arch.kvm_ops->destroy_vm(kvm);
}
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_load(vcpu, cpu);
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
vcpu->kvm->arch.kvm_ops->vcpu_put(vcpu);
}
int __init kvmppc_booke_init(void)
{
#ifndef CONFIG_KVM_BOOKE_HV
unsigned long ivor[16];
unsigned long *handler = kvmppc_booke_handler_addr;
unsigned long max_ivor = 0;
unsigned long handler_len;
int i;
/* We install our own exception handlers by hijacking IVPR. IVPR must
* be 16-bit aligned, so we need a 64KB allocation. */
kvmppc_booke_handlers = __get_free_pages(GFP_KERNEL | __GFP_ZERO,
VCPU_SIZE_ORDER);
if (!kvmppc_booke_handlers)
return -ENOMEM;
/* XXX make sure our handlers are smaller than Linux's */
/* Copy our interrupt handlers to match host IVORs. That way we don't
* have to swap the IVORs on every guest/host transition. */
ivor[0] = mfspr(SPRN_IVOR0);
ivor[1] = mfspr(SPRN_IVOR1);
ivor[2] = mfspr(SPRN_IVOR2);
ivor[3] = mfspr(SPRN_IVOR3);
ivor[4] = mfspr(SPRN_IVOR4);
ivor[5] = mfspr(SPRN_IVOR5);
ivor[6] = mfspr(SPRN_IVOR6);
ivor[7] = mfspr(SPRN_IVOR7);
ivor[8] = mfspr(SPRN_IVOR8);
ivor[9] = mfspr(SPRN_IVOR9);
ivor[10] = mfspr(SPRN_IVOR10);
ivor[11] = mfspr(SPRN_IVOR11);
ivor[12] = mfspr(SPRN_IVOR12);
ivor[13] = mfspr(SPRN_IVOR13);
ivor[14] = mfspr(SPRN_IVOR14);
ivor[15] = mfspr(SPRN_IVOR15);
for (i = 0; i < 16; i++) {
if (ivor[i] > max_ivor)
max_ivor = i;
handler_len = handler[i + 1] - handler[i];
memcpy((void *)kvmppc_booke_handlers + ivor[i],
(void *)handler[i], handler_len);
}
handler_len = handler[max_ivor + 1] - handler[max_ivor];
flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
ivor[max_ivor] + handler_len);
#endif /* !BOOKE_HV */
return 0;
}
void __exit kvmppc_booke_exit(void)
{
free_pages(kvmppc_booke_handlers, VCPU_SIZE_ORDER);
kvm_exit();
}