linux-brain/arch/arm64/kernel/alternative.c
Ard Biesheuvel 4c7924060f arm64/alternatives: don't patch up internal branches
[ Upstream commit 5679b28142193a62f6af93249c0477be9f0c669b ]

Commit f7b93d42945c ("arm64/alternatives: use subsections for replacement
sequences") moved the alternatives replacement sequences into subsections,
in order to keep the as close as possible to the code that they replace.

Unfortunately, this broke the logic in branch_insn_requires_update,
which assumed that any branch into kernel executable code was a branch
that required updating, which is no longer the case now that the code
sequences that are patched in are in the same section as the patch site
itself.

So the only way to discriminate branches that require updating and ones
that don't is to check whether the branch targets the replacement sequence
itself, and so we can drop the call to kernel_text_address() entirely.

Fixes: f7b93d42945c ("arm64/alternatives: use subsections for replacement sequences")
Reported-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Alexandru Elisei <alexandru.elisei@arm.com>
Link: https://lore.kernel.org/r/20200709125953.30918-1-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-22 09:32:53 +02:00

264 lines
6.7 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* alternative runtime patching
* inspired by the x86 version
*
* Copyright (C) 2014 ARM Ltd.
*/
#define pr_fmt(fmt) "alternatives: " fmt
#include <linux/init.h>
#include <linux/cpu.h>
#include <asm/cacheflush.h>
#include <asm/alternative.h>
#include <asm/cpufeature.h>
#include <asm/insn.h>
#include <asm/sections.h>
#include <linux/stop_machine.h>
#define __ALT_PTR(a,f) ((void *)&(a)->f + (a)->f)
#define ALT_ORIG_PTR(a) __ALT_PTR(a, orig_offset)
#define ALT_REPL_PTR(a) __ALT_PTR(a, alt_offset)
static int all_alternatives_applied;
static DECLARE_BITMAP(applied_alternatives, ARM64_NCAPS);
struct alt_region {
struct alt_instr *begin;
struct alt_instr *end;
};
bool alternative_is_applied(u16 cpufeature)
{
if (WARN_ON(cpufeature >= ARM64_NCAPS))
return false;
return test_bit(cpufeature, applied_alternatives);
}
/*
* Check if the target PC is within an alternative block.
*/
static bool branch_insn_requires_update(struct alt_instr *alt, unsigned long pc)
{
unsigned long replptr = (unsigned long)ALT_REPL_PTR(alt);
return !(pc >= replptr && pc <= (replptr + alt->alt_len));
}
#define align_down(x, a) ((unsigned long)(x) & ~(((unsigned long)(a)) - 1))
static u32 get_alt_insn(struct alt_instr *alt, __le32 *insnptr, __le32 *altinsnptr)
{
u32 insn;
insn = le32_to_cpu(*altinsnptr);
if (aarch64_insn_is_branch_imm(insn)) {
s32 offset = aarch64_get_branch_offset(insn);
unsigned long target;
target = (unsigned long)altinsnptr + offset;
/*
* If we're branching inside the alternate sequence,
* do not rewrite the instruction, as it is already
* correct. Otherwise, generate the new instruction.
*/
if (branch_insn_requires_update(alt, target)) {
offset = target - (unsigned long)insnptr;
insn = aarch64_set_branch_offset(insn, offset);
}
} else if (aarch64_insn_is_adrp(insn)) {
s32 orig_offset, new_offset;
unsigned long target;
/*
* If we're replacing an adrp instruction, which uses PC-relative
* immediate addressing, adjust the offset to reflect the new
* PC. adrp operates on 4K aligned addresses.
*/
orig_offset = aarch64_insn_adrp_get_offset(insn);
target = align_down(altinsnptr, SZ_4K) + orig_offset;
new_offset = target - align_down(insnptr, SZ_4K);
insn = aarch64_insn_adrp_set_offset(insn, new_offset);
} else if (aarch64_insn_uses_literal(insn)) {
/*
* Disallow patching unhandled instructions using PC relative
* literal addresses
*/
BUG();
}
return insn;
}
static void patch_alternative(struct alt_instr *alt,
__le32 *origptr, __le32 *updptr, int nr_inst)
{
__le32 *replptr;
int i;
replptr = ALT_REPL_PTR(alt);
for (i = 0; i < nr_inst; i++) {
u32 insn;
insn = get_alt_insn(alt, origptr + i, replptr + i);
updptr[i] = cpu_to_le32(insn);
}
}
/*
* We provide our own, private D-cache cleaning function so that we don't
* accidentally call into the cache.S code, which is patched by us at
* runtime.
*/
static void clean_dcache_range_nopatch(u64 start, u64 end)
{
u64 cur, d_size, ctr_el0;
ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
d_size = 4 << cpuid_feature_extract_unsigned_field(ctr_el0,
CTR_DMINLINE_SHIFT);
cur = start & ~(d_size - 1);
do {
/*
* We must clean+invalidate to the PoC in order to avoid
* Cortex-A53 errata 826319, 827319, 824069 and 819472
* (this corresponds to ARM64_WORKAROUND_CLEAN_CACHE)
*/
asm volatile("dc civac, %0" : : "r" (cur) : "memory");
} while (cur += d_size, cur < end);
}
static void __apply_alternatives(void *alt_region, bool is_module,
unsigned long *feature_mask)
{
struct alt_instr *alt;
struct alt_region *region = alt_region;
__le32 *origptr, *updptr;
alternative_cb_t alt_cb;
for (alt = region->begin; alt < region->end; alt++) {
int nr_inst;
if (!test_bit(alt->cpufeature, feature_mask))
continue;
/* Use ARM64_CB_PATCH as an unconditional patch */
if (alt->cpufeature < ARM64_CB_PATCH &&
!cpus_have_cap(alt->cpufeature))
continue;
if (alt->cpufeature == ARM64_CB_PATCH)
BUG_ON(alt->alt_len != 0);
else
BUG_ON(alt->alt_len != alt->orig_len);
pr_info_once("patching kernel code\n");
origptr = ALT_ORIG_PTR(alt);
updptr = is_module ? origptr : lm_alias(origptr);
nr_inst = alt->orig_len / AARCH64_INSN_SIZE;
if (alt->cpufeature < ARM64_CB_PATCH)
alt_cb = patch_alternative;
else
alt_cb = ALT_REPL_PTR(alt);
alt_cb(alt, origptr, updptr, nr_inst);
if (!is_module) {
clean_dcache_range_nopatch((u64)origptr,
(u64)(origptr + nr_inst));
}
}
/*
* The core module code takes care of cache maintenance in
* flush_module_icache().
*/
if (!is_module) {
dsb(ish);
__flush_icache_all();
isb();
/* Ignore ARM64_CB bit from feature mask */
bitmap_or(applied_alternatives, applied_alternatives,
feature_mask, ARM64_NCAPS);
bitmap_and(applied_alternatives, applied_alternatives,
cpu_hwcaps, ARM64_NCAPS);
}
}
/*
* We might be patching the stop_machine state machine, so implement a
* really simple polling protocol here.
*/
static int __apply_alternatives_multi_stop(void *unused)
{
struct alt_region region = {
.begin = (struct alt_instr *)__alt_instructions,
.end = (struct alt_instr *)__alt_instructions_end,
};
/* We always have a CPU 0 at this point (__init) */
if (smp_processor_id()) {
while (!READ_ONCE(all_alternatives_applied))
cpu_relax();
isb();
} else {
DECLARE_BITMAP(remaining_capabilities, ARM64_NPATCHABLE);
bitmap_complement(remaining_capabilities, boot_capabilities,
ARM64_NPATCHABLE);
BUG_ON(all_alternatives_applied);
__apply_alternatives(&region, false, remaining_capabilities);
/* Barriers provided by the cache flushing */
WRITE_ONCE(all_alternatives_applied, 1);
}
return 0;
}
void __init apply_alternatives_all(void)
{
/* better not try code patching on a live SMP system */
stop_machine(__apply_alternatives_multi_stop, NULL, cpu_online_mask);
}
/*
* This is called very early in the boot process (directly after we run
* a feature detect on the boot CPU). No need to worry about other CPUs
* here.
*/
void __init apply_boot_alternatives(void)
{
struct alt_region region = {
.begin = (struct alt_instr *)__alt_instructions,
.end = (struct alt_instr *)__alt_instructions_end,
};
/* If called on non-boot cpu things could go wrong */
WARN_ON(smp_processor_id() != 0);
__apply_alternatives(&region, false, &boot_capabilities[0]);
}
#ifdef CONFIG_MODULES
void apply_alternatives_module(void *start, size_t length)
{
struct alt_region region = {
.begin = start,
.end = start + length,
};
DECLARE_BITMAP(all_capabilities, ARM64_NPATCHABLE);
bitmap_fill(all_capabilities, ARM64_NPATCHABLE);
__apply_alternatives(&region, true, &all_capabilities[0]);
}
#endif