linux-brain/block/blk-mq-tag.c
Mel Gorman d0164adc89 mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts.  They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve".  __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".

Over time, callers had a requirement to not block when fallback options
were available.  Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.

This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative.  High priority users continue to use
__GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.

This patch then converts a number of sites

o __GFP_ATOMIC is used by callers that are high priority and have memory
  pools for those requests. GFP_ATOMIC uses this flag.

o Callers that have a limited mempool to guarantee forward progress clear
  __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
  into this category where kswapd will still be woken but atomic reserves
  are not used as there is a one-entry mempool to guarantee progress.

o Callers that are checking if they are non-blocking should use the
  helper gfpflags_allow_blocking() where possible. This is because
  checking for __GFP_WAIT as was done historically now can trigger false
  positives. Some exceptions like dm-crypt.c exist where the code intent
  is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
  flag manipulations.

o Callers that built their own GFP flags instead of starting with GFP_KERNEL
  and friends now also need to specify __GFP_KSWAPD_RECLAIM.

The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.

The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL.  They may
now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00

723 lines
17 KiB
C

/*
* Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread
* over multiple cachelines to avoid ping-pong between multiple submitters
* or submitter and completer. Uses rolling wakeups to avoid falling of
* the scaling cliff when we run out of tags and have to start putting
* submitters to sleep.
*
* Uses active queue tracking to support fairer distribution of tags
* between multiple submitters when a shared tag map is used.
*
* Copyright (C) 2013-2014 Jens Axboe
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt)
{
int i;
for (i = 0; i < bt->map_nr; i++) {
struct blk_align_bitmap *bm = &bt->map[i];
int ret;
ret = find_first_zero_bit(&bm->word, bm->depth);
if (ret < bm->depth)
return true;
}
return false;
}
bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
{
if (!tags)
return true;
return bt_has_free_tags(&tags->bitmap_tags);
}
static inline int bt_index_inc(int index)
{
return (index + 1) & (BT_WAIT_QUEUES - 1);
}
static inline void bt_index_atomic_inc(atomic_t *index)
{
int old = atomic_read(index);
int new = bt_index_inc(old);
atomic_cmpxchg(index, old, new);
}
/*
* If a previously inactive queue goes active, bump the active user count.
*/
bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
{
if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
!test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
atomic_inc(&hctx->tags->active_queues);
return true;
}
/*
* Wakeup all potentially sleeping on tags
*/
void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve)
{
struct blk_mq_bitmap_tags *bt;
int i, wake_index;
/*
* Make sure all changes prior to this are visible from other CPUs.
*/
smp_mb();
bt = &tags->bitmap_tags;
wake_index = atomic_read(&bt->wake_index);
for (i = 0; i < BT_WAIT_QUEUES; i++) {
struct bt_wait_state *bs = &bt->bs[wake_index];
if (waitqueue_active(&bs->wait))
wake_up(&bs->wait);
wake_index = bt_index_inc(wake_index);
}
if (include_reserve) {
bt = &tags->breserved_tags;
if (waitqueue_active(&bt->bs[0].wait))
wake_up(&bt->bs[0].wait);
}
}
/*
* If a previously busy queue goes inactive, potential waiters could now
* be allowed to queue. Wake them up and check.
*/
void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
{
struct blk_mq_tags *tags = hctx->tags;
if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
return;
atomic_dec(&tags->active_queues);
blk_mq_tag_wakeup_all(tags, false);
}
/*
* For shared tag users, we track the number of currently active users
* and attempt to provide a fair share of the tag depth for each of them.
*/
static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
struct blk_mq_bitmap_tags *bt)
{
unsigned int depth, users;
if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
return true;
if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
return true;
/*
* Don't try dividing an ant
*/
if (bt->depth == 1)
return true;
users = atomic_read(&hctx->tags->active_queues);
if (!users)
return true;
/*
* Allow at least some tags
*/
depth = max((bt->depth + users - 1) / users, 4U);
return atomic_read(&hctx->nr_active) < depth;
}
static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag,
bool nowrap)
{
int tag, org_last_tag = last_tag;
while (1) {
tag = find_next_zero_bit(&bm->word, bm->depth, last_tag);
if (unlikely(tag >= bm->depth)) {
/*
* We started with an offset, and we didn't reset the
* offset to 0 in a failure case, so start from 0 to
* exhaust the map.
*/
if (org_last_tag && last_tag && !nowrap) {
last_tag = org_last_tag = 0;
continue;
}
return -1;
}
if (!test_and_set_bit(tag, &bm->word))
break;
last_tag = tag + 1;
if (last_tag >= bm->depth - 1)
last_tag = 0;
}
return tag;
}
#define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR)
/*
* Straight forward bitmap tag implementation, where each bit is a tag
* (cleared == free, and set == busy). The small twist is using per-cpu
* last_tag caches, which blk-mq stores in the blk_mq_ctx software queue
* contexts. This enables us to drastically limit the space searched,
* without dirtying an extra shared cacheline like we would if we stored
* the cache value inside the shared blk_mq_bitmap_tags structure. On top
* of that, each word of tags is in a separate cacheline. This means that
* multiple users will tend to stick to different cachelines, at least
* until the map is exhausted.
*/
static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt,
unsigned int *tag_cache, struct blk_mq_tags *tags)
{
unsigned int last_tag, org_last_tag;
int index, i, tag;
if (!hctx_may_queue(hctx, bt))
return -1;
last_tag = org_last_tag = *tag_cache;
index = TAG_TO_INDEX(bt, last_tag);
for (i = 0; i < bt->map_nr; i++) {
tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag),
BT_ALLOC_RR(tags));
if (tag != -1) {
tag += (index << bt->bits_per_word);
goto done;
}
/*
* Jump to next index, and reset the last tag to be the
* first tag of that index
*/
index++;
last_tag = (index << bt->bits_per_word);
if (index >= bt->map_nr) {
index = 0;
last_tag = 0;
}
}
*tag_cache = 0;
return -1;
/*
* Only update the cache from the allocation path, if we ended
* up using the specific cached tag.
*/
done:
if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) {
last_tag = tag + 1;
if (last_tag >= bt->depth - 1)
last_tag = 0;
*tag_cache = last_tag;
}
return tag;
}
static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt,
struct blk_mq_hw_ctx *hctx)
{
struct bt_wait_state *bs;
int wait_index;
if (!hctx)
return &bt->bs[0];
wait_index = atomic_read(&hctx->wait_index);
bs = &bt->bs[wait_index];
bt_index_atomic_inc(&hctx->wait_index);
return bs;
}
static int bt_get(struct blk_mq_alloc_data *data,
struct blk_mq_bitmap_tags *bt,
struct blk_mq_hw_ctx *hctx,
unsigned int *last_tag, struct blk_mq_tags *tags)
{
struct bt_wait_state *bs;
DEFINE_WAIT(wait);
int tag;
tag = __bt_get(hctx, bt, last_tag, tags);
if (tag != -1)
return tag;
if (!gfpflags_allow_blocking(data->gfp))
return -1;
bs = bt_wait_ptr(bt, hctx);
do {
prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE);
tag = __bt_get(hctx, bt, last_tag, tags);
if (tag != -1)
break;
/*
* We're out of tags on this hardware queue, kick any
* pending IO submits before going to sleep waiting for
* some to complete. Note that hctx can be NULL here for
* reserved tag allocation.
*/
if (hctx)
blk_mq_run_hw_queue(hctx, false);
/*
* Retry tag allocation after running the hardware queue,
* as running the queue may also have found completions.
*/
tag = __bt_get(hctx, bt, last_tag, tags);
if (tag != -1)
break;
blk_mq_put_ctx(data->ctx);
io_schedule();
data->ctx = blk_mq_get_ctx(data->q);
data->hctx = data->q->mq_ops->map_queue(data->q,
data->ctx->cpu);
if (data->reserved) {
bt = &data->hctx->tags->breserved_tags;
} else {
last_tag = &data->ctx->last_tag;
hctx = data->hctx;
bt = &hctx->tags->bitmap_tags;
}
finish_wait(&bs->wait, &wait);
bs = bt_wait_ptr(bt, hctx);
} while (1);
finish_wait(&bs->wait, &wait);
return tag;
}
static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data)
{
int tag;
tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx,
&data->ctx->last_tag, data->hctx->tags);
if (tag >= 0)
return tag + data->hctx->tags->nr_reserved_tags;
return BLK_MQ_TAG_FAIL;
}
static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data)
{
int tag, zero = 0;
if (unlikely(!data->hctx->tags->nr_reserved_tags)) {
WARN_ON_ONCE(1);
return BLK_MQ_TAG_FAIL;
}
tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero,
data->hctx->tags);
if (tag < 0)
return BLK_MQ_TAG_FAIL;
return tag;
}
unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
{
if (!data->reserved)
return __blk_mq_get_tag(data);
return __blk_mq_get_reserved_tag(data);
}
static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt)
{
int i, wake_index;
wake_index = atomic_read(&bt->wake_index);
for (i = 0; i < BT_WAIT_QUEUES; i++) {
struct bt_wait_state *bs = &bt->bs[wake_index];
if (waitqueue_active(&bs->wait)) {
int o = atomic_read(&bt->wake_index);
if (wake_index != o)
atomic_cmpxchg(&bt->wake_index, o, wake_index);
return bs;
}
wake_index = bt_index_inc(wake_index);
}
return NULL;
}
static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag)
{
const int index = TAG_TO_INDEX(bt, tag);
struct bt_wait_state *bs;
int wait_cnt;
clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word);
/* Ensure that the wait list checks occur after clear_bit(). */
smp_mb();
bs = bt_wake_ptr(bt);
if (!bs)
return;
wait_cnt = atomic_dec_return(&bs->wait_cnt);
if (unlikely(wait_cnt < 0))
wait_cnt = atomic_inc_return(&bs->wait_cnt);
if (wait_cnt == 0) {
atomic_add(bt->wake_cnt, &bs->wait_cnt);
bt_index_atomic_inc(&bt->wake_index);
wake_up(&bs->wait);
}
}
void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag,
unsigned int *last_tag)
{
struct blk_mq_tags *tags = hctx->tags;
if (tag >= tags->nr_reserved_tags) {
const int real_tag = tag - tags->nr_reserved_tags;
BUG_ON(real_tag >= tags->nr_tags);
bt_clear_tag(&tags->bitmap_tags, real_tag);
if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO))
*last_tag = real_tag;
} else {
BUG_ON(tag >= tags->nr_reserved_tags);
bt_clear_tag(&tags->breserved_tags, tag);
}
}
static void bt_for_each(struct blk_mq_hw_ctx *hctx,
struct blk_mq_bitmap_tags *bt, unsigned int off,
busy_iter_fn *fn, void *data, bool reserved)
{
struct request *rq;
int bit, i;
for (i = 0; i < bt->map_nr; i++) {
struct blk_align_bitmap *bm = &bt->map[i];
for (bit = find_first_bit(&bm->word, bm->depth);
bit < bm->depth;
bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
rq = hctx->tags->rqs[off + bit];
if (rq->q == hctx->queue)
fn(hctx, rq, data, reserved);
}
off += (1 << bt->bits_per_word);
}
}
static void bt_tags_for_each(struct blk_mq_tags *tags,
struct blk_mq_bitmap_tags *bt, unsigned int off,
busy_tag_iter_fn *fn, void *data, bool reserved)
{
struct request *rq;
int bit, i;
if (!tags->rqs)
return;
for (i = 0; i < bt->map_nr; i++) {
struct blk_align_bitmap *bm = &bt->map[i];
for (bit = find_first_bit(&bm->word, bm->depth);
bit < bm->depth;
bit = find_next_bit(&bm->word, bm->depth, bit + 1)) {
rq = tags->rqs[off + bit];
fn(rq, data, reserved);
}
off += (1 << bt->bits_per_word);
}
}
void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
void *priv)
{
if (tags->nr_reserved_tags)
bt_tags_for_each(tags, &tags->breserved_tags, 0, fn, priv, true);
bt_tags_for_each(tags, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
false);
}
EXPORT_SYMBOL(blk_mq_all_tag_busy_iter);
void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn,
void *priv)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
struct blk_mq_tags *tags = hctx->tags;
/*
* If not software queues are currently mapped to this
* hardware queue, there's nothing to check
*/
if (!blk_mq_hw_queue_mapped(hctx))
continue;
if (tags->nr_reserved_tags)
bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true);
bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv,
false);
}
}
static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt)
{
unsigned int i, used;
for (i = 0, used = 0; i < bt->map_nr; i++) {
struct blk_align_bitmap *bm = &bt->map[i];
used += bitmap_weight(&bm->word, bm->depth);
}
return bt->depth - used;
}
static void bt_update_count(struct blk_mq_bitmap_tags *bt,
unsigned int depth)
{
unsigned int tags_per_word = 1U << bt->bits_per_word;
unsigned int map_depth = depth;
if (depth) {
int i;
for (i = 0; i < bt->map_nr; i++) {
bt->map[i].depth = min(map_depth, tags_per_word);
map_depth -= bt->map[i].depth;
}
}
bt->wake_cnt = BT_WAIT_BATCH;
if (bt->wake_cnt > depth / BT_WAIT_QUEUES)
bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES);
bt->depth = depth;
}
static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth,
int node, bool reserved)
{
int i;
bt->bits_per_word = ilog2(BITS_PER_LONG);
/*
* Depth can be zero for reserved tags, that's not a failure
* condition.
*/
if (depth) {
unsigned int nr, tags_per_word;
tags_per_word = (1 << bt->bits_per_word);
/*
* If the tag space is small, shrink the number of tags
* per word so we spread over a few cachelines, at least.
* If less than 4 tags, just forget about it, it's not
* going to work optimally anyway.
*/
if (depth >= 4) {
while (tags_per_word * 4 > depth) {
bt->bits_per_word--;
tags_per_word = (1 << bt->bits_per_word);
}
}
nr = ALIGN(depth, tags_per_word) / tags_per_word;
bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap),
GFP_KERNEL, node);
if (!bt->map)
return -ENOMEM;
bt->map_nr = nr;
}
bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL);
if (!bt->bs) {
kfree(bt->map);
bt->map = NULL;
return -ENOMEM;
}
bt_update_count(bt, depth);
for (i = 0; i < BT_WAIT_QUEUES; i++) {
init_waitqueue_head(&bt->bs[i].wait);
atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt);
}
return 0;
}
static void bt_free(struct blk_mq_bitmap_tags *bt)
{
kfree(bt->map);
kfree(bt->bs);
}
static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
int node, int alloc_policy)
{
unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
tags->alloc_policy = alloc_policy;
if (bt_alloc(&tags->bitmap_tags, depth, node, false))
goto enomem;
if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true))
goto enomem;
return tags;
enomem:
bt_free(&tags->bitmap_tags);
kfree(tags);
return NULL;
}
struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
unsigned int reserved_tags,
int node, int alloc_policy)
{
struct blk_mq_tags *tags;
if (total_tags > BLK_MQ_TAG_MAX) {
pr_err("blk-mq: tag depth too large\n");
return NULL;
}
tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
if (!tags)
return NULL;
if (!zalloc_cpumask_var(&tags->cpumask, GFP_KERNEL)) {
kfree(tags);
return NULL;
}
tags->nr_tags = total_tags;
tags->nr_reserved_tags = reserved_tags;
return blk_mq_init_bitmap_tags(tags, node, alloc_policy);
}
void blk_mq_free_tags(struct blk_mq_tags *tags)
{
bt_free(&tags->bitmap_tags);
bt_free(&tags->breserved_tags);
free_cpumask_var(tags->cpumask);
kfree(tags);
}
void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag)
{
unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;
*tag = prandom_u32() % depth;
}
int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth)
{
tdepth -= tags->nr_reserved_tags;
if (tdepth > tags->nr_tags)
return -EINVAL;
/*
* Don't need (or can't) update reserved tags here, they remain
* static and should never need resizing.
*/
bt_update_count(&tags->bitmap_tags, tdepth);
blk_mq_tag_wakeup_all(tags, false);
return 0;
}
/**
* blk_mq_unique_tag() - return a tag that is unique queue-wide
* @rq: request for which to compute a unique tag
*
* The tag field in struct request is unique per hardware queue but not over
* all hardware queues. Hence this function that returns a tag with the
* hardware context index in the upper bits and the per hardware queue tag in
* the lower bits.
*
* Note: When called for a request that is queued on a non-multiqueue request
* queue, the hardware context index is set to zero.
*/
u32 blk_mq_unique_tag(struct request *rq)
{
struct request_queue *q = rq->q;
struct blk_mq_hw_ctx *hctx;
int hwq = 0;
if (q->mq_ops) {
hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
hwq = hctx->queue_num;
}
return (hwq << BLK_MQ_UNIQUE_TAG_BITS) |
(rq->tag & BLK_MQ_UNIQUE_TAG_MASK);
}
EXPORT_SYMBOL(blk_mq_unique_tag);
ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
{
char *orig_page = page;
unsigned int free, res;
if (!tags)
return 0;
page += sprintf(page, "nr_tags=%u, reserved_tags=%u, "
"bits_per_word=%u\n",
tags->nr_tags, tags->nr_reserved_tags,
tags->bitmap_tags.bits_per_word);
free = bt_unused_tags(&tags->bitmap_tags);
res = bt_unused_tags(&tags->breserved_tags);
page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res);
page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues));
return page - orig_page;
}