Commit Graph

14265 Commits

Author SHA1 Message Date
Minchan Kim 69dc72f058 mm/zsmalloc.c: drop ZSMALLOC_PGTABLE_MAPPING
commit e91d8d78237de8d7120c320b3645b7100848f24d upstream.

While I was doing zram testing, I found sometimes decompression failed
since the compression buffer was corrupted.  With investigation, I found
below commit calls cond_resched unconditionally so it could make a
problem in atomic context if the task is reschedule.

  BUG: sleeping function called from invalid context at mm/vmalloc.c:108
  in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 946, name: memhog
  3 locks held by memhog/946:
   #0: ffff9d01d4b193e8 (&mm->mmap_lock#2){++++}-{4:4}, at: __mm_populate+0x103/0x160
   #1: ffffffffa3d53de0 (fs_reclaim){+.+.}-{0:0}, at: __alloc_pages_slowpath.constprop.0+0xa98/0x1160
   #2: ffff9d01d56b8110 (&zspage->lock){.+.+}-{3:3}, at: zs_map_object+0x8e/0x1f0
  CPU: 0 PID: 946 Comm: memhog Not tainted 5.9.3-00011-gc5bfc0287345-dirty #316
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1 04/01/2014
  Call Trace:
    unmap_kernel_range_noflush+0x2eb/0x350
    unmap_kernel_range+0x14/0x30
    zs_unmap_object+0xd5/0xe0
    zram_bvec_rw.isra.0+0x38c/0x8e0
    zram_rw_page+0x90/0x101
    bdev_write_page+0x92/0xe0
    __swap_writepage+0x94/0x4a0
    pageout+0xe3/0x3a0
    shrink_page_list+0xb94/0xd60
    shrink_inactive_list+0x158/0x460

We can fix this by removing the ZSMALLOC_PGTABLE_MAPPING feature (which
contains the offending calling code) from zsmalloc.

Even though this option showed some amount improvement(e.g., 30%) in
some arm32 platforms, it has been headache to maintain since it have
abused APIs[1](e.g., unmap_kernel_range in atomic context).

Since we are approaching to deprecate 32bit machines and already made
the config option available for only builtin build since v5.8, lastly it
has been not default option in zsmalloc, it's time to drop the option
for better maintenance.

[1] http://lore.kernel.org/linux-mm/20201105170249.387069-1-minchan@kernel.org

Fixes: e47110e90584 ("mm/vunmap: add cond_resched() in vunmap_pmd_range")
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Harish Sriram <harish@linux.ibm.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201117202916.GA3856507@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-16 10:56:59 +01:00
Qian Cai a2a163f70b mm/swapfile: do not sleep with a spin lock held
commit b11a76b37a5aa7b07c3e3eeeaae20b25475bddd3 upstream.

We can't call kvfree() with a spin lock held, so defer it.  Fixes a
might_sleep() runtime warning.

Fixes: 873d7bcfd0 ("mm/swapfile.c: use kvzalloc for swap_info_struct allocation")
Signed-off-by: Qian Cai <qcai@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201202151549.10350-1-qcai@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-11 13:23:31 +01:00
Yang Shi 4870004d30 mm: list_lru: set shrinker map bit when child nr_items is not zero
commit 8199be001a470209f5c938570cc199abb012fe53 upstream.

When investigating a slab cache bloat problem, significant amount of
negative dentry cache was seen, but confusingly they neither got shrunk
by reclaimer (the host has very tight memory) nor be shrunk by dropping
cache.  The vmcore shows there are over 14M negative dentry objects on
lru, but tracing result shows they were even not scanned at all.

Further investigation shows the memcg's vfs shrinker_map bit is not set.
So the reclaimer or dropping cache just skip calling vfs shrinker.  So
we have to reboot the hosts to get the memory back.

I didn't manage to come up with a reproducer in test environment, and
the problem can't be reproduced after rebooting.  But it seems there is
race between shrinker map bit clear and reparenting by code inspection.
The hypothesis is elaborated as below.

The memcg hierarchy on our production environment looks like:

                root
               /    \
          system   user

The main workloads are running under user slice's children, and it
creates and removes memcg frequently.  So reparenting happens very often
under user slice, but no task is under user slice directly.

So with the frequent reparenting and tight memory pressure, the below
hypothetical race condition may happen:

       CPU A                            CPU B
reparent
    dst->nr_items == 0
                                 shrinker:
                                     total_objects == 0
    add src->nr_items to dst
    set_bit
                                     return SHRINK_EMPTY
                                     clear_bit
child memcg offline
    replace child's kmemcg_id with
    parent's (in memcg_offline_kmem())
                                  list_lru_del() between shrinker runs
                                     see parent's kmemcg_id
                                     dec dst->nr_items
reparent again
    dst->nr_items may go negative
    due to concurrent list_lru_del()

                                 The second run of shrinker:
                                     read nr_items without any
                                     synchronization, so it may
                                     see intermediate negative
                                     nr_items then total_objects
                                     may return 0 coincidently

                                     keep the bit cleared
    dst->nr_items != 0
    skip set_bit
    add scr->nr_item to dst

After this point dst->nr_item may never go zero, so reparenting will not
set shrinker_map bit anymore.  And since there is no task under user
slice directly, so no new object will be added to its lru to set the
shrinker map bit either.  That bit is kept cleared forever.

How does list_lru_del() race with reparenting? It is because reparenting
replaces children's kmemcg_id to parent's without protecting from
nlru->lock, so list_lru_del() may see parent's kmemcg_id but actually
deleting items from child's lru, but dec'ing parent's nr_items, so the
parent's nr_items may go negative as commit 2788cf0c40 ("memcg:
reparent list_lrus and free kmemcg_id on css offline") says.

Since it is impossible that dst->nr_items goes negative and
src->nr_items goes zero at the same time, so it seems we could set the
shrinker map bit iff src->nr_items != 0.  We could synchronize
list_lru_count_one() and reparenting with nlru->lock, but it seems
checking src->nr_items in reparenting is the simplest and avoids lock
contention.

Fixes: fae91d6d8b ("mm/list_lru.c: set bit in memcg shrinker bitmap on first list_lru item appearance")
Suggested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>	[4.19]
Link: https://lkml.kernel.org/r/20201202171749.264354-1-shy828301@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-11 13:23:31 +01:00
Charan Teja Reddy 10ca291c77 mm, page_alloc: skip ->waternark_boost for atomic order-0 allocations
commit f80b08fc44536a311a9f3182e50f318b79076425 upstream.

When boosting is enabled, it is observed that rate of atomic order-0
allocation failures are high due to the fact that free levels in the
system are checked with ->watermark_boost offset.  This is not a problem
for sleepable allocations but for atomic allocations which looks like
regression.

This problem is seen frequently on system setup of Android kernel running
on Snapdragon hardware with 4GB RAM size.  When no extfrag event occurred
in the system, ->watermark_boost factor is zero, thus the watermark
configurations in the system are:

   _watermark = (
          [WMARK_MIN] = 1272, --> ~5MB
          [WMARK_LOW] = 9067, --> ~36MB
          [WMARK_HIGH] = 9385), --> ~38MB
   watermark_boost = 0

After launching some memory hungry applications in Android which can cause
extfrag events in the system to an extent that ->watermark_boost can be
set to max i.e.  default boost factor makes it to 150% of high watermark.

   _watermark = (
          [WMARK_MIN] = 1272, --> ~5MB
          [WMARK_LOW] = 9067, --> ~36MB
          [WMARK_HIGH] = 9385), --> ~38MB
   watermark_boost = 14077, -->~57MB

With default system configuration, for an atomic order-0 allocation to
succeed, having free memory of ~2MB will suffice.  But boosting makes the
min_wmark to ~61MB thus for an atomic order-0 allocation to be successful
system should have minimum of ~23MB of free memory(from calculations of
zone_watermark_ok(), min = 3/4(min/2)).  But failures are observed despite
system is having ~20MB of free memory.  In the testing, this is
reproducible as early as first 300secs since boot and with furtherlowram
configurations(<2GB) it is observed as early as first 150secs since boot.

These failures can be avoided by excluding the ->watermark_boost in
watermark caluculations for atomic order-0 allocations.

[akpm@linux-foundation.org: fix comment grammar, reflow comment]
[charante@codeaurora.org: fix suggested by Mel Gorman]
  Link: http://lkml.kernel.org/r/31556793-57b1-1c21-1a9d-22674d9bd938@codeaurora.org

Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1589882284-21010-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ralph Siemsen <ralph.siemsen@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-24 13:29:24 +01:00
Gerald Schaefer a2761473d5 mm/userfaultfd: do not access vma->vm_mm after calling handle_userfault()
commit bfe8cc1db02ab243c62780f17fc57f65bde0afe1 upstream.

Alexander reported a syzkaller / KASAN finding on s390, see below for
complete output.

In do_huge_pmd_anonymous_page(), the pre-allocated pagetable will be
freed in some cases.  In the case of userfaultfd_missing(), this will
happen after calling handle_userfault(), which might have released the
mmap_lock.  Therefore, the following pte_free(vma->vm_mm, pgtable) will
access an unstable vma->vm_mm, which could have been freed or re-used
already.

For all architectures other than s390 this will go w/o any negative
impact, because pte_free() simply frees the page and ignores the
passed-in mm.  The implementation for SPARC32 would also access
mm->page_table_lock for pte_free(), but there is no THP support in
SPARC32, so the buggy code path will not be used there.

For s390, the mm->context.pgtable_list is being used to maintain the 2K
pagetable fragments, and operating on an already freed or even re-used
mm could result in various more or less subtle bugs due to list /
pagetable corruption.

Fix this by calling pte_free() before handle_userfault(), similar to how
it is already done in __do_huge_pmd_anonymous_page() for the WRITE /
non-huge_zero_page case.

Commit 6b251fc96c ("userfaultfd: call handle_userfault() for
userfaultfd_missing() faults") actually introduced both, the
do_huge_pmd_anonymous_page() and also __do_huge_pmd_anonymous_page()
changes wrt to calling handle_userfault(), but only in the latter case
it put the pte_free() before calling handle_userfault().

  BUG: KASAN: use-after-free in do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744
  Read of size 8 at addr 00000000962d6988 by task syz-executor.0/9334

  CPU: 1 PID: 9334 Comm: syz-executor.0 Not tainted 5.10.0-rc1-syzkaller-07083-g4c9720875573 #0
  Hardware name: IBM 3906 M04 701 (KVM/Linux)
  Call Trace:
    do_huge_pmd_anonymous_page+0xcda/0xd90 mm/huge_memory.c:744
    create_huge_pmd mm/memory.c:4256 [inline]
    __handle_mm_fault+0xe6e/0x1068 mm/memory.c:4480
    handle_mm_fault+0x288/0x748 mm/memory.c:4607
    do_exception+0x394/0xae0 arch/s390/mm/fault.c:479
    do_dat_exception+0x34/0x80 arch/s390/mm/fault.c:567
    pgm_check_handler+0x1da/0x22c arch/s390/kernel/entry.S:706
    copy_from_user_mvcos arch/s390/lib/uaccess.c:111 [inline]
    raw_copy_from_user+0x3a/0x88 arch/s390/lib/uaccess.c:174
    _copy_from_user+0x48/0xa8 lib/usercopy.c:16
    copy_from_user include/linux/uaccess.h:192 [inline]
    __do_sys_sigaltstack kernel/signal.c:4064 [inline]
    __s390x_sys_sigaltstack+0xc8/0x240 kernel/signal.c:4060
    system_call+0xe0/0x28c arch/s390/kernel/entry.S:415

  Allocated by task 9334:
    slab_alloc_node mm/slub.c:2891 [inline]
    slab_alloc mm/slub.c:2899 [inline]
    kmem_cache_alloc+0x118/0x348 mm/slub.c:2904
    vm_area_dup+0x9c/0x2b8 kernel/fork.c:356
    __split_vma+0xba/0x560 mm/mmap.c:2742
    split_vma+0xca/0x108 mm/mmap.c:2800
    mlock_fixup+0x4ae/0x600 mm/mlock.c:550
    apply_vma_lock_flags+0x2c6/0x398 mm/mlock.c:619
    do_mlock+0x1aa/0x718 mm/mlock.c:711
    __do_sys_mlock2 mm/mlock.c:738 [inline]
    __s390x_sys_mlock2+0x86/0xa8 mm/mlock.c:728
    system_call+0xe0/0x28c arch/s390/kernel/entry.S:415

  Freed by task 9333:
    slab_free mm/slub.c:3142 [inline]
    kmem_cache_free+0x7c/0x4b8 mm/slub.c:3158
    __vma_adjust+0x7b2/0x2508 mm/mmap.c:960
    vma_merge+0x87e/0xce0 mm/mmap.c:1209
    userfaultfd_release+0x412/0x6b8 fs/userfaultfd.c:868
    __fput+0x22c/0x7a8 fs/file_table.c:281
    task_work_run+0x200/0x320 kernel/task_work.c:151
    tracehook_notify_resume include/linux/tracehook.h:188 [inline]
    do_notify_resume+0x100/0x148 arch/s390/kernel/signal.c:538
    system_call+0xe6/0x28c arch/s390/kernel/entry.S:416

  The buggy address belongs to the object at 00000000962d6948 which belongs to the cache vm_area_struct of size 200
  The buggy address is located 64 bytes inside of 200-byte region [00000000962d6948, 00000000962d6a10)
  The buggy address belongs to the page: page:00000000313a09fe refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x962d6 flags: 0x3ffff00000000200(slab)
  raw: 3ffff00000000200 000040000257e080 0000000c0000000c 000000008020ba00
  raw: 0000000000000000 000f001e00000000 ffffffff00000001 0000000096959501
  page dumped because: kasan: bad access detected
  page->mem_cgroup:0000000096959501

  Memory state around the buggy address:
   00000000962d6880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   00000000962d6900: 00 fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb
  >00000000962d6980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                        ^
   00000000962d6a00: fb fb fc fc fc fc fc fc fc fc 00 00 00 00 00 00
   00000000962d6a80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  ==================================================================

Fixes: 6b251fc96c ("userfaultfd: call handle_userfault() for userfaultfd_missing() faults")
Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: <stable@vger.kernel.org>	[4.3+]
Link: https://lkml.kernel.org/r/20201110190329.11920-1-gerald.schaefer@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-24 13:29:24 +01:00
Muchun Song 173e373223 mm: memcg/slab: fix root memcg vmstats
commit 8faeb1ffd79593c9cd8a2a80ecdda371e3b826cb upstream.

If we reparent the slab objects to the root memcg, when we free the slab
object, we need to update the per-memcg vmstats to keep it correct for
the root memcg.  Now this at least affects the vmstat of
NR_KERNEL_STACK_KB for !CONFIG_VMAP_STACK when the thread stack size is
smaller than the PAGE_SIZE.

David said:
 "I assume that without this fix that the root memcg's vmstat would
  always be inflated if we reparented"

Fixes: ec9f02384f ("mm: workingset: fix vmstat counters for shadow nodes")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: <stable@vger.kernel.org>	[5.3+]
Link: https://lkml.kernel.org/r/20201110031015.15715-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-24 13:29:24 +01:00
Dongli Zhang f8e5578dca page_frag: Recover from memory pressure
[ Upstream commit d8c19014bba8f565d8a2f1f46b4e38d1d97bf1a7 ]

The ethernet driver may allocate skb (and skb->data) via napi_alloc_skb().
This ends up to page_frag_alloc() to allocate skb->data from
page_frag_cache->va.

During the memory pressure, page_frag_cache->va may be allocated as
pfmemalloc page. As a result, the skb->pfmemalloc is always true as
skb->data is from page_frag_cache->va. The skb will be dropped if the
sock (receiver) does not have SOCK_MEMALLOC. This is expected behaviour
under memory pressure.

However, once kernel is not under memory pressure any longer (suppose large
amount of memory pages are just reclaimed), the page_frag_alloc() may still
re-use the prior pfmemalloc page_frag_cache->va to allocate skb->data. As a
result, the skb->pfmemalloc is always true unless page_frag_cache->va is
re-allocated, even if the kernel is not under memory pressure any longer.

Here is how kernel runs into issue.

1. The kernel is under memory pressure and allocation of
PAGE_FRAG_CACHE_MAX_ORDER in __page_frag_cache_refill() will fail. Instead,
the pfmemalloc page is allocated for page_frag_cache->va.

2: All skb->data from page_frag_cache->va (pfmemalloc) will have
skb->pfmemalloc=true. The skb will always be dropped by sock without
SOCK_MEMALLOC. This is an expected behaviour.

3. Suppose a large amount of pages are reclaimed and kernel is not under
memory pressure any longer. We expect skb->pfmemalloc drop will not happen.

4. Unfortunately, page_frag_alloc() does not proactively re-allocate
page_frag_alloc->va and will always re-use the prior pfmemalloc page. The
skb->pfmemalloc is always true even kernel is not under memory pressure any
longer.

Fix this by freeing and re-allocating the page instead of recycling it.

References: https://lore.kernel.org/lkml/20201103193239.1807-1-dongli.zhang@oracle.com/
References: https://lore.kernel.org/linux-mm/20201105042140.5253-1-willy@infradead.org/
Suggested-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Cc: Bert Barbe <bert.barbe@oracle.com>
Cc: Rama Nichanamatlu <rama.nichanamatlu@oracle.com>
Cc: Venkat Venkatsubra <venkat.x.venkatsubra@oracle.com>
Cc: Manjunath Patil <manjunath.b.patil@oracle.com>
Cc: Joe Jin <joe.jin@oracle.com>
Cc: SRINIVAS <srinivas.eeda@oracle.com>
Fixes: 79930f5892 ("net: do not deplete pfmemalloc reserve")
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20201115201029.11903-1-dongli.zhang@oracle.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-24 13:28:58 +01:00
Laurent Dufour bd4d106f31 mm/slub: fix panic in slab_alloc_node()
commit 22e4663e916321b72972c69ca0c6b962f529bd78 upstream.

While doing memory hot-unplug operation on a PowerPC VM running 1024 CPUs
with 11TB of ram, I hit the following panic:

    BUG: Kernel NULL pointer dereference on read at 0x00000007
    Faulting instruction address: 0xc000000000456048
    Oops: Kernel access of bad area, sig: 11 [#2]
    LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS= 2048 NUMA pSeries
    Modules linked in: rpadlpar_io rpaphp
    CPU: 160 PID: 1 Comm: systemd Tainted: G      D           5.9.0 #1
    NIP:  c000000000456048 LR: c000000000455fd4 CTR: c00000000047b350
    REGS: c00006028d1b77a0 TRAP: 0300   Tainted: G      D            (5.9.0)
    MSR:  8000000000009033 <SF,EE,ME,IR,DR,RI,LE>  CR: 24004228  XER: 00000000
    CFAR: c00000000000f1b0 DAR: 0000000000000007 DSISR: 40000000 IRQMASK: 0
    GPR00: c000000000455fd4 c00006028d1b7a30 c000000001bec800 0000000000000000
    GPR04: 0000000000000dc0 0000000000000000 00000000000374ef c00007c53df99320
    GPR08: 000007c53c980000 0000000000000000 000007c53c980000 0000000000000000
    GPR12: 0000000000004400 c00000001e8e4400 0000000000000000 0000000000000f6a
    GPR16: 0000000000000000 c000000001c25930 c000000001d62528 00000000000000c1
    GPR20: c000000001d62538 c00006be469e9000 0000000fffffffe0 c0000000003c0ff8
    GPR24: 0000000000000018 0000000000000000 0000000000000dc0 0000000000000000
    GPR28: c00007c513755700 c000000001c236a4 c00007bc4001f800 0000000000000001
    NIP [c000000000456048] __kmalloc_node+0x108/0x790
    LR [c000000000455fd4] __kmalloc_node+0x94/0x790
    Call Trace:
      kvmalloc_node+0x58/0x110
      mem_cgroup_css_online+0x10c/0x270
      online_css+0x48/0xd0
      cgroup_apply_control_enable+0x2c4/0x470
      cgroup_mkdir+0x408/0x5f0
      kernfs_iop_mkdir+0x90/0x100
      vfs_mkdir+0x138/0x250
      do_mkdirat+0x154/0x1c0
      system_call_exception+0xf8/0x200
      system_call_common+0xf0/0x27c
    Instruction dump:
    e93e0000 e90d0030 39290008 7cc9402a e94d0030 e93e0000 7ce95214 7f89502a
    2fbc0000 419e0018 41920230 e9270010 <89290007> 7f994800 419e0220 7ee6bb78

This pointing to the following code:

    mm/slub.c:2851
            if (unlikely(!object || !node_match(page, node))) {
    c000000000456038:       00 00 bc 2f     cmpdi   cr7,r28,0
    c00000000045603c:       18 00 9e 41     beq     cr7,c000000000456054 <__kmalloc_node+0x114>
    node_match():
    mm/slub.c:2491
            if (node != NUMA_NO_NODE && page_to_nid(page) != node)
    c000000000456040:       30 02 92 41     beq     cr4,c000000000456270 <__kmalloc_node+0x330>
    page_to_nid():
    include/linux/mm.h:1294
    c000000000456044:       10 00 27 e9     ld      r9,16(r7)
    c000000000456048:       07 00 29 89     lbz     r9,7(r9)	<<<< r9 = NULL
    node_match():
    mm/slub.c:2491
    c00000000045604c:       00 48 99 7f     cmpw    cr7,r25,r9
    c000000000456050:       20 02 9e 41     beq     cr7,c000000000456270 <__kmalloc_node+0x330>

The panic occurred in slab_alloc_node() when checking for the page's node:

	object = c->freelist;
	page = c->page;
	if (unlikely(!object || !node_match(page, node))) {
		object = __slab_alloc(s, gfpflags, node, addr, c);
		stat(s, ALLOC_SLOWPATH);

The issue is that object is not NULL while page is NULL which is odd but
may happen if the cache flush happened after loading object but before
loading page.  Thus checking for the page pointer is required too.

The cache flush is done through an inter processor interrupt when a
piece of memory is off-lined.  That interrupt is triggered when a memory
hot-unplug operation is initiated and offline_pages() is calling the
slub's MEM_GOING_OFFLINE callback slab_mem_going_offline_callback()
which is calling flush_cpu_slab().  If that interrupt is caught between
the reading of c->freelist and the reading of c->page, this could lead
to such a situation.  That situation is expected and the later call to
this_cpu_cmpxchg_double() will detect the change to c->freelist and redo
the whole operation.

In commit 6159d0f5c0 ("mm/slub.c: page is always non-NULL in
node_match()") check on the page pointer has been removed assuming that
page is always valid when it is called.  It happens that this is not
true in that particular case, so check for page before calling
node_match() here.

Fixes: 6159d0f5c0 ("mm/slub.c: page is always non-NULL in node_match()")
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201027190406.33283-1-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-18 19:20:30 +01:00
Shijie Luo c1f729c7de mm: mempolicy: fix potential pte_unmap_unlock pte error
commit 3f08842098e842c51e3b97d0dcdebf810b32558e upstream.

When flags in queue_pages_pte_range don't have MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL bits, code breaks and passing origin pte - 1 to
pte_unmap_unlock seems like not a good idea.

queue_pages_pte_range can run in MPOL_MF_MOVE_ALL mode which doesn't
migrate misplaced pages but returns with EIO when encountering such a
page.  Since commit a7f40cfe3b ("mm: mempolicy: make mbind() return
-EIO when MPOL_MF_STRICT is specified") and early break on the first pte
in the range results in pte_unmap_unlock on an underflow pte.  This can
lead to lockups later on when somebody tries to lock the pte resp.
page_table_lock again..

Fixes: a7f40cfe3b ("mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified")
Signed-off-by: Shijie Luo <luoshijie1@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Feilong Lin <linfeilong@huawei.com>
Cc: Shijie Luo <luoshijie1@huawei.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201019074853.50856-1-luoshijie1@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-10 12:37:27 +01:00
Matthew Wilcox (Oracle) a3a45516c7 mm/page_owner: change split_page_owner to take a count
[ Upstream commit 8fb156c9ee2db94f7127c930c89917634a1a9f56 ]

The implementation of split_page_owner() prefers a count rather than the
old order of the page.  When we support a variable size THP, we won't
have the order at this point, but we will have the number of pages.
So change the interface to what the caller and callee would prefer.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: SeongJae Park <sjpark@amazon.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Link: https://lkml.kernel.org/r/20200908195539.25896-4-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-29 09:57:52 +01:00
Suren Baghdasaryan 91e4c12a3b mm, oom_adj: don't loop through tasks in __set_oom_adj when not necessary
[ Upstream commit 67197a4f28d28d0b073ab0427b03cb2ee5382578 ]

Currently __set_oom_adj loops through all processes in the system to keep
oom_score_adj and oom_score_adj_min in sync between processes sharing
their mm.  This is done for any task with more that one mm_users, which
includes processes with multiple threads (sharing mm and signals).
However for such processes the loop is unnecessary because their signal
structure is shared as well.

Android updates oom_score_adj whenever a tasks changes its role
(background/foreground/...) or binds to/unbinds from a service, making it
more/less important.  Such operation can happen frequently.  We noticed
that updates to oom_score_adj became more expensive and after further
investigation found out that the patch mentioned in "Fixes" introduced a
regression.  Using Pixel 4 with a typical Android workload, write time to
oom_score_adj increased from ~3.57us to ~362us.  Moreover this regression
linearly depends on the number of multi-threaded processes running on the
system.

Mark the mm with a new MMF_MULTIPROCESS flag bit when task is created with
(CLONE_VM && !CLONE_THREAD && !CLONE_VFORK).  Change __set_oom_adj to use
MMF_MULTIPROCESS instead of mm_users to decide whether oom_score_adj
update should be synchronized between multiple processes.  To prevent
races between clone() and __set_oom_adj(), when oom_score_adj of the
process being cloned might be modified from userspace, we use
oom_adj_mutex.  Its scope is changed to global.

The combination of (CLONE_VM && !CLONE_THREAD) is rarely used except for
the case of vfork().  To prevent performance regressions of vfork(), we
skip taking oom_adj_mutex and setting MMF_MULTIPROCESS when CLONE_VFORK is
specified.  Clearing the MMF_MULTIPROCESS flag (when the last process
sharing the mm exits) is left out of this patch to keep it simple and
because it is believed that this threading model is rare.  Should there
ever be a need for optimizing that case as well, it can be done by hooking
into the exit path, likely following the mm_update_next_owner pattern.

With the combination of (CLONE_VM && !CLONE_THREAD && !CLONE_VFORK) being
quite rare, the regression is gone after the change is applied.

[surenb@google.com: v3]
  Link: https://lkml.kernel.org/r/20200902012558.2335613-1-surenb@google.com

Fixes: 44a70adec9 ("mm, oom_adj: make sure processes sharing mm have same view of oom_score_adj")
Reported-by: Tim Murray <timmurray@google.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Eugene Syromiatnikov <esyr@redhat.com>
Cc: Christian Kellner <christian@kellner.me>
Cc: Adrian Reber <areber@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Alexey Gladkov <gladkov.alexey@gmail.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Bernd Edlinger <bernd.edlinger@hotmail.de>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200824153036.3201505-1-surenb@google.com
Debugged-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-29 09:57:45 +01:00
Ralph Campbell 9a1656f1d1 mm/memcg: fix device private memcg accounting
[ Upstream commit 9a137153fc8798a89d8fce895cd0a06ea5b8e37c ]

The code in mc_handle_swap_pte() checks for non_swap_entry() and returns
NULL before checking is_device_private_entry() so device private pages are
never handled.  Fix this by checking for non_swap_entry() after handling
device private swap PTEs.

I assume the memory cgroup accounting would be off somehow when moving
a process to another memory cgroup.  Currently, the device private page
is charged like a normal anonymous page when allocated and is uncharged
when the page is freed so I think that path is OK.

Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Link: https://lkml.kernel.org/r/20201009215952.2726-1-rcampbell@nvidia.com
xFixes: c733a82874 ("mm/memcontrol: support MEMORY_DEVICE_PRIVATE")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-29 09:57:45 +01:00
Miaohe Lin 04fabdfcbf mm/swapfile.c: fix potential memory leak in sys_swapon
[ Upstream commit 822bca52ee7eb279acfba261a423ed7ac47d6f73 ]

If we failed to drain inode, we would forget to free the swap address
space allocated by init_swap_address_space() above.

Fixes: dc617f29db ("vfs: don't allow writes to swap files")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Link: https://lkml.kernel.org/r/20200930101803.53884-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-29 09:57:45 +01:00
Alexei Starovoitov d911c0e9fc mm/error_inject: Fix allow_error_inject function signatures.
[ Upstream commit 76cd61739fd107a7f7ec4c24a045e98d8ee150f0 ]

'static' and 'static noinline' function attributes make no guarantees that
gcc/clang won't optimize them. The compiler may decide to inline 'static'
function and in such case ALLOW_ERROR_INJECT becomes meaningless. The compiler
could have inlined __add_to_page_cache_locked() in one callsite and didn't
inline in another. In such case injecting errors into it would cause
unpredictable behavior. It's worse with 'static noinline' which won't be
inlined, but it still can be optimized. Like the compiler may decide to remove
one argument or constant propagate the value depending on the callsite.

To avoid such issues make sure that these functions are global noinline.

Fixes: af3b854492 ("mm/page_alloc.c: allow error injection")
Fixes: cfcbfb1382 ("mm/filemap.c: enable error injection at add_to_page_cache()")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Link: https://lore.kernel.org/bpf/20200827220114.69225-2-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-29 09:57:37 +01:00
Vijay Balakrishna 2729afe179 mm: khugepaged: recalculate min_free_kbytes after memory hotplug as expected by khugepaged
commit 4aab2be0983031a05cb4a19696c9da5749523426 upstream.

When memory is hotplug added or removed the min_free_kbytes should be
recalculated based on what is expected by khugepaged.  Currently after
hotplug, min_free_kbytes will be set to a lower default and higher
default set when THP enabled is lost.

This change restores min_free_kbytes as expected for THP consumers.

[vijayb@linux.microsoft.com: v5]
  Link: https://lkml.kernel.org/r/1601398153-5517-1-git-send-email-vijayb@linux.microsoft.com

Fixes: f000565adb ("thp: set recommended min free kbytes")
Signed-off-by: Vijay Balakrishna <vijayb@linux.microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Allen Pais <apais@microsoft.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/1600305709-2319-2-git-send-email-vijayb@linux.microsoft.com
Link: https://lkml.kernel.org/r/1600204258-13683-1-git-send-email-vijayb@linux.microsoft.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-14 10:33:05 +02:00
Hugh Dickins 5c62d33531 mm/khugepaged: fix filemap page_to_pgoff(page) != offset
commit 033b5d77551167f8c24ca862ce83d3e0745f9245 upstream.

There have been elusive reports of filemap_fault() hitting its
VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page) on kernels built
with CONFIG_READ_ONLY_THP_FOR_FS=y.

Suren has hit it on a kernel with CONFIG_READ_ONLY_THP_FOR_FS=y and
CONFIG_NUMA is not set: and he has analyzed it down to how khugepaged
without NUMA reuses the same huge page after collapse_file() failed
(whereas NUMA targets its allocation to the respective node each time).
And most of us were usually testing with CONFIG_NUMA=y kernels.

collapse_file(old start)
  new_page = khugepaged_alloc_page(hpage)
  __SetPageLocked(new_page)
  new_page->index = start // hpage->index=old offset
  new_page->mapping = mapping
  xas_store(&xas, new_page)

                          filemap_fault
                            page = find_get_page(mapping, offset)
                            // if offset falls inside hpage then
                            // compound_head(page) == hpage
                            lock_page_maybe_drop_mmap()
                              __lock_page(page)

  // collapse fails
  xas_store(&xas, old page)
  new_page->mapping = NULL
  unlock_page(new_page)

collapse_file(new start)
  new_page = khugepaged_alloc_page(hpage)
  __SetPageLocked(new_page)
  new_page->index = start // hpage->index=new offset
  new_page->mapping = mapping // mapping becomes valid again

                            // since compound_head(page) == hpage
                            // page_to_pgoff(page) got changed
                            VM_BUG_ON_PAGE(page_to_pgoff(page) != offset)

An initial patch replaced __SetPageLocked() by lock_page(), which did
fix the race which Suren illustrates above.  But testing showed that it's
not good enough: if the racing task's __lock_page() gets delayed long
after its find_get_page(), then it may follow collapse_file(new start)'s
successful final unlock_page(), and crash on the same VM_BUG_ON_PAGE.

It could be fixed by relaxing filemap_fault()'s VM_BUG_ON_PAGE to a
check and retry (as is done for mapping), with similar relaxations in
find_lock_entry() and pagecache_get_page(): but it's not obvious what
else might get caught out; and khugepaged non-NUMA appears to be unique
in exposing a page to page cache, then revoking, without going through
a full cycle of freeing before reuse.

Instead, non-NUMA khugepaged_prealloc_page() release the old page
if anyone else has a reference to it (1% of cases when I tested).

Although never reported on huge tmpfs, I believe its find_lock_entry()
has been at similar risk; but huge tmpfs does not rely on khugepaged
for its normal working nearly so much as READ_ONLY_THP_FOR_FS does.

Reported-by: Denis Lisov <dennis.lissov@gmail.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=206569
Link: https://lore.kernel.org/linux-mm/?q=20200219144635.3b7417145de19b65f258c943%40linux-foundation.org
Reported-by: Qian Cai <cai@lca.pw>
Link: https://lore.kernel.org/linux-xfs/?q=20200616013309.GB815%40lca.pw
Reported-and-analyzed-by: Suren Baghdasaryan <surenb@google.com>
Fixes: 87c460a0bd ("mm/khugepaged: collapse_shmem() without freezing new_page")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org # v4.9+
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-14 10:33:00 +02:00
Jason Liu 2f68e5475b Merge tag 'v5.4.70' into imx_5.4.y
* tag 'v5.4.70': (3051 commits)
  Linux 5.4.70
  netfilter: ctnetlink: add a range check for l3/l4 protonum
  ep_create_wakeup_source(): dentry name can change under you...
  ...

 Conflicts:
	arch/arm/mach-imx/pm-imx6.c
	arch/arm64/boot/dts/freescale/imx8mm-evk.dts
	arch/arm64/boot/dts/freescale/imx8mn-ddr4-evk.dts
	drivers/crypto/caam/caamalg.c
	drivers/gpu/drm/imx/dw_hdmi-imx.c
	drivers/gpu/drm/imx/imx-ldb.c
	drivers/gpu/drm/imx/ipuv3/ipuv3-crtc.c
	drivers/mmc/host/sdhci-esdhc-imx.c
	drivers/net/ethernet/freescale/dpaa2/dpaa2-eth.c
	drivers/net/ethernet/freescale/enetc/enetc.c
	drivers/net/ethernet/freescale/enetc/enetc_pf.c
	drivers/thermal/imx_thermal.c
	drivers/usb/cdns3/ep0.c
	drivers/xen/swiotlb-xen.c
	sound/soc/fsl/fsl_esai.c
	sound/soc/fsl/fsl_sai.c

Signed-off-by: Jason Liu <jason.hui.liu@nxp.com>
2020-10-08 17:46:51 +08:00
Laurent Dufour 9626c1a637 mm: don't rely on system state to detect hot-plug operations
commit f85086f95fa36194eb0db5cd5c12e56801b98523 upstream.

In register_mem_sect_under_node() the system_state's value is checked to
detect whether the call is made during boot time or during an hot-plug
operation.  Unfortunately, that check against SYSTEM_BOOTING is wrong
because regular memory is registered at SYSTEM_SCHEDULING state.  In
addition, memory hot-plug operation can be triggered at this system
state by the ACPI [1].  So checking against the system state is not
enough.

The consequence is that on system with interleaved node's ranges like this:

 Early memory node ranges
   node   1: [mem 0x0000000000000000-0x000000011fffffff]
   node   2: [mem 0x0000000120000000-0x000000014fffffff]
   node   1: [mem 0x0000000150000000-0x00000001ffffffff]
   node   0: [mem 0x0000000200000000-0x000000048fffffff]
   node   2: [mem 0x0000000490000000-0x00000007ffffffff]

This can be seen on PowerPC LPAR after multiple memory hot-plug and
hot-unplug operations are done.  At the next reboot the node's memory
ranges can be interleaved and since the call to link_mem_sections() is
made in topology_init() while the system is in the SYSTEM_SCHEDULING
state, the node's id is not checked, and the sections registered to
multiple nodes:

  $ ls -l /sys/devices/system/memory/memory21/node*
  total 0
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node1 -> ../../node/node1
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node2 -> ../../node/node2

In that case, the system is able to boot but if later one of theses
memory blocks is hot-unplugged and then hot-plugged, the sysfs
inconsistency is detected and this is triggering a BUG_ON():

  kernel BUG at /Users/laurent/src/linux-ppc/mm/memory_hotplug.c:1084!
  Oops: Exception in kernel mode, sig: 5 [#1]
  LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
  Modules linked in: rpadlpar_io rpaphp pseries_rng rng_core vmx_crypto gf128mul binfmt_misc ip_tables x_tables xfs libcrc32c crc32c_vpmsum autofs4
  CPU: 8 PID: 10256 Comm: drmgr Not tainted 5.9.0-rc1+ #25
  Call Trace:
    add_memory_resource+0x23c/0x340 (unreliable)
    __add_memory+0x5c/0xf0
    dlpar_add_lmb+0x1b4/0x500
    dlpar_memory+0x1f8/0xb80
    handle_dlpar_errorlog+0xc0/0x190
    dlpar_store+0x198/0x4a0
    kobj_attr_store+0x30/0x50
    sysfs_kf_write+0x64/0x90
    kernfs_fop_write+0x1b0/0x290
    vfs_write+0xe8/0x290
    ksys_write+0xdc/0x130
    system_call_exception+0x160/0x270
    system_call_common+0xf0/0x27c

This patch addresses the root cause by not relying on the system_state
value to detect whether the call is due to a hot-plug operation.  An
extra parameter is added to link_mem_sections() detailing whether the
operation is due to a hot-plug operation.

[1] According to Oscar Salvador, using this qemu command line, ACPI
memory hotplug operations are raised at SYSTEM_SCHEDULING state:

  $QEMU -enable-kvm -machine pc -smp 4,sockets=4,cores=1,threads=1 -cpu host -monitor pty \
        -m size=$MEM,slots=255,maxmem=4294967296k  \
        -numa node,nodeid=0,cpus=0-3,mem=512 -numa node,nodeid=1,mem=512 \
        -object memory-backend-ram,id=memdimm0,size=134217728 -device pc-dimm,node=0,memdev=memdimm0,id=dimm0,slot=0 \
        -object memory-backend-ram,id=memdimm1,size=134217728 -device pc-dimm,node=0,memdev=memdimm1,id=dimm1,slot=1 \
        -object memory-backend-ram,id=memdimm2,size=134217728 -device pc-dimm,node=0,memdev=memdimm2,id=dimm2,slot=2 \
        -object memory-backend-ram,id=memdimm3,size=134217728 -device pc-dimm,node=0,memdev=memdimm3,id=dimm3,slot=3 \
        -object memory-backend-ram,id=memdimm4,size=134217728 -device pc-dimm,node=1,memdev=memdimm4,id=dimm4,slot=4 \
        -object memory-backend-ram,id=memdimm5,size=134217728 -device pc-dimm,node=1,memdev=memdimm5,id=dimm5,slot=5 \
        -object memory-backend-ram,id=memdimm6,size=134217728 -device pc-dimm,node=1,memdev=memdimm6,id=dimm6,slot=6 \

Fixes: 4fbce63391 ("mm/memory_hotplug.c: make register_mem_sect_under_node() a callback of walk_memory_range()")
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200915094143.79181-3-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-07 08:01:30 +02:00
Laurent Dufour 42b7153dd6 mm: replace memmap_context by meminit_context
commit c1d0da83358a2316d9be7f229f26126dbaa07468 upstream.

Patch series "mm: fix memory to node bad links in sysfs", v3.

Sometimes, firmware may expose interleaved memory layout like this:

 Early memory node ranges
   node   1: [mem 0x0000000000000000-0x000000011fffffff]
   node   2: [mem 0x0000000120000000-0x000000014fffffff]
   node   1: [mem 0x0000000150000000-0x00000001ffffffff]
   node   0: [mem 0x0000000200000000-0x000000048fffffff]
   node   2: [mem 0x0000000490000000-0x00000007ffffffff]

In that case, we can see memory blocks assigned to multiple nodes in
sysfs:

  $ ls -l /sys/devices/system/memory/memory21
  total 0
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node1 -> ../../node/node1
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node2 -> ../../node/node2
  -rw-r--r-- 1 root root 65536 Aug 24 05:27 online
  -r--r--r-- 1 root root 65536 Aug 24 05:27 phys_device
  -r--r--r-- 1 root root 65536 Aug 24 05:27 phys_index
  drwxr-xr-x 2 root root     0 Aug 24 05:27 power
  -r--r--r-- 1 root root 65536 Aug 24 05:27 removable
  -rw-r--r-- 1 root root 65536 Aug 24 05:27 state
  lrwxrwxrwx 1 root root     0 Aug 24 05:25 subsystem -> ../../../../bus/memory
  -rw-r--r-- 1 root root 65536 Aug 24 05:25 uevent
  -r--r--r-- 1 root root 65536 Aug 24 05:27 valid_zones

The same applies in the node's directory with a memory21 link in both
the node1 and node2's directory.

This is wrong but doesn't prevent the system to run.  However when
later, one of these memory blocks is hot-unplugged and then hot-plugged,
the system is detecting an inconsistency in the sysfs layout and a
BUG_ON() is raised:

  kernel BUG at /Users/laurent/src/linux-ppc/mm/memory_hotplug.c:1084!
  LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
  Modules linked in: rpadlpar_io rpaphp pseries_rng rng_core vmx_crypto gf128mul binfmt_misc ip_tables x_tables xfs libcrc32c crc32c_vpmsum autofs4
  CPU: 8 PID: 10256 Comm: drmgr Not tainted 5.9.0-rc1+ #25
  Call Trace:
    add_memory_resource+0x23c/0x340 (unreliable)
    __add_memory+0x5c/0xf0
    dlpar_add_lmb+0x1b4/0x500
    dlpar_memory+0x1f8/0xb80
    handle_dlpar_errorlog+0xc0/0x190
    dlpar_store+0x198/0x4a0
    kobj_attr_store+0x30/0x50
    sysfs_kf_write+0x64/0x90
    kernfs_fop_write+0x1b0/0x290
    vfs_write+0xe8/0x290
    ksys_write+0xdc/0x130
    system_call_exception+0x160/0x270
    system_call_common+0xf0/0x27c

This has been seen on PowerPC LPAR.

The root cause of this issue is that when node's memory is registered,
the range used can overlap another node's range, thus the memory block
is registered to multiple nodes in sysfs.

There are two issues here:

 (a) The sysfs memory and node's layouts are broken due to these
     multiple links

 (b) The link errors in link_mem_sections() should not lead to a system
     panic.

To address (a) register_mem_sect_under_node should not rely on the
system state to detect whether the link operation is triggered by a hot
plug operation or not.  This is addressed by the patches 1 and 2 of this
series.

Issue (b) will be addressed separately.

This patch (of 2):

The memmap_context enum is used to detect whether a memory operation is
due to a hot-add operation or happening at boot time.

Make it general to the hotplug operation and rename it as
meminit_context.

There is no functional change introduced by this patch

Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J . Wysocki" <rafael@kernel.org>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200915094143.79181-1-ldufour@linux.ibm.com
Link: https://lkml.kernel.org/r/20200915132624.9723-1-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-07 08:01:29 +02:00
Vasily Gorbik 4f5260ee0c mm/gup: fix gup_fast with dynamic page table folding
commit d3f7b1bb204099f2f7306318896223e8599bb6a2 upstream.

Currently to make sure that every page table entry is read just once
gup_fast walks perform READ_ONCE and pass pXd value down to the next
gup_pXd_range function by value e.g.:

  static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
                           unsigned int flags, struct page **pages, int *nr)
  ...
          pudp = pud_offset(&p4d, addr);

This function passes a reference on that local value copy to pXd_offset,
and might get the very same pointer in return.  This happens when the
level is folded (on most arches), and that pointer should not be
iterated.

On s390 due to the fact that each task might have different 5,4 or
3-level address translation and hence different levels folded the logic
is more complex and non-iteratable pointer to a local copy leads to
severe problems.

Here is an example of what happens with gup_fast on s390, for a task
with 3-level paging, crossing a 2 GB pud boundary:

  // addr = 0x1007ffff000, end = 0x10080001000
  static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
                           unsigned int flags, struct page **pages, int *nr)
  {
        unsigned long next;
        pud_t *pudp;

        // pud_offset returns &p4d itself (a pointer to a value on stack)
        pudp = pud_offset(&p4d, addr);
        do {
                // on second iteratation reading "random" stack value
                pud_t pud = READ_ONCE(*pudp);

                // next = 0x10080000000, due to PUD_SIZE/MASK != PGDIR_SIZE/MASK on s390
                next = pud_addr_end(addr, end);
                ...
        } while (pudp++, addr = next, addr != end); // pudp++ iterating over stack

        return 1;
  }

This happens since s390 moved to common gup code with commit
d1874a0c28 ("s390/mm: make the pxd_offset functions more robust") and
commit 1a42010cdc ("s390/mm: convert to the generic
get_user_pages_fast code").

s390 tried to mimic static level folding by changing pXd_offset
primitives to always calculate top level page table offset in pgd_offset
and just return the value passed when pXd_offset has to act as folded.

What is crucial for gup_fast and what has been overlooked is that
PxD_SIZE/MASK and thus pXd_addr_end should also change correspondingly.
And the latter is not possible with dynamic folding.

To fix the issue in addition to pXd values pass original pXdp pointers
down to gup_pXd_range functions.  And introduce pXd_offset_lockless
helpers, which take an additional pXd entry value parameter.  This has
already been discussed in

  https://lkml.kernel.org/r/20190418100218.0a4afd51@mschwideX1

Fixes: 1a42010cdc ("s390/mm: convert to the generic get_user_pages_fast code")
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: <stable@vger.kernel.org>	[5.2+]
Link: https://lkml.kernel.org/r/patch.git-943f1e5dcff2.your-ad-here.call-01599856292-ext-8676@work.hours
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-01 13:18:24 +02:00
Gao Xiang 20a5e4272b mm, THP, swap: fix allocating cluster for swapfile by mistake
commit 41663430588c737dd735bad5a0d1ba325dcabd59 upstream.

SWP_FS is used to make swap_{read,write}page() go through the
filesystem, and it's only used for swap files over NFS.  So, !SWP_FS
means non NFS for now, it could be either file backed or device backed.
Something similar goes with legacy SWP_FILE.

So in order to achieve the goal of the original patch, SWP_BLKDEV should
be used instead.

FS corruption can be observed with SSD device + XFS + fragmented
swapfile due to CONFIG_THP_SWAP=y.

I reproduced the issue with the following details:

Environment:

  QEMU + upstream kernel + buildroot + NVMe (2 GB)

Kernel config:

  CONFIG_BLK_DEV_NVME=y
  CONFIG_THP_SWAP=y

Some reproducible steps:

  mkfs.xfs -f /dev/nvme0n1
  mkdir /tmp/mnt
  mount /dev/nvme0n1 /tmp/mnt
  bs="32k"
  sz="1024m"    # doesn't matter too much, I also tried 16m
  xfs_io -f -c "pwrite -R -b $bs 0 $sz" -c "fdatasync" /tmp/mnt/sw
  xfs_io -f -c "pwrite -R -b $bs 0 $sz" -c "fdatasync" /tmp/mnt/sw
  xfs_io -f -c "pwrite -R -b $bs 0 $sz" -c "fdatasync" /tmp/mnt/sw
  xfs_io -f -c "pwrite -F -S 0 -b $bs 0 $sz" -c "fdatasync" /tmp/mnt/sw
  xfs_io -f -c "pwrite -R -b $bs 0 $sz" -c "fsync" /tmp/mnt/sw

  mkswap /tmp/mnt/sw
  swapon /tmp/mnt/sw

  stress --vm 2 --vm-bytes 600M   # doesn't matter too much as well

Symptoms:
 - FS corruption (e.g. checksum failure)
 - memory corruption at: 0xd2808010
 - segfault

Fixes: f0eea189e8 ("mm, THP, swap: Don't allocate huge cluster for file backed swap device")
Fixes: 38d8b4e6bd ("mm, THP, swap: delay splitting THP during swap out")
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Eric Sandeen <esandeen@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200820045323.7809-1-hsiangkao@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-01 13:18:24 +02:00
Minchan Kim fe932d4c9e mm: validate pmd after splitting
[ Upstream commit ce2684254bd4818ca3995c0d021fb62c4cf10a19 ]

syzbot reported the following KASAN splat:

  general protection fault, probably for non-canonical address 0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN
  KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
  CPU: 1 PID: 6826 Comm: syz-executor142 Not tainted 5.9.0-rc4-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  RIP: 0010:__lock_acquire+0x84/0x2ae0 kernel/locking/lockdep.c:4296
  Code: ff df 8a 04 30 84 c0 0f 85 e3 16 00 00 83 3d 56 58 35 08 00 0f 84 0e 17 00 00 83 3d 25 c7 f5 07 00 74 2c 4c 89 e8 48 c1 e8 03 <80> 3c 30 00 74 12 4c 89 ef e8 3e d1 5a 00 48 be 00 00 00 00 00 fc
  RSP: 0018:ffffc90004b9f850 EFLAGS: 00010006
  Call Trace:
    lock_acquire+0x140/0x6f0 kernel/locking/lockdep.c:5006
    __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline]
    _raw_spin_lock+0x2a/0x40 kernel/locking/spinlock.c:151
    spin_lock include/linux/spinlock.h:354 [inline]
    madvise_cold_or_pageout_pte_range+0x52f/0x25c0 mm/madvise.c:389
    walk_pmd_range mm/pagewalk.c:89 [inline]
    walk_pud_range mm/pagewalk.c:160 [inline]
    walk_p4d_range mm/pagewalk.c:193 [inline]
    walk_pgd_range mm/pagewalk.c:229 [inline]
    __walk_page_range+0xe7b/0x1da0 mm/pagewalk.c:331
    walk_page_range+0x2c3/0x5c0 mm/pagewalk.c:427
    madvise_pageout_page_range mm/madvise.c:521 [inline]
    madvise_pageout mm/madvise.c:557 [inline]
    madvise_vma mm/madvise.c:946 [inline]
    do_madvise+0x12d0/0x2090 mm/madvise.c:1145
    __do_sys_madvise mm/madvise.c:1171 [inline]
    __se_sys_madvise mm/madvise.c:1169 [inline]
    __x64_sys_madvise+0x76/0x80 mm/madvise.c:1169
    do_syscall_64+0x31/0x70 arch/x86/entry/common.c:46
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

The backing vma was shmem.

In case of split page of file-backed THP, madvise zaps the pmd instead
of remapping of sub-pages.  So we need to check pmd validity after
split.

Reported-by: syzbot+ecf80462cb7d5d552bc7@syzkaller.appspotmail.com
Fixes: 1a4e58cce8 ("mm: introduce MADV_PAGEOUT")
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:18:21 +02:00
Johannes Weiner 92514a7bb9 mm: memcontrol: fix stat-corrupting race in charge moving
[ Upstream commit abb242f57196dbaa108271575353a0453f6834ef ]

The move_lock is a per-memcg lock, but the VM accounting code that needs
to acquire it comes from the page and follows page->mem_cgroup under RCU
protection.  That means that the page becomes unlocked not when we drop
the move_lock, but when we update page->mem_cgroup.  And that assignment
doesn't imply any memory ordering.  If that pointer write gets reordered
against the reads of the page state - page_mapped, PageDirty etc.  the
state may change while we rely on it being stable and we can end up
corrupting the counters.

Place an SMP memory barrier to make sure we're done with all page state by
the time the new page->mem_cgroup becomes visible.

Also replace the open-coded move_lock with a lock_page_memcg() to make it
more obvious what we're serializing against.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-3-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:18:08 +02:00
Qian Cai a9e87c5bee mm/swap_state: fix a data race in swapin_nr_pages
[ Upstream commit d6c1f098f2a7ba62627c9bc17cda28f534ef9e4a ]

"prev_offset" is a static variable in swapin_nr_pages() that can be
accessed concurrently with only mmap_sem held in read mode as noticed by
KCSAN,

 BUG: KCSAN: data-race in swap_cluster_readahead / swap_cluster_readahead

 write to 0xffffffff92763830 of 8 bytes by task 14795 on cpu 17:
  swap_cluster_readahead+0x2a6/0x5e0
  swapin_readahead+0x92/0x8dc
  do_swap_page+0x49b/0xf20
  __handle_mm_fault+0xcfb/0xd70
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x715
  page_fault+0x34/0x40

 1 lock held by (dnf)/14795:
  #0: ffff897bd2e98858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
  do_user_addr_fault at arch/x86/mm/fault.c:1405
  (inlined by) do_page_fault at arch/x86/mm/fault.c:1535
 irq event stamp: 83493
 count_memcg_event_mm+0x1a6/0x270
 count_memcg_event_mm+0x119/0x270
 __do_softirq+0x365/0x589
 irq_exit+0xa2/0xc0

 read to 0xffffffff92763830 of 8 bytes by task 1 on cpu 22:
  swap_cluster_readahead+0xfd/0x5e0
  swapin_readahead+0x92/0x8dc
  do_swap_page+0x49b/0xf20
  __handle_mm_fault+0xcfb/0xd70
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x715
  page_fault+0x34/0x40

 1 lock held by systemd/1:
  #0: ffff897c38f14858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
 irq event stamp: 43530289
 count_memcg_event_mm+0x1a6/0x270
 count_memcg_event_mm+0x119/0x270
 __do_softirq+0x365/0x589
 irq_exit+0xa2/0xc0

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200402213748.2237-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:18:08 +02:00
Waiman Long 00519f4da8 mm/slub: fix incorrect interpretation of s->offset
[ Upstream commit cbfc35a48609ceac978791e3ab9dde0c01f8cb20 ]

In a couple of places in the slub memory allocator, the code uses
"s->offset" as a check to see if the free pointer is put right after the
object.  That check is no longer true with commit 3202fa62fb43 ("slub:
relocate freelist pointer to middle of object").

As a result, echoing "1" into the validate sysfs file, e.g.  of dentry,
may cause a bunch of "Freepointer corrupt" error reports like the
following to appear with the system in panic afterwards.

  =============================================================================
  BUG dentry(666:pmcd.service) (Tainted: G    B): Freepointer corrupt
  -----------------------------------------------------------------------------

To fix it, use the check "s->offset == s->inuse" in the new helper
function freeptr_outside_object() instead.  Also add another helper
function get_info_end() to return the end of info block (inuse + free
pointer if not overlapping with object).

Fixes: 3202fa62fb43 ("slub: relocate freelist pointer to middle of object")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Vitaly Nikolenko <vnik@duasynt.com>
Cc: Silvio Cesare <silvio.cesare@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Markus Elfring <Markus.Elfring@web.de>
Cc: Changbin Du <changbin.du@gmail.com>
Link: http://lkml.kernel.org/r/20200429135328.26976-1-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:59 +02:00
Jaewon Kim 51396da044 mm/mmap.c: initialize align_offset explicitly for vm_unmapped_area
[ Upstream commit 09ef5283fd96ac424ef0e569626f359bf9ab86c9 ]

On passing requirement to vm_unmapped_area, arch_get_unmapped_area and
arch_get_unmapped_area_topdown did not set align_offset.  Internally on
both unmapped_area and unmapped_area_topdown, if info->align_mask is 0,
then info->align_offset was meaningless.

But commit df529cabb7a2 ("mm: mmap: add trace point of
vm_unmapped_area") always prints info->align_offset even though it is
uninitialized.

Fix this uninitialized value issue by setting it to 0 explicitly.

Before:
  vm_unmapped_area: addr=0x755b155000 err=0 total_vm=0x15aaf0 flags=0x1 len=0x109000 lo=0x8000 hi=0x75eed48000 mask=0x0 ofs=0x4022

After:
  vm_unmapped_area: addr=0x74a4ca1000 err=0 total_vm=0x168ab1 flags=0x1 len=0x9000 lo=0x8000 hi=0x753d94b000 mask=0x0 ofs=0x0

Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20200409094035.19457-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:54 +02:00
Qian Cai 19b9ff1146 mm/vmscan.c: fix data races using kswapd_classzone_idx
[ Upstream commit 5644e1fbbfe15ad06785502bbfe5751223e5841d ]

pgdat->kswapd_classzone_idx could be accessed concurrently in
wakeup_kswapd().  Plain writes and reads without any lock protection
result in data races.  Fix them by adding a pair of READ|WRITE_ONCE() as
well as saving a branch (compilers might well optimize the original code
in an unintentional way anyway).  While at it, also take care of
pgdat->kswapd_order and non-kswapd threads in allow_direct_reclaim().  The
data races were reported by KCSAN,

 BUG: KCSAN: data-race in wakeup_kswapd / wakeup_kswapd

 write to 0xffff9f427ffff2dc of 4 bytes by task 7454 on cpu 13:
  wakeup_kswapd+0xf1/0x400
  wakeup_kswapd at mm/vmscan.c:3967
  wake_all_kswapds+0x59/0xc0
  wake_all_kswapds at mm/page_alloc.c:4241
  __alloc_pages_slowpath+0xdcc/0x1290
  __alloc_pages_slowpath at mm/page_alloc.c:4512
  __alloc_pages_nodemask+0x3bb/0x450
  alloc_pages_vma+0x8a/0x2c0
  do_anonymous_page+0x16e/0x6f0
  __handle_mm_fault+0xcd5/0xd40
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x6f9
  page_fault+0x34/0x40

 1 lock held by mtest01/7454:
  #0: ffff9f425afe8808 (&mm->mmap_sem#2){++++}, at:
 do_page_fault+0x143/0x6f9
 do_user_addr_fault at arch/x86/mm/fault.c:1405
 (inlined by) do_page_fault at arch/x86/mm/fault.c:1539
 irq event stamp: 6944085
 count_memcg_event_mm+0x1a6/0x270
 count_memcg_event_mm+0x119/0x270
 __do_softirq+0x34c/0x57c
 irq_exit+0xa2/0xc0

 read to 0xffff9f427ffff2dc of 4 bytes by task 7472 on cpu 38:
  wakeup_kswapd+0xc8/0x400
  wake_all_kswapds+0x59/0xc0
  __alloc_pages_slowpath+0xdcc/0x1290
  __alloc_pages_nodemask+0x3bb/0x450
  alloc_pages_vma+0x8a/0x2c0
  do_anonymous_page+0x16e/0x6f0
  __handle_mm_fault+0xcd5/0xd40
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x6f9
  page_fault+0x34/0x40

 1 lock held by mtest01/7472:
  #0: ffff9f425a9ac148 (&mm->mmap_sem#2){++++}, at:
 do_page_fault+0x143/0x6f9
 irq event stamp: 6793561
 count_memcg_event_mm+0x1a6/0x270
 count_memcg_event_mm+0x119/0x270
 __do_softirq+0x34c/0x57c
 irq_exit+0xa2/0xc0

 BUG: KCSAN: data-race in kswapd / wakeup_kswapd

 write to 0xffff90973ffff2dc of 4 bytes by task 820 on cpu 6:
  kswapd+0x27c/0x8d0
  kthread+0x1e0/0x200
  ret_from_fork+0x27/0x50

 read to 0xffff90973ffff2dc of 4 bytes by task 6299 on cpu 0:
  wakeup_kswapd+0xf3/0x450
  wake_all_kswapds+0x59/0xc0
  __alloc_pages_slowpath+0xdcc/0x1290
  __alloc_pages_nodemask+0x3bb/0x450
  alloc_pages_vma+0x8a/0x2c0
  do_anonymous_page+0x170/0x700
  __handle_mm_fault+0xc9f/0xd00
  handle_mm_fault+0xfc/0x2f0
  do_page_fault+0x263/0x6f9
  page_fault+0x34/0x40

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Link: http://lkml.kernel.org/r/1582749472-5171-1-git-send-email-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:53 +02:00
Qian Cai b569d92b1d mm/swapfile: fix data races in try_to_unuse()
[ Upstream commit 218209487c3da2f6d861b236c11226b6eca7b7b7 ]

si->inuse_pages could be accessed concurrently as noticed by KCSAN,

 write to 0xffff98b00ebd04dc of 4 bytes by task 82262 on cpu 92:
  swap_range_free+0xbe/0x230
  swap_range_free at mm/swapfile.c:719
  swapcache_free_entries+0x1be/0x250
  free_swap_slot+0x1c8/0x220
  __swap_entry_free.constprop.19+0xa3/0xb0
  free_swap_and_cache+0x53/0xa0
  unmap_page_range+0x7e0/0x1ce0
  unmap_single_vma+0xcd/0x170
  unmap_vmas+0x18b/0x220
  exit_mmap+0xee/0x220
  mmput+0xe7/0x240
  do_exit+0x598/0xfd0
  do_group_exit+0x8b/0x180
  get_signal+0x293/0x13d0
  do_signal+0x37/0x5d0
  prepare_exit_to_usermode+0x1b7/0x2c0
  ret_from_intr+0x32/0x42

 read to 0xffff98b00ebd04dc of 4 bytes by task 82499 on cpu 46:
  try_to_unuse+0x86b/0xc80
  try_to_unuse at mm/swapfile.c:2185
  __x64_sys_swapoff+0x372/0xd40
  do_syscall_64+0x91/0xb05
  entry_SYSCALL_64_after_hwframe+0x49/0xbe

The plain reads in try_to_unuse() are outside si->lock critical section
which result in data races that could be dangerous to be used in a loop.
Fix them by adding READ_ONCE().

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/1582578903-29294-1-git-send-email-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:53 +02:00
Xianting Tian 6eed4b3392 mm/filemap.c: clear page error before actual read
[ Upstream commit faffdfa04fa11ccf048cebdde73db41ede0679e0 ]

Mount failure issue happens under the scenario: Application forked dozens
of threads to mount the same number of cramfs images separately in docker,
but several mounts failed with high probability.  Mount failed due to the
checking result of the page(read from the superblock of loop dev) is not
uptodate after wait_on_page_locked(page) returned in function cramfs_read:

   wait_on_page_locked(page);
   if (!PageUptodate(page)) {
      ...
   }

The reason of the checking result of the page not uptodate: systemd-udevd
read the loopX dev before mount, because the status of loopX is Lo_unbound
at this time, so loop_make_request directly trigger the calling of io_end
handler end_buffer_async_read, which called SetPageError(page).  So It
caused the page can't be set to uptodate in function
end_buffer_async_read:

   if(page_uptodate && !PageError(page)) {
      SetPageUptodate(page);
   }

Then mount operation is performed, it used the same page which is just
accessed by systemd-udevd above, Because this page is not uptodate, it
will launch a actual read via submit_bh, then wait on this page by calling
wait_on_page_locked(page).  When the I/O of the page done, io_end handler
end_buffer_async_read is called, because no one cleared the page
error(during the whole read path of mount), which is caused by
systemd-udevd reading, so this page is still in "PageError" status, which
can't be set to uptodate in function end_buffer_async_read, then caused
mount failure.

But sometimes mount succeed even through systemd-udeved read loopX dev
just before, The reason is systemd-udevd launched other loopX read just
between step 3.1 and 3.2, the steps as below:

1, loopX dev default status is Lo_unbound;
2, systemd-udved read loopX dev (page is set to PageError);
3, mount operation
   1) set loopX status to Lo_bound;
   ==>systemd-udevd read loopX dev<==
   2) read loopX dev(page has no error)
   3) mount succeed

As the loopX dev status is set to Lo_bound after step 3.1, so the other
loopX dev read by systemd-udevd will go through the whole I/O stack, part
of the call trace as below:

   SYS_read
      vfs_read
          do_sync_read
              blkdev_aio_read
                 generic_file_aio_read
                     do_generic_file_read:
                        ClearPageError(page);
                        mapping->a_ops->readpage(filp, page);

here, mapping->a_ops->readpage() is blkdev_readpage.  In latest kernel,
some function name changed, the call trace as below:

   blkdev_read_iter
      generic_file_read_iter
         generic_file_buffered_read:
            /*
             * A previous I/O error may have been due to temporary
             * failures, eg. mutipath errors.
             * Pg_error will be set again if readpage fails.
             */
            ClearPageError(page);
            /* Start the actual read. The read will unlock the page*/
            error=mapping->a_ops->readpage(flip, page);

We can see ClearPageError(page) is called before the actual read,
then the read in step 3.2 succeed.

This patch is to add the calling of ClearPageError just before the actual
read of read path of cramfs mount.  Without the patch, the call trace as
below when performing cramfs mount:

   do_mount
      cramfs_read
         cramfs_blkdev_read
            read_cache_page
               do_read_cache_page:
                  filler(data, page);
                  or
                  mapping->a_ops->readpage(data, page);

With the patch, the call trace as below when performing mount:

   do_mount
      cramfs_read
         cramfs_blkdev_read
            read_cache_page:
               do_read_cache_page:
                  ClearPageError(page); <== new add
                  filler(data, page);
                  or
                  mapping->a_ops->readpage(data, page);

With the patch, mount operation trigger the calling of
ClearPageError(page) before the actual read, the page has no error if no
additional page error happen when I/O done.

Signed-off-by: Xianting Tian <xianting_tian@126.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jan Kara <jack@suse.cz>
Cc: <yubin@h3c.com>
Link: http://lkml.kernel.org/r/1583318844-22971-1-git-send-email-xianting_tian@126.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:53 +02:00
Nathan Chancellor 336df1dcf9 mm/kmemleak.c: use address-of operator on section symbols
[ Upstream commit b0d14fc43d39203ae025f20ef4d5d25d9ccf4be1 ]

Clang warns:

  mm/kmemleak.c:1955:28: warning: array comparison always evaluates to a constant [-Wtautological-compare]
        if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
                                  ^
  mm/kmemleak.c:1955:60: warning: array comparison always evaluates to a constant [-Wtautological-compare]
        if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)

These are not true arrays, they are linker defined symbols, which are just
addresses.  Using the address of operator silences the warning and does
not change the resulting assembly with either clang/ld.lld or gcc/ld
(tested with diff + objdump -Dr).

Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://github.com/ClangBuiltLinux/linux/issues/895
Link: http://lkml.kernel.org/r/20200220051551.44000-1-natechancellor@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:53 +02:00
Kirill A. Shutemov 3a220956aa mm: avoid data corruption on CoW fault into PFN-mapped VMA
[ Upstream commit c3e5ea6ee574ae5e845a40ac8198de1fb63bb3ab ]

Jeff Moyer has reported that one of xfstests triggers a warning when run
on DAX-enabled filesystem:

	WARNING: CPU: 76 PID: 51024 at mm/memory.c:2317 wp_page_copy+0xc40/0xd50
	...
	wp_page_copy+0x98c/0xd50 (unreliable)
	do_wp_page+0xd8/0xad0
	__handle_mm_fault+0x748/0x1b90
	handle_mm_fault+0x120/0x1f0
	__do_page_fault+0x240/0xd70
	do_page_fault+0x38/0xd0
	handle_page_fault+0x10/0x30

The warning happens on failed __copy_from_user_inatomic() which tries to
copy data into a CoW page.

This happens because of race between MADV_DONTNEED and CoW page fault:

	CPU0					CPU1
 handle_mm_fault()
   do_wp_page()
     wp_page_copy()
       do_wp_page()
					madvise(MADV_DONTNEED)
					  zap_page_range()
					    zap_pte_range()
					      ptep_get_and_clear_full()
					      <TLB flush>
	 __copy_from_user_inatomic()
	 sees empty PTE and fails
	 WARN_ON_ONCE(1)
	 clear_page()

The solution is to re-try __copy_from_user_inatomic() under PTL after
checking that PTE is matches the orig_pte.

The second copy attempt can still fail, like due to non-readable PTE, but
there's nothing reasonable we can do about, except clearing the CoW page.

Reported-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Jeff Moyer <jmoyer@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Justin He <Justin.He@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200218154151.13349-1-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:39 +02:00
Steven Price 4c67f0b1ea mm: pagewalk: fix termination condition in walk_pte_range()
[ Upstream commit c02a98753e0a36ba65a05818626fa6adeb4e7c97 ]

If walk_pte_range() is called with a 'end' argument that is beyond the
last page of memory (e.g.  ~0UL) then the comparison between 'addr' and
'end' will always fail and the loop will be infinite.  Instead change the
comparison to >= while accounting for overflow.

Link: http://lkml.kernel.org/r/20191218162402.45610-15-steven.price@arm.com
Signed-off-by: Steven Price <steven.price@arm.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexandre Ghiti <alex@ghiti.fr>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Liang, Kan" <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zong Li <zong.li@sifive.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:30 +02:00
Vasily Averin dac81f1ddc mm/swapfile.c: swap_next should increase position index
[ Upstream commit 10c8d69f314d557d94d74ec492575ae6a4f1eb1c ]

If seq_file .next fuction does not change position index, read after
some lseek can generate unexpected output.

In Aug 2018 NeilBrown noticed commit 1f4aace60b ("fs/seq_file.c:
simplify seq_file iteration code and interface") "Some ->next functions
do not increment *pos when they return NULL...  Note that such ->next
functions are buggy and should be fixed.  A simple demonstration is

  dd if=/proc/swaps bs=1000 skip=1

Choose any block size larger than the size of /proc/swaps.  This will
always show the whole last line of /proc/swaps"

Described problem is still actual.  If you make lseek into middle of
last output line following read will output end of last line and whole
last line once again.

  $ dd if=/proc/swaps bs=1  # usual output
  Filename				Type		Size	Used	Priority
  /dev/dm-0                               partition	4194812	97536	-2
  104+0 records in
  104+0 records out
  104 bytes copied

  $ dd if=/proc/swaps bs=40 skip=1    # last line was generated twice
  dd: /proc/swaps: cannot skip to specified offset
  v/dm-0                               partition	4194812	97536	-2
  /dev/dm-0                               partition	4194812	97536	-2
  3+1 records in
  3+1 records out
  131 bytes copied

https://bugzilla.kernel.org/show_bug.cgi?id=206283

Link: http://lkml.kernel.org/r/bd8cfd7b-ac95-9b91-f9e7-e8438bd5047d@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jann Horn <jannh@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Kees Cook <keescook@chromium.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:30 +02:00
Jia He 2c25b95111 mm: fix double page fault on arm64 if PTE_AF is cleared
[ Upstream commit 83d116c53058d505ddef051e90ab27f57015b025 ]

When we tested pmdk unit test [1] vmmalloc_fork TEST3 on arm64 guest, there
will be a double page fault in __copy_from_user_inatomic of cow_user_page.

To reproduce the bug, the cmd is as follows after you deployed everything:
make -C src/test/vmmalloc_fork/ TEST_TIME=60m check

Below call trace is from arm64 do_page_fault for debugging purpose:
[  110.016195] Call trace:
[  110.016826]  do_page_fault+0x5a4/0x690
[  110.017812]  do_mem_abort+0x50/0xb0
[  110.018726]  el1_da+0x20/0xc4
[  110.019492]  __arch_copy_from_user+0x180/0x280
[  110.020646]  do_wp_page+0xb0/0x860
[  110.021517]  __handle_mm_fault+0x994/0x1338
[  110.022606]  handle_mm_fault+0xe8/0x180
[  110.023584]  do_page_fault+0x240/0x690
[  110.024535]  do_mem_abort+0x50/0xb0
[  110.025423]  el0_da+0x20/0x24

The pte info before __copy_from_user_inatomic is (PTE_AF is cleared):
[ffff9b007000] pgd=000000023d4f8003, pud=000000023da9b003,
               pmd=000000023d4b3003, pte=360000298607bd3

As told by Catalin: "On arm64 without hardware Access Flag, copying from
user will fail because the pte is old and cannot be marked young. So we
always end up with zeroed page after fork() + CoW for pfn mappings. we
don't always have a hardware-managed access flag on arm64."

This patch fixes it by calling pte_mkyoung. Also, the parameter is
changed because vmf should be passed to cow_user_page()

Add a WARN_ON_ONCE when __copy_from_user_inatomic() returns error
in case there can be some obscure use-case (by Kirill).

[1] https://github.com/pmem/pmdk/tree/master/src/test/vmmalloc_fork

Signed-off-by: Jia He <justin.he@arm.com>
Reported-by: Yibo Cai <Yibo.Cai@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01 13:17:12 +02:00
Xunlei Pang a5bc1c7a9a mm: memcg: fix memcg reclaim soft lockup
commit e3336cab2579012b1e72b5265adf98e2d6e244ad upstream.

We've met softlockup with "CONFIG_PREEMPT_NONE=y", when the target memcg
doesn't have any reclaimable memory.

It can be easily reproduced as below:

  watchdog: BUG: soft lockup - CPU#0 stuck for 111s![memcg_test:2204]
  CPU: 0 PID: 2204 Comm: memcg_test Not tainted 5.9.0-rc2+ #12
  Call Trace:
    shrink_lruvec+0x49f/0x640
    shrink_node+0x2a6/0x6f0
    do_try_to_free_pages+0xe9/0x3e0
    try_to_free_mem_cgroup_pages+0xef/0x1f0
    try_charge+0x2c1/0x750
    mem_cgroup_charge+0xd7/0x240
    __add_to_page_cache_locked+0x2fd/0x370
    add_to_page_cache_lru+0x4a/0xc0
    pagecache_get_page+0x10b/0x2f0
    filemap_fault+0x661/0xad0
    ext4_filemap_fault+0x2c/0x40
    __do_fault+0x4d/0xf9
    handle_mm_fault+0x1080/0x1790

It only happens on our 1-vcpu instances, because there's no chance for
oom reaper to run to reclaim the to-be-killed process.

Add a cond_resched() at the upper shrink_node_memcgs() to solve this
issue, this will mean that we will get a scheduling point for each memcg
in the reclaimed hierarchy without any dependency on the reclaimable
memory in that memcg thus making it more predictable.

Suggested-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: http://lkml.kernel.org/r/1598495549-67324-1-git-send-email-xlpang@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Julius Hemanth Pitti <jpitti@cisco.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-26 18:03:15 +02:00
Ralph Campbell 263445256c mm/thp: fix __split_huge_pmd_locked() for migration PMD
[ Upstream commit ec0abae6dcdf7ef88607c869bf35a4b63ce1b370 ]

A migrating transparent huge page has to already be unmapped.  Otherwise,
the page could be modified while it is being copied to a new page and data
could be lost.  The function __split_huge_pmd() checks for a PMD migration
entry before calling __split_huge_pmd_locked() leading one to think that
__split_huge_pmd_locked() can handle splitting a migrating PMD.

However, the code always increments the page->_mapcount and adjusts the
memory control group accounting assuming the page is mapped.

Also, if the PMD entry is a migration PMD entry, the call to
is_huge_zero_pmd(*pmd) is incorrect because it calls pmd_pfn(pmd) instead
of migration_entry_to_pfn(pmd_to_swp_entry(pmd)).  Fix these problems by
checking for a PMD migration entry.

Fixes: 84c3fc4e9c ("mm: thp: check pmd migration entry in common path")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: <stable@vger.kernel.org>	[4.14+]
Link: https://lkml.kernel.org/r/20200903183140.19055-1-rcampbell@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-26 18:03:11 +02:00
Pavel Tatashin 6b02d05985 mm/memory_hotplug: drain per-cpu pages again during memory offline
commit 9683182612214aa5f5e709fad49444b847cd866a upstream.

There is a race during page offline that can lead to infinite loop:
a page never ends up on a buddy list and __offline_pages() keeps
retrying infinitely or until a termination signal is received.

Thread#1 - a new process:

load_elf_binary
 begin_new_exec
  exec_mmap
   mmput
    exit_mmap
     tlb_finish_mmu
      tlb_flush_mmu
       release_pages
        free_unref_page_list
         free_unref_page_prepare
          set_pcppage_migratetype(page, migratetype);
             // Set page->index migration type below  MIGRATE_PCPTYPES

Thread#2 - hot-removes memory
__offline_pages
  start_isolate_page_range
    set_migratetype_isolate
      set_pageblock_migratetype(page, MIGRATE_ISOLATE);
        Set migration type to MIGRATE_ISOLATE-> set
        drain_all_pages(zone);
             // drain per-cpu page lists to buddy allocator.

Thread#1 - continue
         free_unref_page_commit
           migratetype = get_pcppage_migratetype(page);
              // get old migration type
           list_add(&page->lru, &pcp->lists[migratetype]);
              // add new page to already drained pcp list

Thread#2
Never drains pcp again, and therefore gets stuck in the loop.

The fix is to try to drain per-cpu lists again after
check_pages_isolated_cb() fails.

Fixes: c52e75935f ("mm: remove extra drain pages on pcp list")
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200903140032.380431-1-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20200904151448.100489-2-pasha.tatashin@soleen.com
Link: http://lkml.kernel.org/r/20200904070235.GA15277@dhcp22.suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-23 12:40:47 +02:00
Sunghyun Jin e44bd84cd2 percpu: fix first chunk size calculation for populated bitmap
commit b3b33d3c43bbe0177d70653f4e889c78cc37f097 upstream.

Variable populated, which is a member of struct pcpu_chunk, is used as a
unit of size of unsigned long.
However, size of populated is miscounted. So, I fix this minor part.

Fixes: 8ab16c43ea ("percpu: change the number of pages marked in the first_chunk pop bitmap")
Cc: <stable@vger.kernel.org> # 4.14+
Signed-off-by: Sunghyun Jin <mcsmonk@gmail.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-23 12:40:45 +02:00
Sherry Sun 04cdbc7152 MLK-24795-1: mm: cma: export symbol for driver to build module
If driver invoking these functions and want to build as a module, these
functions need export symbol. Without this patch, will meet below errors
when build our driver module:

ERROR: "cma_for_each_area" [drivers/misc/mic/imx-host/imx_mic_host.ko] undefined!
ERROR: "cma_get_name" [drivers/misc/mic/imx-host/imx_mic_host.ko] undefined!

Signed-off-by: Joakim Zhang <qiangqing.zhang@nxp.com>
Signed-off-by: Sherry Sun <sherry.sun@nxp.com>
Reviewed-by: Frank Li <Frank.Li@nxp.com>
Reviewed-by: Fugang Duan <fugang.duan@nxp.com>
2020-09-22 14:48:50 +08:00
David Howells 08eeec4452 mm/khugepaged.c: fix khugepaged's request size in collapse_file
commit e5a59d308f52bb0052af5790c22173651b187465 upstream.

collapse_file() in khugepaged passes PAGE_SIZE as the number of pages to
be read to page_cache_sync_readahead().  The intent was probably to read
a single page.  Fix it to use the number of pages to the end of the
window instead.

Fixes: 99cb0dbd47 ("mm,thp: add read-only THP support for (non-shmem) FS")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Eric Biggers <ebiggers@google.com>
Link: https://lkml.kernel.org/r/20200903140844.14194-2-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-09 19:12:37 +02:00
Muchun Song af7786b20c mm/hugetlb: fix a race between hugetlb sysctl handlers
commit 17743798d81238ab13050e8e2833699b54e15467 upstream.

There is a race between the assignment of `table->data` and write value
to the pointer of `table->data` in the __do_proc_doulongvec_minmax() on
the other thread.

  CPU0:                                 CPU1:
                                        proc_sys_write
  hugetlb_sysctl_handler                  proc_sys_call_handler
  hugetlb_sysctl_handler_common             hugetlb_sysctl_handler
    table->data = &tmp;                       hugetlb_sysctl_handler_common
                                                table->data = &tmp;
      proc_doulongvec_minmax
        do_proc_doulongvec_minmax           sysctl_head_finish
          __do_proc_doulongvec_minmax         unuse_table
            i = table->data;
            *i = val;  // corrupt CPU1's stack

Fix this by duplicating the `table`, and only update the duplicate of
it.  And introduce a helper of proc_hugetlb_doulongvec_minmax() to
simplify the code.

The following oops was seen:

    BUG: kernel NULL pointer dereference, address: 0000000000000000
    #PF: supervisor instruction fetch in kernel mode
    #PF: error_code(0x0010) - not-present page
    Code: Bad RIP value.
    ...
    Call Trace:
     ? set_max_huge_pages+0x3da/0x4f0
     ? alloc_pool_huge_page+0x150/0x150
     ? proc_doulongvec_minmax+0x46/0x60
     ? hugetlb_sysctl_handler_common+0x1c7/0x200
     ? nr_hugepages_store+0x20/0x20
     ? copy_fd_bitmaps+0x170/0x170
     ? hugetlb_sysctl_handler+0x1e/0x20
     ? proc_sys_call_handler+0x2f1/0x300
     ? unregister_sysctl_table+0xb0/0xb0
     ? __fd_install+0x78/0x100
     ? proc_sys_write+0x14/0x20
     ? __vfs_write+0x4d/0x90
     ? vfs_write+0xef/0x240
     ? ksys_write+0xc0/0x160
     ? __ia32_sys_read+0x50/0x50
     ? __close_fd+0x129/0x150
     ? __x64_sys_write+0x43/0x50
     ? do_syscall_64+0x6c/0x200
     ? entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: e5ff215941 ("hugetlb: multiple hstates for multiple page sizes")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/20200828031146.43035-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-09 19:12:37 +02:00
Yang Shi f4fa8d937e mm: madvise: fix vma user-after-free
commit 7867fd7cc44e63c6673cd0f8fea155456d34d0de upstream.

The syzbot reported the below use-after-free:

  BUG: KASAN: use-after-free in madvise_willneed mm/madvise.c:293 [inline]
  BUG: KASAN: use-after-free in madvise_vma mm/madvise.c:942 [inline]
  BUG: KASAN: use-after-free in do_madvise.part.0+0x1c8b/0x1cf0 mm/madvise.c:1145
  Read of size 8 at addr ffff8880a6163eb0 by task syz-executor.0/9996

  CPU: 0 PID: 9996 Comm: syz-executor.0 Not tainted 5.9.0-rc1-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Call Trace:
    __dump_stack lib/dump_stack.c:77 [inline]
    dump_stack+0x18f/0x20d lib/dump_stack.c:118
    print_address_description.constprop.0.cold+0xae/0x497 mm/kasan/report.c:383
    __kasan_report mm/kasan/report.c:513 [inline]
    kasan_report.cold+0x1f/0x37 mm/kasan/report.c:530
    madvise_willneed mm/madvise.c:293 [inline]
    madvise_vma mm/madvise.c:942 [inline]
    do_madvise.part.0+0x1c8b/0x1cf0 mm/madvise.c:1145
    do_madvise mm/madvise.c:1169 [inline]
    __do_sys_madvise mm/madvise.c:1171 [inline]
    __se_sys_madvise mm/madvise.c:1169 [inline]
    __x64_sys_madvise+0xd9/0x110 mm/madvise.c:1169
    do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

  Allocated by task 9992:
    kmem_cache_alloc+0x138/0x3a0 mm/slab.c:3482
    vm_area_alloc+0x1c/0x110 kernel/fork.c:347
    mmap_region+0x8e5/0x1780 mm/mmap.c:1743
    do_mmap+0xcf9/0x11d0 mm/mmap.c:1545
    vm_mmap_pgoff+0x195/0x200 mm/util.c:506
    ksys_mmap_pgoff+0x43a/0x560 mm/mmap.c:1596
    do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

  Freed by task 9992:
    kmem_cache_free.part.0+0x67/0x1f0 mm/slab.c:3693
    remove_vma+0x132/0x170 mm/mmap.c:184
    remove_vma_list mm/mmap.c:2613 [inline]
    __do_munmap+0x743/0x1170 mm/mmap.c:2869
    do_munmap mm/mmap.c:2877 [inline]
    mmap_region+0x257/0x1780 mm/mmap.c:1716
    do_mmap+0xcf9/0x11d0 mm/mmap.c:1545
    vm_mmap_pgoff+0x195/0x200 mm/util.c:506
    ksys_mmap_pgoff+0x43a/0x560 mm/mmap.c:1596
    do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

It is because vma is accessed after releasing mmap_lock, but someone
else acquired the mmap_lock and the vma is gone.

Releasing mmap_lock after accessing vma should fix the problem.

Fixes: 692fe62433 ("mm: Handle MADV_WILLNEED through vfs_fadvise()")
Reported-by: syzbot+b90df26038d1d5d85c97@syzkaller.appspotmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: <stable@vger.kernel.org>	[5.4+]
Link: https://lkml.kernel.org/r/20200816141204.162624-1-shy828301@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-09 19:12:36 +02:00
Eugeniu Rosca 87fb7b0c52 mm: slub: fix conversion of freelist_corrupted()
commit dc07a728d49cf025f5da2c31add438d839d076c0 upstream.

Commit 52f23478081ae0 ("mm/slub.c: fix corrupted freechain in
deactivate_slab()") suffered an update when picked up from LKML [1].

Specifically, relocating 'freelist = NULL' into 'freelist_corrupted()'
created a no-op statement.  Fix it by sticking to the behavior intended
in the original patch [1].  In addition, make freelist_corrupted()
immune to passing NULL instead of &freelist.

The issue has been spotted via static analysis and code review.

[1] https://lore.kernel.org/linux-mm/20200331031450.12182-1-dongli.zhang@oracle.com/

Fixes: 52f23478081ae0 ("mm/slub.c: fix corrupted freechain in deactivate_slab()")
Signed-off-by: Eugeniu Rosca <erosca@de.adit-jv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dongli Zhang <dongli.zhang@oracle.com>
Cc: Joe Jin <joe.jin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200824130643.10291-1-erosca@de.adit-jv.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-09-09 19:12:36 +02:00
Sasha Levin 75aaa8fa76 mm/vunmap: add cond_resched() in vunmap_pmd_range
[ Upstream commit e47110e90584a22e9980510b00d0dfad3a83354e ]

Like zap_pte_range add cond_resched so that we can avoid softlockups as
reported below.  On non-preemptible kernel with large I/O map region (like
the one we get when using persistent memory with sector mode), an unmap of
the namespace can report below softlockups.

22724.027334] watchdog: BUG: soft lockup - CPU#49 stuck for 23s! [ndctl:50777]
 NIP [c0000000000dc224] plpar_hcall+0x38/0x58
 LR [c0000000000d8898] pSeries_lpar_hpte_invalidate+0x68/0xb0
 Call Trace:
    flush_hash_page+0x114/0x200
    hpte_need_flush+0x2dc/0x540
    vunmap_page_range+0x538/0x6f0
    free_unmap_vmap_area+0x30/0x70
    remove_vm_area+0xfc/0x140
    __vunmap+0x68/0x270
    __iounmap.part.0+0x34/0x60
    memunmap+0x54/0x70
    release_nodes+0x28c/0x300
    device_release_driver_internal+0x16c/0x280
    unbind_store+0x124/0x170
    drv_attr_store+0x44/0x60
    sysfs_kf_write+0x64/0x90
    kernfs_fop_write+0x1b0/0x290
    __vfs_write+0x3c/0x70
    vfs_write+0xd8/0x260
    ksys_write+0xdc/0x130
    system_call+0x5c/0x70

Reported-by: Harish Sriram <harish@linux.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200807075933.310240-1-aneesh.kumar@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-03 11:26:52 +02:00
Mike Kravetz 302b9e1899 cma: don't quit at first error when activating reserved areas
[ Upstream commit 3a5139f1c5bb76d69756fb8f13fffa173e261153 ]

The routine cma_init_reserved_areas is designed to activate all
reserved cma areas.  It quits when it first encounters an error.
This can leave some areas in a state where they are reserved but
not activated.  There is no feedback to code which performed the
reservation.  Attempting to allocate memory from areas in such a
state will result in a BUG.

Modify cma_init_reserved_areas to always attempt to activate all
areas.  The called routine, cma_activate_area is responsible for
leaving the area in a valid state.  No one is making active use
of returned error codes, so change the routine to void.

How to reproduce:  This example uses kernelcore, hugetlb and cma
as an easy way to reproduce.  However, this is a more general cma
issue.

Two node x86 VM 16GB total, 8GB per node
Kernel command line parameters, kernelcore=4G hugetlb_cma=8G
Related boot time messages,
  hugetlb_cma: reserve 8192 MiB, up to 4096 MiB per node
  cma: Reserved 4096 MiB at 0x0000000100000000
  hugetlb_cma: reserved 4096 MiB on node 0
  cma: Reserved 4096 MiB at 0x0000000300000000
  hugetlb_cma: reserved 4096 MiB on node 1
  cma: CMA area hugetlb could not be activated

 # echo 8 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages

  BUG: kernel NULL pointer dereference, address: 0000000000000000
  #PF: supervisor read access in kernel mode
  #PF: error_code(0x0000) - not-present page
  PGD 0 P4D 0
  Oops: 0000 [#1] SMP PTI
  ...
  Call Trace:
    bitmap_find_next_zero_area_off+0x51/0x90
    cma_alloc+0x1a5/0x310
    alloc_fresh_huge_page+0x78/0x1a0
    alloc_pool_huge_page+0x6f/0xf0
    set_max_huge_pages+0x10c/0x250
    nr_hugepages_store_common+0x92/0x120
    ? __kmalloc+0x171/0x270
    kernfs_fop_write+0xc1/0x1a0
    vfs_write+0xc7/0x1f0
    ksys_write+0x5f/0xe0
    do_syscall_64+0x4d/0x90
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: c64be2bb1c ("drivers: add Contiguous Memory Allocator")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200730163123.6451-1-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-03 11:26:51 +02:00
Yunfeng Ye aed14b1b5c mm/cma.c: switch to bitmap_zalloc() for cma bitmap allocation
[ Upstream commit 2184f9928ab52f26c2ae5e9ba37faf29c78f50b8 ]

kzalloc() is used for cma bitmap allocation in cma_activate_area(),
switch to bitmap_zalloc() for clarity.

Link: http://lkml.kernel.org/r/895d4627-f115-c77a-d454-c0a196116426@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Yue Hu <huyue2@yulong.com>
Cc: Peng Fan <peng.fan@nxp.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ryohei Suzuki <ryh.szk.cmnty@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-03 11:26:51 +02:00
Peter Zijlstra 965d3d5ce3 mm: fix kthread_use_mm() vs TLB invalidate
[ Upstream commit 38cf307c1f2011d413750c5acb725456f47d9172 ]

For SMP systems using IPI based TLB invalidation, looking at
current->active_mm is entirely reasonable.  This then presents the
following race condition:

  CPU0			CPU1

  flush_tlb_mm(mm)	use_mm(mm)
    <send-IPI>
			  tsk->active_mm = mm;
			  <IPI>
			    if (tsk->active_mm == mm)
			      // flush TLBs
			  </IPI>
			  switch_mm(old_mm,mm,tsk);

Where it is possible the IPI flushed the TLBs for @old_mm, not @mm,
because the IPI lands before we actually switched.

Avoid this by disabling IRQs across changing ->active_mm and
switch_mm().

Of the (SMP) architectures that have IPI based TLB invalidate:

  Alpha    - checks active_mm
  ARC      - ASID specific
  IA64     - checks active_mm
  MIPS     - ASID specific flush
  OpenRISC - shoots down world
  PARISC   - shoots down world
  SH       - ASID specific
  SPARC    - ASID specific
  x86      - N/A
  xtensa   - checks active_mm

So at the very least Alpha, IA64 and Xtensa are suspect.

On top of this, for scheduler consistency we need at least preemption
disabled across changing tsk->mm and doing switch_mm(), which is
currently provided by task_lock(), but that's not sufficient for
PREEMPT_RT.

[akpm@linux-foundation.org: add comment]

Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kees Cook <keescook@chromium.org>
Cc: Jann Horn <jannh@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200721154106.GE10769@hirez.programming.kicks-ass.net
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-03 11:26:51 +02:00
David Hildenbrand 72574434da mm/shuffle: don't move pages between zones and don't read garbage memmaps
[ Upstream commit 4a93025cbe4a0b19d1a25a2d763a3d2018bad0d9 ]

Especially with memory hotplug, we can have offline sections (with a
garbage memmap) and overlapping zones.  We have to make sure to only touch
initialized memmaps (online sections managed by the buddy) and that the
zone matches, to not move pages between zones.

To test if this can actually happen, I added a simple

	BUG_ON(page_zone(page_i) != page_zone(page_j));

right before the swap.  When hotplugging a 256M DIMM to a 4G x86-64 VM and
onlining the first memory block "online_movable" and the second memory
block "online_kernel", it will trigger the BUG, as both zones (NORMAL and
MOVABLE) overlap.

This might result in all kinds of weird situations (e.g., double
allocations, list corruptions, unmovable allocations ending up in the
movable zone).

Fixes: e900a918b0 ("mm: shuffle initial free memory to improve memory-side-cache utilization")
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>	[5.2+]
Link: http://lkml.kernel.org/r/20200624094741.9918-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-09-03 11:26:51 +02:00
Peter Xu d6bca2a8f0 mm/hugetlb: fix calculation of adjust_range_if_pmd_sharing_possible
commit 75802ca66354a39ab8e35822747cd08b3384a99a upstream.

This is found by code observation only.

Firstly, the worst case scenario should assume the whole range was covered
by pmd sharing.  The old algorithm might not work as expected for ranges
like (1g-2m, 1g+2m), where the adjusted range should be (0, 1g+2m) but the
expected range should be (0, 2g).

Since at it, remove the loop since it should not be required.  With that,
the new code should be faster too when the invalidating range is huge.

Mike said:

: With range (1g-2m, 1g+2m) within a vma (0, 2g) the existing code will only
: adjust to (0, 1g+2m) which is incorrect.
:
: We should cc stable.  The original reason for adjusting the range was to
: prevent data corruption (getting wrong page).  Since the range is not
: always adjusted correctly, the potential for corruption still exists.
:
: However, I am fairly confident that adjust_range_if_pmd_sharing_possible
: is only gong to be called in two cases:
:
: 1) for a single page
: 2) for range == entire vma
:
: In those cases, the current code should produce the correct results.
:
: To be safe, let's just cc stable.

Fixes: 017b1660df ("mm: migration: fix migration of huge PMD shared pages")
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200730201636.74778-1-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-26 10:41:07 +02:00
Charan Teja Reddy 0cfb9320d0 mm, page_alloc: fix core hung in free_pcppages_bulk()
commit 88e8ac11d2ea3acc003cf01bb5a38c8aa76c3cfd upstream.

The following race is observed with the repeated online, offline and a
delay between two successive online of memory blocks of movable zone.

P1						P2

Online the first memory block in
the movable zone. The pcp struct
values are initialized to default
values,i.e., pcp->high = 0 &
pcp->batch = 1.

					Allocate the pages from the
					movable zone.

Try to Online the second memory
block in the movable zone thus it
entered the online_pages() but yet
to call zone_pcp_update().
					This process is entered into
					the exit path thus it tries
					to release the order-0 pages
					to pcp lists through
					free_unref_page_commit().
					As pcp->high = 0, pcp->count = 1
					proceed to call the function
					free_pcppages_bulk().
Update the pcp values thus the
new pcp values are like, say,
pcp->high = 378, pcp->batch = 63.
					Read the pcp's batch value using
					READ_ONCE() and pass the same to
					free_pcppages_bulk(), pcp values
					passed here are, batch = 63,
					count = 1.

					Since num of pages in the pcp
					lists are less than ->batch,
					then it will stuck in
					while(list_empty(list)) loop
					with interrupts disabled thus
					a core hung.

Avoid this by ensuring free_pcppages_bulk() is called with proper count of
pcp list pages.

The mentioned race is some what easily reproducible without [1] because
pcp's are not updated for the first memory block online and thus there is
a enough race window for P2 between alloc+free and pcp struct values
update through onlining of second memory block.

With [1], the race still exists but it is very narrow as we update the pcp
struct values for the first memory block online itself.

This is not limited to the movable zone, it could also happen in cases
with the normal zone (e.g., hotplug to a node that only has DMA memory, or
no other memory yet).

[1]: https://patchwork.kernel.org/patch/11696389/

Fixes: 5f8dcc2121 ("page-allocator: split per-cpu list into one-list-per-migrate-type")
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: <stable@vger.kernel.org> [2.6+]
Link: http://lkml.kernel.org/r/1597150703-19003-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-26 10:40:51 +02:00
Doug Berger 5663159e29 mm: include CMA pages in lowmem_reserve at boot
commit e08d3fdfe2dafa0331843f70ce1ff6c1c4900bf4 upstream.

The lowmem_reserve arrays provide a means of applying pressure against
allocations from lower zones that were targeted at higher zones.  Its
values are a function of the number of pages managed by higher zones and
are assigned by a call to the setup_per_zone_lowmem_reserve() function.

The function is initially called at boot time by the function
init_per_zone_wmark_min() and may be called later by accesses of the
/proc/sys/vm/lowmem_reserve_ratio sysctl file.

The function init_per_zone_wmark_min() was moved up from a module_init to
a core_initcall to resolve a sequencing issue with khugepaged.
Unfortunately this created a sequencing issue with CMA page accounting.

The CMA pages are added to the managed page count of a zone when
cma_init_reserved_areas() is called at boot also as a core_initcall.  This
makes it uncertain whether the CMA pages will be added to the managed page
counts of their zones before or after the call to
init_per_zone_wmark_min() as it becomes dependent on link order.  With the
current link order the pages are added to the managed count after the
lowmem_reserve arrays are initialized at boot.

This means the lowmem_reserve values at boot may be lower than the values
used later if /proc/sys/vm/lowmem_reserve_ratio is accessed even if the
ratio values are unchanged.

In many cases the difference is not significant, but for example
an ARM platform with 1GB of memory and the following memory layout

  cma: Reserved 256 MiB at 0x0000000030000000
  Zone ranges:
    DMA      [mem 0x0000000000000000-0x000000002fffffff]
    Normal   empty
    HighMem  [mem 0x0000000030000000-0x000000003fffffff]

would result in 0 lowmem_reserve for the DMA zone.  This would allow
userspace to deplete the DMA zone easily.

Funnily enough

  $ cat /proc/sys/vm/lowmem_reserve_ratio

would fix up the situation because as a side effect it forces
setup_per_zone_lowmem_reserve.

This commit breaks the link order dependency by invoking
init_per_zone_wmark_min() as a postcore_initcall so that the CMA pages
have the chance to be properly accounted in their zone(s) and allowing
the lowmem_reserve arrays to receive consistent values.

Fixes: bc22af74f2 ("mm: update min_free_kbytes from khugepaged after core initialization")
Signed-off-by: Doug Berger <opendmb@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1597423766-27849-1-git-send-email-opendmb@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-26 10:40:51 +02:00
Hugh Dickins 9f4f7c08d5 khugepaged: adjust VM_BUG_ON_MM() in __khugepaged_enter()
[ Upstream commit f3f99d63a8156c7a4a6b20aac22b53c5579c7dc1 ]

syzbot crashes on the VM_BUG_ON_MM(khugepaged_test_exit(mm), mm) in
__khugepaged_enter(): yes, when one thread is about to dump core, has set
core_state, and is waiting for others, another might do something calling
__khugepaged_enter(), which now crashes because I lumped the core_state
test (known as "mmget_still_valid") into khugepaged_test_exit().  I still
think it's best to lump them together, so just in this exceptional case,
check mm->mm_users directly instead of khugepaged_test_exit().

Fixes: bbe98f9cadff ("khugepaged: khugepaged_test_exit() check mmget_still_valid()")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: <stable@vger.kernel.org>	[4.8+]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008141503370.18085@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-26 10:40:48 +02:00
Hugh Dickins 9a05b774af khugepaged: khugepaged_test_exit() check mmget_still_valid()
[ Upstream commit bbe98f9cadff58cdd6a4acaeba0efa8565dabe65 ]

Move collapse_huge_page()'s mmget_still_valid() check into
khugepaged_test_exit() itself.  collapse_huge_page() is used for anon THP
only, and earned its mmget_still_valid() check because it inserts a huge
pmd entry in place of the page table's pmd entry; whereas
collapse_file()'s retract_page_tables() or collapse_pte_mapped_thp()
merely clears the page table's pmd entry.  But core dumping without mmap
lock must have been as open to mistaking a racily cleared pmd entry for a
page table at physical page 0, as exit_mmap() was.  And we certainly have
no interest in mapping as a THP once dumping core.

Fixes: 59ea6d06cf ("coredump: fix race condition between collapse_huge_page() and core dumping")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>	[4.8+]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008021217020.27773@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-26 10:40:48 +02:00
Hugh Dickins 0f1c938ef8 khugepaged: retract_page_tables() remember to test exit
commit 18e77600f7a1ed69f8ce46c9e11cad0985712dfa upstream.

Only once have I seen this scenario (and forgot even to notice what forced
the eventual crash): a sequence of "BUG: Bad page map" alerts from
vm_normal_page(), from zap_pte_range() servicing exit_mmap();
pmd:00000000, pte values corresponding to data in physical page 0.

The pte mappings being zapped in this case were supposed to be from a huge
page of ext4 text (but could as well have been shmem): my belief is that
it was racing with collapse_file()'s retract_page_tables(), found *pmd
pointing to a page table, locked it, but *pmd had become 0 by the time
start_pte was decided.

In most cases, that possibility is excluded by holding mmap lock; but
exit_mmap() proceeds without mmap lock.  Most of what's run by khugepaged
checks khugepaged_test_exit() after acquiring mmap lock:
khugepaged_collapse_pte_mapped_thps() and hugepage_vma_revalidate() do so,
for example.  But retract_page_tables() did not: fix that.

The fix is for retract_page_tables() to check khugepaged_test_exit(),
after acquiring mmap lock, before doing anything to the page table.
Getting the mmap lock serializes with __mmput(), which briefly takes and
drops it in __khugepaged_exit(); then the khugepaged_test_exit() check on
mm_users makes sure we don't touch the page table once exit_mmap() might
reach it, since exit_mmap() will be proceeding without mmap lock, not
expecting anyone to be racing with it.

Fixes: f3f0e1d215 ("khugepaged: add support of collapse for tmpfs/shmem pages")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: <stable@vger.kernel.org>	[4.8+]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008021215400.27773@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-21 13:05:39 +02:00
Jia He b47215b374 mm/memory_hotplug: fix unpaired mem_hotplug_begin/done
commit b4223a510e2ab1bf0f971d50af7c1431014b25ad upstream.

When check_memblock_offlined_cb() returns failed rc(e.g. the memblock is
online at that time), mem_hotplug_begin/done is unpaired in such case.

Therefore a warning:
 Call Trace:
  percpu_up_write+0x33/0x40
  try_remove_memory+0x66/0x120
  ? _cond_resched+0x19/0x30
  remove_memory+0x2b/0x40
  dev_dax_kmem_remove+0x36/0x72 [kmem]
  device_release_driver_internal+0xf0/0x1c0
  device_release_driver+0x12/0x20
  bus_remove_device+0xe1/0x150
  device_del+0x17b/0x3e0
  unregister_dev_dax+0x29/0x60
  devm_action_release+0x15/0x20
  release_nodes+0x19a/0x1e0
  devres_release_all+0x3f/0x50
  device_release_driver_internal+0x100/0x1c0
  driver_detach+0x4c/0x8f
  bus_remove_driver+0x5c/0xd0
  driver_unregister+0x31/0x50
  dax_pmem_exit+0x10/0xfe0 [dax_pmem]

Fixes: f1037ec0cc8a ("mm/memory_hotplug: fix remove_memory() lockdep splat")
Signed-off-by: Jia He <justin.he@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>	[5.6+]
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chuhong Yuan <hslester96@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Cc: Kaly Xin <Kaly.Xin@arm.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200710031619.18762-3-justin.he@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-21 13:05:27 +02:00
Michal Koutný aeeddba9b4 mm/page_counter.c: fix protection usage propagation
commit a6f23d14ec7d7d02220ad8bb2774be3322b9aeec upstream.

When workload runs in cgroups that aren't directly below root cgroup and
their parent specifies reclaim protection, it may end up ineffective.

The reason is that propagate_protected_usage() is not called in all
hierarchy up.  All the protected usage is incorrectly accumulated in the
workload's parent.  This means that siblings_low_usage is overestimated
and effective protection underestimated.  Even though it is transitional
phenomenon (uncharge path does correct propagation and fixes the wrong
children_low_usage), it can undermine the intended protection
unexpectedly.

We have noticed this problem while seeing a swap out in a descendant of a
protected memcg (intermediate node) while the parent was conveniently
under its protection limit and the memory pressure was external to that
hierarchy.  Michal has pinpointed this down to the wrong
siblings_low_usage which led to the unwanted reclaim.

The fix is simply updating children_low_usage in respective ancestors also
in the charging path.

Fixes: 230671533d ("mm: memory.low hierarchical behavior")
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>	[4.18+]
Link: http://lkml.kernel.org/r/20200803153231.15477-1-mhocko@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-21 13:05:27 +02:00
Hugh Dickins a6b238cac6 khugepaged: collapse_pte_mapped_thp() protect the pmd lock
commit 119a5fc16105b2b9383a6e2a7800b2ef861b2975 upstream.

When retract_page_tables() removes a page table to make way for a huge
pmd, it holds huge page lock, i_mmap_lock_write, mmap_write_trylock and
pmd lock; but when collapse_pte_mapped_thp() does the same (to handle the
case when the original mmap_write_trylock had failed), only
mmap_write_trylock and pmd lock are held.

That's not enough.  One machine has twice crashed under load, with "BUG:
spinlock bad magic" and GPF on 6b6b6b6b6b6b6b6b.  Examining the second
crash, page_vma_mapped_walk_done()'s spin_unlock of pvmw->ptl (serving
page_referenced() on a file THP, that had found a page table at *pmd)
discovers that the page table page and its lock have already been freed by
the time it comes to unlock.

Follow the example of retract_page_tables(), but we only need one of huge
page lock or i_mmap_lock_write to secure against this: because it's the
narrower lock, and because it simplifies collapse_pte_mapped_thp() to know
the hpage earlier, choose to rely on huge page lock here.

Fixes: 27e1f82731 ("khugepaged: enable collapse pmd for pte-mapped THP")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: <stable@vger.kernel.org>	[5.4+]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008021213070.27773@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-21 13:05:26 +02:00
Hugh Dickins 687d366d0d khugepaged: collapse_pte_mapped_thp() flush the right range
commit 723a80dafed5c95889d48baab9aa433a6ffa0b4e upstream.

pmdp_collapse_flush() should be given the start address at which the huge
page is mapped, haddr: it was given addr, which at that point has been
used as a local variable, incremented to the end address of the extent.

Found by source inspection while chasing a hugepage locking bug, which I
then could not explain by this.  At first I thought this was very bad;
then saw that all of the page translations that were not flushed would
actually still point to the right pages afterwards, so harmless; then
realized that I know nothing of how different architectures and models
cache intermediate paging structures, so maybe it matters after all -
particularly since the page table concerned is immediately freed.

Much easier to fix than to think about.

Fixes: 27e1f82731 ("khugepaged: enable collapse pmd for pte-mapped THP")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: <stable@vger.kernel.org>	[5.4+]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008021204390.27773@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-21 13:05:26 +02:00
Paul E. McKenney 87834546ea mm/mmap.c: Add cond_resched() for exit_mmap() CPU stalls
[ Upstream commit 0a3b3c253a1eb2c7fe7f34086d46660c909abeb3 ]

A large process running on a heavily loaded system can encounter the
following RCU CPU stall warning:

  rcu: INFO: rcu_sched self-detected stall on CPU
  rcu: 	3-....: (20998 ticks this GP) idle=4ea/1/0x4000000000000002 softirq=556558/556558 fqs=5190
  	(t=21013 jiffies g=1005461 q=132576)
  NMI backtrace for cpu 3
  CPU: 3 PID: 501900 Comm: aio-free-ring-w Kdump: loaded Not tainted 5.2.9-108_fbk12_rc3_3858_gb83b75af7909 #1
  Hardware name: Wiwynn   HoneyBadger/PantherPlus, BIOS HBM6.71 02/03/2016
  Call Trace:
   <IRQ>
   dump_stack+0x46/0x60
   nmi_cpu_backtrace.cold.3+0x13/0x50
   ? lapic_can_unplug_cpu.cold.27+0x34/0x34
   nmi_trigger_cpumask_backtrace+0xba/0xca
   rcu_dump_cpu_stacks+0x99/0xc7
   rcu_sched_clock_irq.cold.87+0x1aa/0x397
   ? tick_sched_do_timer+0x60/0x60
   update_process_times+0x28/0x60
   tick_sched_timer+0x37/0x70
   __hrtimer_run_queues+0xfe/0x270
   hrtimer_interrupt+0xf4/0x210
   smp_apic_timer_interrupt+0x5e/0x120
   apic_timer_interrupt+0xf/0x20
   </IRQ>
  RIP: 0010:kmem_cache_free+0x223/0x300
  Code: 88 00 00 00 0f 85 ca 00 00 00 41 8b 55 18 31 f6 f7 da 41 f6 45 0a 02 40 0f 94 c6 83 c6 05 9c 41 5e fa e8 a0 a7 01 00 41 56 9d <49> 8b 47 08 a8 03 0f 85 87 00 00 00 65 48 ff 08 e9 3d fe ff ff 65
  RSP: 0018:ffffc9000e8e3da8 EFLAGS: 00000206 ORIG_RAX: ffffffffffffff13
  RAX: 0000000000020000 RBX: ffff88861b9de960 RCX: 0000000000000030
  RDX: fffffffffffe41e8 RSI: 000060777fe3a100 RDI: 000000000001be18
  RBP: ffffea00186e7780 R08: ffffffffffffffff R09: ffffffffffffffff
  R10: ffff88861b9dea28 R11: ffff88887ffde000 R12: ffffffff81230a1f
  R13: ffff888854684dc0 R14: 0000000000000206 R15: ffff8888547dbc00
   ? remove_vma+0x4f/0x60
   remove_vma+0x4f/0x60
   exit_mmap+0xd6/0x160
   mmput+0x4a/0x110
   do_exit+0x278/0xae0
   ? syscall_trace_enter+0x1d3/0x2b0
   ? handle_mm_fault+0xaa/0x1c0
   do_group_exit+0x3a/0xa0
   __x64_sys_exit_group+0x14/0x20
   do_syscall_64+0x42/0x100
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

And on a PREEMPT=n kernel, the "while (vma)" loop in exit_mmap() can run
for a very long time given a large process.  This commit therefore adds
a cond_resched() to this loop, providing RCU any needed quiescent states.

Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-19 08:16:02 +02:00
Jan Kara 47e2093381 mm/filemap.c: don't bother dropping mmap_sem for zero size readahead
commit 5c72feee3e45b40a3c96c7145ec422899d0e8964 upstream.

When handling a page fault, we drop mmap_sem to start async readahead so
that we don't block on IO submission with mmap_sem held.  However there's
no point to drop mmap_sem in case readahead is disabled.  Handle that case
to avoid pointless dropping of mmap_sem and retrying the fault.  This was
actually reported to block mlockall(MCL_CURRENT) indefinitely.

Fixes: 6b4c9f4469 ("filemap: drop the mmap_sem for all blocking operations")
Reported-by: Minchan Kim <minchan@kernel.org>
Reported-by: Robert Stupp <snazy@gmx.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/20200212101356.30759-1-jack@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: SeongJae Park <sjpark@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-05 09:59:41 +02:00
Kirill A. Shutemov 40c5836b4a khugepaged: fix null-pointer dereference due to race
commit 594cced14ad3903166c8b091ff96adac7552f0b3 upstream.

khugepaged has to drop mmap lock several times while collapsing a page.
The situation can change while the lock is dropped and we need to
re-validate that the VMA is still in place and the PMD is still subject
for collapse.

But we miss one corner case: while collapsing an anonymous pages the VMA
could be replaced with file VMA.  If the file VMA doesn't have any
private pages we get NULL pointer dereference:

	general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN
	KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
	anon_vma_lock_write include/linux/rmap.h:120 [inline]
	collapse_huge_page mm/khugepaged.c:1110 [inline]
	khugepaged_scan_pmd mm/khugepaged.c:1349 [inline]
	khugepaged_scan_mm_slot mm/khugepaged.c:2110 [inline]
	khugepaged_do_scan mm/khugepaged.c:2193 [inline]
	khugepaged+0x3bba/0x5a10 mm/khugepaged.c:2238

The fix is to make sure that the VMA is anonymous in
hugepage_vma_revalidate().  The helper is only used for collapsing
anonymous pages.

Fixes: 99cb0dbd47 ("mm,thp: add read-only THP support for (non-shmem) FS")
Reported-by: syzbot+ed318e8b790ca72c5ad0@syzkaller.appspotmail.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200722121439.44328-1-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-29 10:18:44 +02:00
Muchun Song 95750e1edb mm: memcg/slab: fix memory leak at non-root kmem_cache destroy
commit d38a2b7a9c939e6d7329ab92b96559ccebf7b135 upstream.

If the kmem_cache refcount is greater than one, we should not mark the
root kmem_cache as dying.  If we mark the root kmem_cache dying
incorrectly, the non-root kmem_cache can never be destroyed.  It
resulted in memory leak when memcg was destroyed.  We can use the
following steps to reproduce.

  1) Use kmem_cache_create() to create a new kmem_cache named A.
  2) Coincidentally, the kmem_cache A is an alias for kmem_cache B,
     so the refcount of B is just increased.
  3) Use kmem_cache_destroy() to destroy the kmem_cache A, just
     decrease the B's refcount but mark the B as dying.
  4) Create a new memory cgroup and alloc memory from the kmem_cache
     B. It leads to create a non-root kmem_cache for allocating memory.
  5) When destroy the memory cgroup created in the step 4), the
     non-root kmem_cache can never be destroyed.

If we repeat steps 4) and 5), this will cause a lot of memory leak.  So
only when refcount reach zero, we mark the root kmem_cache as dying.

Fixes: 92ee383f6d ("mm: fix race between kmem_cache destroy, create and deactivate")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200716165103.83462-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-29 10:18:44 +02:00
Hugh Dickins db949f60d9 mm/memcg: fix refcount error while moving and swapping
commit 8d22a9351035ef2ff12ef163a1091b8b8cf1e49c upstream.

It was hard to keep a test running, moving tasks between memcgs with
move_charge_at_immigrate, while swapping: mem_cgroup_id_get_many()'s
refcount is discovered to be 0 (supposedly impossible), so it is then
forced to REFCOUNT_SATURATED, and after thousands of warnings in quick
succession, the test is at last put out of misery by being OOM killed.

This is because of the way moved_swap accounting was saved up until the
task move gets completed in __mem_cgroup_clear_mc(), deferred from when
mem_cgroup_move_swap_account() actually exchanged old and new ids.
Concurrent activity can free up swap quicker than the task is scanned,
bringing id refcount down 0 (which should only be possible when
offlining).

Just skip that optimization: do that part of the accounting immediately.

Fixes: 615d66c37c ("mm: memcontrol: fix memcg id ref counter on swap charge move")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2007071431050.4726@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-29 10:18:43 +02:00
Kirill A. Shutemov 549bfc1427 mm/mmap.c: close race between munmap() and expand_upwards()/downwards()
commit 246c320a8cfe0b11d81a4af38fa9985ef0cc9a4c upstream.

VMA with VM_GROWSDOWN or VM_GROWSUP flag set can change their size under
mmap_read_lock().  It can lead to race with __do_munmap():

	Thread A			Thread B
__do_munmap()
  detach_vmas_to_be_unmapped()
  mmap_write_downgrade()
				expand_downwards()
				  vma->vm_start = address;
				  // The VMA now overlaps with
				  // VMAs detached by the Thread A
				// page fault populates expanded part
				// of the VMA
  unmap_region()
    // Zaps pagetables partly
    // populated by Thread B

Similar race exists for expand_upwards().

The fix is to avoid downgrading mmap_lock in __do_munmap() if detached
VMAs are next to VM_GROWSDOWN or VM_GROWSUP VMA.

[akpm@linux-foundation.org: s/mmap_sem/mmap_lock/ in comment]

Fixes: dd2283f260 ("mm: mmap: zap pages with read mmap_sem in munmap")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>	[4.20+]
Link: http://lkml.kernel.org/r/20200709105309.42495-1-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-29 10:18:43 +02:00
Vlastimil Babka d827fe702e mm, compaction: make capture control handling safe wrt interrupts
commit b9e20f0da1f5c9c68689450a8cb436c9486434c8 upstream.

Hugh reports:

 "While stressing compaction, one run oopsed on NULL capc->cc in
  __free_one_page()'s task_capc(zone): compact_zone_order() had been
  interrupted, and a page was being freed in the return from interrupt.

  Though you would not expect it from the source, both gccs I was using
  (4.8.1 and 7.5.0) had chosen to compile compact_zone_order() with the
  ".cc = &cc" implemented by mov %rbx,-0xb0(%rbp) immediately before
  callq compact_zone - long after the "current->capture_control =
  &capc". An interrupt in between those finds capc->cc NULL (zeroed by
  an earlier rep stos).

  This could presumably be fixed by a barrier() before setting
  current->capture_control in compact_zone_order(); but would also need
  more care on return from compact_zone(), in order not to risk leaking
  a page captured by interrupt just before capture_control is reset.

  Maybe that is the preferable fix, but I felt safer for task_capc() to
  exclude the rather surprising possibility of capture at interrupt
  time"

I have checked that gcc10 also behaves the same.

The advantage of fix in compact_zone_order() is that we don't add
another test in the page freeing hot path, and that it might prevent
future problems if we stop exposing pointers to uninitialized structures
in current task.

So this patch implements the suggestion for compact_zone_order() with
barrier() (and WRITE_ONCE() to prevent store tearing) for setting
current->capture_control, and prevents page leaking with
WRITE_ONCE/READ_ONCE in the proper order.

Link: http://lkml.kernel.org/r/20200616082649.27173-1-vbabka@suse.cz
Fixes: 5e1f0f098b ("mm, compaction: capture a page under direct compaction")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Hugh Dickins <hughd@google.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Li Wang <liwang@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>	[5.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-09 09:37:57 +02:00
Vlastimil Babka 64a94c550c mm, compaction: fully assume capture is not NULL in compact_zone_order()
commit 6467552ca64c4ddd2b83ed73192107d7145f533b upstream.

Dan reports:

The patch 5e1f0f098b46: "mm, compaction: capture a page under direct
compaction" from Mar 5, 2019, leads to the following Smatch complaint:

    mm/compaction.c:2321 compact_zone_order()
     error: we previously assumed 'capture' could be null (see line 2313)

mm/compaction.c
  2288  static enum compact_result compact_zone_order(struct zone *zone, int order,
  2289                  gfp_t gfp_mask, enum compact_priority prio,
  2290                  unsigned int alloc_flags, int classzone_idx,
  2291                  struct page **capture)
                                      ^^^^^^^

  2313		if (capture)
                    ^^^^^^^
Check for NULL

  2314			current->capture_control = &capc;
  2315
  2316		ret = compact_zone(&cc, &capc);
  2317
  2318		VM_BUG_ON(!list_empty(&cc.freepages));
  2319		VM_BUG_ON(!list_empty(&cc.migratepages));
  2320
  2321		*capture = capc.page;
                ^^^^^^^^
Unchecked dereference.

  2322		current->capture_control = NULL;
  2323

In practice this is not an issue, as the only caller path passes non-NULL
capture:

__alloc_pages_direct_compact()
  struct page *page = NULL;
  try_to_compact_pages(capture = &page);
    compact_zone_order(capture = capture);

So let's remove the unnecessary check, which should also make Smatch happy.

Fixes: 5e1f0f098b ("mm, compaction: capture a page under direct compaction")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/18b0df3c-0589-d96c-23fa-040798fee187@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-09 09:37:57 +02:00
Qian Cai fe688b144c mm/slub: fix stack overruns with SLUB_STATS
[ Upstream commit a68ee0573991e90af2f1785db309206408bad3e5 ]

There is no need to copy SLUB_STATS items from root memcg cache to new
memcg cache copies.  Doing so could result in stack overruns because the
store function only accepts 0 to clear the stat and returns an error for
everything else while the show method would print out the whole stat.

Then, the mismatch of the lengths returns from show and store methods
happens in memcg_propagate_slab_attrs():

	else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
		buf = mbuf;

max_attr_size is only 2 from slab_attr_store(), then, it uses mbuf[64]
in show_stat() later where a bounch of sprintf() would overrun the stack
variable.  Fix it by always allocating a page of buffer to be used in
show_stat() if SLUB_STATS=y which should only be used for debug purpose.

  # echo 1 > /sys/kernel/slab/fs_cache/shrink
  BUG: KASAN: stack-out-of-bounds in number+0x421/0x6e0
  Write of size 1 at addr ffffc900256cfde0 by task kworker/76:0/53251

  Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019
  Workqueue: memcg_kmem_cache memcg_kmem_cache_create_func
  Call Trace:
    number+0x421/0x6e0
    vsnprintf+0x451/0x8e0
    sprintf+0x9e/0xd0
    show_stat+0x124/0x1d0
    alloc_slowpath_show+0x13/0x20
    __kmem_cache_create+0x47a/0x6b0

  addr ffffc900256cfde0 is located in stack of task kworker/76:0/53251 at offset 0 in frame:
   process_one_work+0x0/0xb90

  this frame has 1 object:
   [32, 72) 'lockdep_map'

  Memory state around the buggy address:
   ffffc900256cfc80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
   ffffc900256cfd00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  >ffffc900256cfd80: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1
                                                         ^
   ffffc900256cfe00: 00 00 00 00 00 f2 f2 f2 00 00 00 00 00 00 00 00
   ffffc900256cfe80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  ==================================================================
  Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: __kmem_cache_create+0x6ac/0x6b0
  Workqueue: memcg_kmem_cache memcg_kmem_cache_create_func
  Call Trace:
    __kmem_cache_create+0x6ac/0x6b0

Fixes: 107dab5c92 ("slub: slub-specific propagation changes")
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Glauber Costa <glauber@scylladb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200429222356.4322-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-09 09:37:50 +02:00
Dongli Zhang f459e8fc7c mm/slub.c: fix corrupted freechain in deactivate_slab()
[ Upstream commit 52f23478081ae0dcdb95d1650ea1e7d52d586829 ]

The slub_debug is able to fix the corrupted slab freelist/page.
However, alloc_debug_processing() only checks the validity of current
and next freepointer during allocation path.  As a result, once some
objects have their freepointers corrupted, deactivate_slab() may lead to
page fault.

Below is from a test kernel module when 'slub_debug=PUF,kmalloc-128
slub_nomerge'.  The test kernel corrupts the freepointer of one free
object on purpose.  Unfortunately, deactivate_slab() does not detect it
when iterating the freechain.

  BUG: unable to handle page fault for address: 00000000123456f8
  #PF: supervisor read access in kernel mode
  #PF: error_code(0x0000) - not-present page
  PGD 0 P4D 0
  Oops: 0000 [#1] SMP PTI
  ... ...
  RIP: 0010:deactivate_slab.isra.92+0xed/0x490
  ... ...
  Call Trace:
   ___slab_alloc+0x536/0x570
   __slab_alloc+0x17/0x30
   __kmalloc+0x1d9/0x200
   ext4_htree_store_dirent+0x30/0xf0
   htree_dirblock_to_tree+0xcb/0x1c0
   ext4_htree_fill_tree+0x1bc/0x2d0
   ext4_readdir+0x54f/0x920
   iterate_dir+0x88/0x190
   __x64_sys_getdents+0xa6/0x140
   do_syscall_64+0x49/0x170
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

Therefore, this patch adds extra consistency check in deactivate_slab().
Once an object's freepointer is corrupted, all following objects
starting at this object are isolated.

[akpm@linux-foundation.org: fix build with CONFIG_SLAB_DEBUG=n]
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joe Jin <joe.jin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200331031450.12182-1-dongli.zhang@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-09 09:37:50 +02:00
Hugh Dickins d0e533584a mm: fix swap cache node allocation mask
[ Upstream commit 243bce09c91b0145aeaedd5afba799d81841c030 ]

Chris Murphy reports that a slightly overcommitted load, testing swap
and zram along with i915, splats and keeps on splatting, when it had
better fail less noisily:

  gnome-shell: page allocation failure: order:0,
  mode:0x400d0(__GFP_IO|__GFP_FS|__GFP_COMP|__GFP_RECLAIMABLE),
  nodemask=(null),cpuset=/,mems_allowed=0
  CPU: 2 PID: 1155 Comm: gnome-shell Not tainted 5.7.0-1.fc33.x86_64 #1
  Call Trace:
    dump_stack+0x64/0x88
    warn_alloc.cold+0x75/0xd9
    __alloc_pages_slowpath.constprop.0+0xcfa/0xd30
    __alloc_pages_nodemask+0x2df/0x320
    alloc_slab_page+0x195/0x310
    allocate_slab+0x3c5/0x440
    ___slab_alloc+0x40c/0x5f0
    __slab_alloc+0x1c/0x30
    kmem_cache_alloc+0x20e/0x220
    xas_nomem+0x28/0x70
    add_to_swap_cache+0x321/0x400
    __read_swap_cache_async+0x105/0x240
    swap_cluster_readahead+0x22c/0x2e0
    shmem_swapin+0x8e/0xc0
    shmem_swapin_page+0x196/0x740
    shmem_getpage_gfp+0x3a2/0xa60
    shmem_read_mapping_page_gfp+0x32/0x60
    shmem_get_pages+0x155/0x5e0 [i915]
    __i915_gem_object_get_pages+0x68/0xa0 [i915]
    i915_vma_pin+0x3fe/0x6c0 [i915]
    eb_add_vma+0x10b/0x2c0 [i915]
    i915_gem_do_execbuffer+0x704/0x3430 [i915]
    i915_gem_execbuffer2_ioctl+0x1ea/0x3e0 [i915]
    drm_ioctl_kernel+0x86/0xd0 [drm]
    drm_ioctl+0x206/0x390 [drm]
    ksys_ioctl+0x82/0xc0
    __x64_sys_ioctl+0x16/0x20
    do_syscall_64+0x5b/0xf0
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

Reported on 5.7, but it goes back really to 3.1: when
shmem_read_mapping_page_gfp() was implemented for use by i915, and
allowed for __GFP_NORETRY and __GFP_NOWARN flags in most places, but
missed swapin's "& GFP_KERNEL" mask for page tree node allocation in
__read_swap_cache_async() - that was to mask off HIGHUSER_MOVABLE bits
from what page cache uses, but GFP_RECLAIM_MASK is now what's needed.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=208085
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2006151330070.11064@eggly.anvils
Fixes: 68da9f0557 ("tmpfs: pass gfp to shmem_getpage_gfp")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: Chris Murphy <lists@colorremedies.com>
Analyzed-by: Vlastimil Babka <vbabka@suse.cz>
Analyzed-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Chris Murphy <lists@colorremedies.com>
Cc: <stable@vger.kernel.org>	[3.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-09 09:37:49 +02:00
Muchun Song 7a9e3e25a9 mm/memcontrol.c: add missed css_put()
commit 3a98990ae2150277ed34d3b248c60e68bf2244b2 upstream.

We should put the css reference when memory allocation failed.

Link: http://lkml.kernel.org/r/20200614122653.98829-1-songmuchun@bytedance.com
Fixes: f0a3a24b53 ("mm: memcg/slab: rework non-root kmem_cache lifecycle management")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 15:37:09 -04:00
Waiman Long fbca1aee13 mm/slab: use memzero_explicit() in kzfree()
commit 8982ae527fbef170ef298650c15d55a9ccd33973 upstream.

The kzfree() function is normally used to clear some sensitive
information, like encryption keys, in the buffer before freeing it back to
the pool.  Memset() is currently used for buffer clearing.  However
unlikely, there is still a non-zero probability that the compiler may
choose to optimize away the memory clearing especially if LTO is being
used in the future.

To make sure that this optimization will never happen,
memzero_explicit(), which is introduced in v3.18, is now used in
kzfree() to future-proof it.

Link: http://lkml.kernel.org/r/20200616154311.12314-2-longman@redhat.com
Fixes: 3ef0e5ba46 ("slab: introduce kzfree()")
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 15:37:09 -04:00
Pavel Tatashin 13ae9eaae0 mm: call cond_resched() from deferred_init_memmap()
commit da97f2d56bbd880b4138916a7ef96f9881a551b2 upstream.

Now that deferred pages are initialized with interrupts enabled we can
replace touch_nmi_watchdog() with cond_resched(), as it was before
3a2d7fa8a3.

For now, we cannot do the same in deferred_grow_zone() as it is still
initializes pages with interrupts disabled.

This change fixes RCU problem described in
https://lkml.kernel.org/r/20200401104156.11564-2-david@redhat.com

[   60.474005] rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[   60.475000] rcu:  1-...0: (0 ticks this GP) idle=02a/1/0x4000000000000000 softirq=1/1 fqs=15000
[   60.475000] rcu:  (detected by 0, t=60002 jiffies, g=-1199, q=1)
[   60.475000] Sending NMI from CPU 0 to CPUs 1:
[    1.760091] NMI backtrace for cpu 1
[    1.760091] CPU: 1 PID: 20 Comm: pgdatinit0 Not tainted 4.18.0-147.9.1.el8_1.x86_64 #1
[    1.760091] Hardware name: Red Hat KVM, BIOS 1.13.0-1.module+el8.2.0+5520+4e5817f3 04/01/2014
[    1.760091] RIP: 0010:__init_single_page.isra.65+0x10/0x4f
[    1.760091] Code: 48 83 cf 63 48 89 f8 0f 1f 40 00 48 89 c6 48 89 d7 e8 6b 18 80 ff 66 90 5b c3 31 c0 b9 10 00 00 00 49 89 f8 48 c1 e6 33 f3 ab <b8> 07 00 00 00 48 c1 e2 36 41 c7 40 34 01 00 00 00 48 c1 e0 33 41
[    1.760091] RSP: 0000:ffffba783123be40 EFLAGS: 00000006
[    1.760091] RAX: 0000000000000000 RBX: fffffad34405e300 RCX: 0000000000000000
[    1.760091] RDX: 0000000000000000 RSI: 0010000000000000 RDI: fffffad34405e340
[    1.760091] RBP: 0000000033f3177e R08: fffffad34405e300 R09: 0000000000000002
[    1.760091] R10: 000000000000002b R11: ffff98afb691a500 R12: 0000000000000002
[    1.760091] R13: 0000000000000000 R14: 000000003f03ea00 R15: 000000003e10178c
[    1.760091] FS:  0000000000000000(0000) GS:ffff9c9ebeb00000(0000) knlGS:0000000000000000
[    1.760091] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[    1.760091] CR2: 00000000ffffffff CR3: 000000a1cf20a001 CR4: 00000000003606e0
[    1.760091] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[    1.760091] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[    1.760091] Call Trace:
[    1.760091]  deferred_init_pages+0x8f/0xbf
[    1.760091]  deferred_init_memmap+0x184/0x29d
[    1.760091]  ? deferred_free_pages.isra.97+0xba/0xba
[    1.760091]  kthread+0x112/0x130
[    1.760091]  ? kthread_flush_work_fn+0x10/0x10
[    1.760091]  ret_from_fork+0x35/0x40
[   89.123011] node 0 initialised, 1055935372 pages in 88650ms

Fixes: 3a2d7fa8a3 ("mm: disable interrupts while initializing deferred pages")
Reported-by: Yiqian Wei <yiwei@redhat.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>	[4.17+]
Link: http://lkml.kernel.org/r/20200403140952.17177-4-pasha.tatashin@soleen.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-22 09:31:14 +02:00
Daniel Jordan 5386d93bc5 mm/pagealloc.c: call touch_nmi_watchdog() on max order boundaries in deferred init
commit 117003c32771df617acf66e140fbdbdeb0ac71f5 upstream.

Patch series "initialize deferred pages with interrupts enabled", v4.

Keep interrupts enabled during deferred page initialization in order to
make code more modular and allow jiffies to update.

Original approach, and discussion can be found here:
 http://lkml.kernel.org/r/20200311123848.118638-1-shile.zhang@linux.alibaba.com

This patch (of 3):

deferred_init_memmap() disables interrupts the entire time, so it calls
touch_nmi_watchdog() periodically to avoid soft lockup splats.  Soon it
will run with interrupts enabled, at which point cond_resched() should be
used instead.

deferred_grow_zone() makes the same watchdog calls through code shared
with deferred init but will continue to run with interrupts disabled, so
it can't call cond_resched().

Pull the watchdog calls up to these two places to allow the first to be
changed later, independently of the second.  The frequency reduces from
twice per pageblock (init and free) to once per max order block.

Fixes: 3a2d7fa8a3 ("mm: disable interrupts while initializing deferred pages")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: James Morris <jmorris@namei.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Yiqian Wei <yiwei@redhat.com>
Cc: <stable@vger.kernel.org>	[4.17+]
Link: http://lkml.kernel.org/r/20200403140952.17177-2-pasha.tatashin@soleen.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-22 09:31:14 +02:00
Pavel Tatashin c388f173ed mm: initialize deferred pages with interrupts enabled
commit 3d060856adfc59afb9d029c233141334cfaba418 upstream.

Initializing struct pages is a long task and keeping interrupts disabled
for the duration of this operation introduces a number of problems.

1. jiffies are not updated for long period of time, and thus incorrect time
   is reported. See proposed solution and discussion here:
   lkml/20200311123848.118638-1-shile.zhang@linux.alibaba.com
2. It prevents farther improving deferred page initialization by allowing
   intra-node multi-threading.

We are keeping interrupts disabled to solve a rather theoretical problem
that was never observed in real world (See 3a2d7fa8a3).

Let's keep interrupts enabled. In case we ever encounter a scenario where
an interrupt thread wants to allocate large amount of memory this early in
boot we can deal with that by growing zone (see deferred_grow_zone()) by
the needed amount before starting deferred_init_memmap() threads.

Before:
[    1.232459] node 0 initialised, 12058412 pages in 1ms

After:
[    1.632580] node 0 initialised, 12051227 pages in 436ms

Fixes: 3a2d7fa8a3 ("mm: disable interrupts while initializing deferred pages")
Reported-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Yiqian Wei <yiwei@redhat.com>
Cc: <stable@vger.kernel.org>	[4.17+]
Link: http://lkml.kernel.org/r/20200403140952.17177-3-pasha.tatashin@soleen.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-22 09:31:14 +02:00
Andrea Arcangeli a88d8aaf9b mm: thp: make the THP mapcount atomic against __split_huge_pmd_locked()
commit c444eb564fb16645c172d550359cb3d75fe8a040 upstream.

Write protect anon page faults require an accurate mapcount to decide
if to break the COW or not. This is implemented in the THP path with
reuse_swap_page() ->
page_trans_huge_map_swapcount()/page_trans_huge_mapcount().

If the COW triggers while the other processes sharing the page are
under a huge pmd split, to do an accurate reading, we must ensure the
mapcount isn't computed while it's being transferred from the head
page to the tail pages.

reuse_swap_cache() already runs serialized by the page lock, so it's
enough to add the page lock around __split_huge_pmd_locked too, in
order to add the missing serialization.

Note: the commit in "Fixes" is just to facilitate the backporting,
because the code before such commit didn't try to do an accurate THP
mapcount calculation and it instead used the page_count() to decide if
to COW or not. Both the page_count and the pin_count are THP-wide
refcounts, so they're inaccurate if used in
reuse_swap_page(). Reverting such commit (besides the unrelated fix to
the local anon_vma assignment) would have also opened the window for
memory corruption side effects to certain workloads as documented in
such commit header.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Suggested-by: Jann Horn <jannh@google.com>
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Fixes: 6d0a07edd1 ("mm: thp: calculate the mapcount correctly for THP pages during WP faults")
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-22 09:31:14 +02:00
Wang Hai c49a17f1f1 mm/slub: fix a memory leak in sysfs_slab_add()
commit dde3c6b72a16c2db826f54b2d49bdea26c3534a2 upstream.

syzkaller reports for memory leak when kobject_init_and_add() returns an
error in the function sysfs_slab_add() [1]

When this happened, the function kobject_put() is not called for the
corresponding kobject, which potentially leads to memory leak.

This patch fixes the issue by calling kobject_put() even if
kobject_init_and_add() fails.

[1]
  BUG: memory leak
  unreferenced object 0xffff8880a6d4be88 (size 8):
  comm "syz-executor.3", pid 946, jiffies 4295772514 (age 18.396s)
  hex dump (first 8 bytes):
    70 69 64 5f 33 00 ff ff                          pid_3...
  backtrace:
     kstrdup+0x35/0x70 mm/util.c:60
     kstrdup_const+0x3d/0x50 mm/util.c:82
     kvasprintf_const+0x112/0x170 lib/kasprintf.c:48
     kobject_set_name_vargs+0x55/0x130 lib/kobject.c:289
     kobject_add_varg lib/kobject.c:384 [inline]
     kobject_init_and_add+0xd8/0x170 lib/kobject.c:473
     sysfs_slab_add+0x1d8/0x290 mm/slub.c:5811
     __kmem_cache_create+0x50a/0x570 mm/slub.c:4384
     create_cache+0x113/0x1e0 mm/slab_common.c:407
     kmem_cache_create_usercopy+0x1a1/0x260 mm/slab_common.c:505
     kmem_cache_create+0xd/0x10 mm/slab_common.c:564
     create_pid_cachep kernel/pid_namespace.c:54 [inline]
     create_pid_namespace kernel/pid_namespace.c:96 [inline]
     copy_pid_ns+0x77c/0x8f0 kernel/pid_namespace.c:148
     create_new_namespaces+0x26b/0xa30 kernel/nsproxy.c:95
     unshare_nsproxy_namespaces+0xa7/0x1e0 kernel/nsproxy.c:229
     ksys_unshare+0x3d2/0x770 kernel/fork.c:2969
     __do_sys_unshare kernel/fork.c:3037 [inline]
     __se_sys_unshare kernel/fork.c:3035 [inline]
     __x64_sys_unshare+0x2d/0x40 kernel/fork.c:3035
     do_syscall_64+0xa1/0x530 arch/x86/entry/common.c:295

Fixes: 80da026a8e ("mm/slub: fix slab double-free in case of duplicate sysfs filename")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Wang Hai <wanghai38@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200602115033.1054-1-wanghai38@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-17 16:40:36 +02:00
Linus Torvalds 1027dc04f5 gup: document and work around "COW can break either way" issue
commit 17839856fd588f4ab6b789f482ed3ffd7c403e1f upstream.

Doing a "get_user_pages()" on a copy-on-write page for reading can be
ambiguous: the page can be COW'ed at any time afterwards, and the
direction of a COW event isn't defined.

Yes, whoever writes to it will generally do the COW, but if the thread
that did the get_user_pages() unmapped the page before the write (and
that could happen due to memory pressure in addition to any outright
action), the writer could also just take over the old page instead.

End result: the get_user_pages() call might result in a page pointer
that is no longer associated with the original VM, and is associated
with - and controlled by - another VM having taken it over instead.

So when doing a get_user_pages() on a COW mapping, the only really safe
thing to do would be to break the COW when getting the page, even when
only getting it for reading.

At the same time, some users simply don't even care.

For example, the perf code wants to look up the page not because it
cares about the page, but because the code simply wants to look up the
physical address of the access for informational purposes, and doesn't
really care about races when a page might be unmapped and remapped
elsewhere.

This adds logic to force a COW event by setting FOLL_WRITE on any
copy-on-write mapping when FOLL_GET (or FOLL_PIN) is used to get a page
pointer as a result.

The current semantics end up being:

 - __get_user_pages_fast(): no change. If you don't ask for a write,
   you won't break COW. You'd better know what you're doing.

 - get_user_pages_fast(): the fast-case "look it up in the page tables
   without anything getting mmap_sem" now refuses to follow a read-only
   page, since it might need COW breaking.  Which happens in the slow
   path - the fast path doesn't know if the memory might be COW or not.

 - get_user_pages() (including the slow-path fallback for gup_fast()):
   for a COW mapping, turn on FOLL_WRITE for FOLL_GET/FOLL_PIN, with
   very similar semantics to FOLL_FORCE.

If it turns out that we want finer granularity (ie "only break COW when
it might actually matter" - things like the zero page are special and
don't need to be broken) we might need to push these semantics deeper
into the lookup fault path.  So if people care enough, it's possible
that we might end up adding a new internal FOLL_BREAK_COW flag to go
with the internal FOLL_COW flag we already have for tracking "I had a
COW".

Alternatively, if it turns out that different callers might want to
explicitly control the forced COW break behavior, we might even want to
make such a flag visible to the users of get_user_pages() instead of
using the above default semantics.

But for now, this is mostly commentary on the issue (this commit message
being a lot bigger than the patch, and that patch in turn is almost all
comments), with that minimal "enable COW breaking early" logic using the
existing FOLL_WRITE behavior.

[ It might be worth noting that we've always had this ambiguity, and it
  could arguably be seen as a user-space issue.

  You only get private COW mappings that could break either way in
  situations where user space is doing cooperative things (ie fork()
  before an execve() etc), but it _is_ surprising and very subtle, and
  fork() is supposed to give you independent address spaces.

  So let's treat this as a kernel issue and make the semantics of
  get_user_pages() easier to understand. Note that obviously a true
  shared mapping will still get a page that can change under us, so this
  does _not_ mean that get_user_pages() somehow returns any "stable"
  page ]

Reported-by: Jann Horn <jannh@google.com>
Tested-by: Christoph Hellwig <hch@lst.de>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kirill Shutemov <kirill@shutemov.name>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-17 16:40:30 +02:00
Waiman Long 0b11ec4ae5 mm: add kvfree_sensitive() for freeing sensitive data objects
[ Upstream commit d4eaa2837851db2bfed572898bfc17f9a9f9151e ]

For kvmalloc'ed data object that contains sensitive information like
cryptographic keys, we need to make sure that the buffer is always cleared
before freeing it.  Using memset() alone for buffer clearing may not
provide certainty as the compiler may compile it away.  To be sure, the
special memzero_explicit() has to be used.

This patch introduces a new kvfree_sensitive() for freeing those sensitive
data objects allocated by kvmalloc().  The relevant places where
kvfree_sensitive() can be used are modified to use it.

Fixes: 4f0882491a14 ("KEYS: Avoid false positive ENOMEM error on key read")
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Link: http://lkml.kernel.org/r/20200407200318.11711-1-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-06-17 16:40:23 +02:00
Fan Yang df4988aa1c mm: Fix mremap not considering huge pmd devmap
commit 5bfea2d9b17f1034a68147a8b03b9789af5700f9 upstream.

The original code in mm/mremap.c checks huge pmd by:

		if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd)) {

However, a DAX mapped nvdimm is mapped as huge page (by default) but it
is not transparent huge page (_PAGE_PSE | PAGE_DEVMAP).  This commit
changes the condition to include the case.

This addresses CVE-2020-10757.

Fixes: 5c7fb56e5e ("mm, dax: dax-pmd vs thp-pmd vs hugetlbfs-pmd")
Cc: <stable@vger.kernel.org>
Reported-by: Fan Yang <Fan_Yang@sjtu.edu.cn>
Signed-off-by: Fan Yang <Fan_Yang@sjtu.edu.cn>
Tested-by: Fan Yang <Fan_Yang@sjtu.edu.cn>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-07 13:18:46 +02:00
Hugh Dickins a7ba9f2473 mm,thp: stop leaking unreleased file pages
[ Upstream commit 2f33a706027c94cd4f70fcd3e3f4a17c1ce4ea4b ]

When collapse_file() calls try_to_release_page(), it has already isolated
the page: so if releasing buffers happens to fail (as it sometimes does),
remember to putback_lru_page(): otherwise that page is left unreclaimable
and unfreeable, and the file extent uncollapsible.

Fixes: 99cb0dbd47 ("mm,thp: add read-only THP support for (non-shmem) FS")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: <stable@vger.kernel.org>	[5.4+]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2005231837500.1766@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-06-03 08:21:26 +02:00
Marco Elver c2a26769b4 kasan: disable branch tracing for core runtime
commit 33cd65e73abd693c00c4156cf23677c453b41b3b upstream.

During early boot, while KASAN is not yet initialized, it is possible to
enter reporting code-path and end up in kasan_report().

While uninitialized, the branch there prevents generating any reports,
however, under certain circumstances when branches are being traced
(TRACE_BRANCH_PROFILING), we may recurse deep enough to cause kernel
reboots without warning.

To prevent similar issues in future, we should disable branch tracing
for the core runtime.

[elver@google.com: remove duplicate DISABLE_BRANCH_PROFILING, per Qian Cai]
  Link: https://lore.kernel.org/lkml/20200517011732.GE24705@shao2-debian/
  Link: http://lkml.kernel.org/r/20200522075207.157349-1-elver@google.com
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r//20200517011732.GE24705@shao2-debian/
Link: http://lkml.kernel.org/r/20200519182459.87166-1-elver@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-27 17:46:48 +02:00
Hugh Dickins a12f3ad8d9 shmem: fix possible deadlocks on shmlock_user_lock
[ Upstream commit ea0dfeb4209b4eab954d6e00ed136bc6b48b380d ]

Recent commit 71725ed10c40 ("mm: huge tmpfs: try to split_huge_page()
when punching hole") has allowed syzkaller to probe deeper, uncovering a
long-standing lockdep issue between the irq-unsafe shmlock_user_lock,
the irq-safe xa_lock on mapping->i_pages, and shmem inode's info->lock
which nests inside xa_lock (or tree_lock) since 4.8's shmem_uncharge().

user_shm_lock(), servicing SysV shmctl(SHM_LOCK), wants
shmlock_user_lock while its caller shmem_lock() holds info->lock with
interrupts disabled; but hugetlbfs_file_setup() calls user_shm_lock()
with interrupts enabled, and might be interrupted by a writeback endio
wanting xa_lock on i_pages.

This may not risk an actual deadlock, since shmem inodes do not take
part in writeback accounting, but there are several easy ways to avoid
it.

Requiring interrupts disabled for shmlock_user_lock would be easy, but
it's a high-level global lock for which that seems inappropriate.
Instead, recall that the use of info->lock to guard info->flags in
shmem_lock() dates from pre-3.1 days, when races with SHMEM_PAGEIN and
SHMEM_TRUNCATE could occur: nowadays it serves no purpose, the only flag
added or removed is VM_LOCKED itself, and calls to shmem_lock() an inode
are already serialized by the caller.

Take info->lock out of the chain and the possibility of deadlock or
lockdep warning goes away.

Fixes: 4595ef88d1 ("shmem: make shmem_inode_info::lock irq-safe")
Reported-by: syzbot+c8a8197c8852f566b9d9@syzkaller.appspotmail.com
Reported-by: syzbot+40b71e145e73f78f81ad@syzkaller.appspotmail.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2004161707410.16322@eggly.anvils
Link: https://lore.kernel.org/lkml/000000000000e5838c05a3152f53@google.com/
Link: https://lore.kernel.org/lkml/0000000000003712b305a331d3b1@google.com/
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-05-20 08:20:03 +02:00
Christoph Hellwig 03447528a3 bdi: add a ->dev_name field to struct backing_dev_info
[ Upstream commit 6bd87eec23cbc9ed222bed0f5b5b02bf300e9a8d ]

Cache a copy of the name for the life time of the backing_dev_info
structure so that we can reference it even after unregistering.

Fixes: 68f23b89067f ("memcg: fix a crash in wb_workfn when a device disappears")
Reported-by: Yufen Yu <yuyufen@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-05-14 07:58:30 +02:00
Christoph Hellwig 25390a3198 bdi: move bdi_dev_name out of line
[ Upstream commit eb7ae5e06bb6e6ac6bb86872d27c43ebab92f6b2 ]

bdi_dev_name is not a fast path function, move it out of line.  This
prepares for using it from modular callers without having to export
an implementation detail like bdi_unknown_name.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-05-14 07:58:30 +02:00
Yafang Shao c1af2c13a4 mm, memcg: fix error return value of mem_cgroup_css_alloc()
commit 11d6761218d19ca06ae5387f4e3692c4fa9e7493 upstream.

When I run my memcg testcase which creates lots of memcgs, I found
there're unexpected out of memory logs while there're still enough
available free memory.  The error log is

  mkdir: cannot create directory 'foo.65533': Cannot allocate memory

The reason is when we try to create more than MEM_CGROUP_ID_MAX memcgs,
an -ENOMEM errno will be set by mem_cgroup_css_alloc(), but the right
errno should be -ENOSPC "No space left on device", which is an
appropriate errno for userspace's failed mkdir.

As the errno really misled me, we should make it right.  After this
patch, the error log will be

  mkdir: cannot create directory 'foo.65533': No space left on device

[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
Fixes: 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200407063621.GA18914@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1586192163-20099-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-14 07:58:30 +02:00
Henry Willard e991f7ded4 mm: limit boost_watermark on small zones
commit 14f69140ff9c92a0928547ceefb153a842e8492c upstream.

Commit 1c30844d2d ("mm: reclaim small amounts of memory when an
external fragmentation event occurs") adds a boost_watermark() function
which increases the min watermark in a zone by at least
pageblock_nr_pages or the number of pages in a page block.

On Arm64, with 64K pages and 512M huge pages, this is 8192 pages or
512M.  It does this regardless of the number of managed pages managed in
the zone or the likelihood of success.

This can put the zone immediately under water in terms of allocating
pages from the zone, and can cause a small machine to fail immediately
due to OoM.  Unlike set_recommended_min_free_kbytes(), which
substantially increases min_free_kbytes and is tied to THP,
boost_watermark() can be called even if THP is not active.

The problem is most likely to appear on architectures such as Arm64
where pageblock_nr_pages is very large.

It is desirable to run the kdump capture kernel in as small a space as
possible to avoid wasting memory.  In some architectures, such as Arm64,
there are restrictions on where the capture kernel can run, and
therefore, the space available.  A capture kernel running in 768M can
fail due to OoM immediately after boost_watermark() sets the min in zone
DMA32, where most of the memory is, to 512M.  It fails even though there
is over 500M of free memory.  With boost_watermark() suppressed, the
capture kernel can run successfully in 448M.

This patch limits boost_watermark() to boosting a zone's min watermark
only when there are enough pages that the boost will produce positive
results.  In this case that is estimated to be four times as many pages
as pageblock_nr_pages.

Mel said:

: There is no harm in marking it stable.  Clearly it does not happen very
: often but it's not impossible.  32-bit x86 is a lot less common now
: which would previously have been vulnerable to triggering this easily.
: ppc64 has a larger base page size but typically only has one zone.
: arm64 is likely the most vulnerable, particularly when CMA is
: configured with a small movable zone.

Fixes: 1c30844d2d ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Signed-off-by: Henry Willard <henry.willard@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1588294148-6586-1-git-send-email-henry.willard@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-14 07:58:26 +02:00
David Hildenbrand 4b49a9660d mm/page_alloc: fix watchdog soft lockups during set_zone_contiguous()
commit e84fe99b68ce353c37ceeecc95dce9696c976556 upstream.

Without CONFIG_PREEMPT, it can happen that we get soft lockups detected,
e.g., while booting up.

  watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [swapper/0:1]
  CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.6.0-next-20200331+ #4
  Hardware name: Red Hat KVM, BIOS 1.11.1-4.module+el8.1.0+4066+0f1aadab 04/01/2014
  RIP: __pageblock_pfn_to_page+0x134/0x1c0
  Call Trace:
   set_zone_contiguous+0x56/0x70
   page_alloc_init_late+0x166/0x176
   kernel_init_freeable+0xfa/0x255
   kernel_init+0xa/0x106
   ret_from_fork+0x35/0x40

The issue becomes visible when having a lot of memory (e.g., 4TB)
assigned to a single NUMA node - a system that can easily be created
using QEMU.  Inside VMs on a hypervisor with quite some memory
overcommit, this is fairly easy to trigger.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200416073417.5003-1-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-14 07:58:26 +02:00
Will Deacon c365ff7815 mm/mremap: Add comment explaining the untagging behaviour of mremap()
commit b2a84de2a2deb76a6a51609845341f508c518c03 upstream.

Commit dcde237319e6 ("mm: Avoid creating virtual address aliases in
brk()/mmap()/mremap()") changed mremap() so that only the 'old' address
is untagged, leaving the 'new' address in the form it was passed from
userspace. This prevents the unexpected creation of aliasing virtual
mappings in userspace, but looks a bit odd when you read the code.

Add a comment justifying the untagging behaviour in mremap().

Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-10 10:31:33 +02:00
Yang Shi e5329fcdc9 mm: shmem: disable interrupt when acquiring info->lock in userfaultfd_copy path
commit 94b7cc01da5a3cc4f3da5e0ff492ef008bb555d6 upstream.

Syzbot reported the below lockdep splat:

    WARNING: possible irq lock inversion dependency detected
    5.6.0-rc7-syzkaller #0 Not tainted
    --------------------------------------------------------
    syz-executor.0/10317 just changed the state of lock:
    ffff888021d16568 (&(&info->lock)->rlock){+.+.}, at: spin_lock include/linux/spinlock.h:338 [inline]
    ffff888021d16568 (&(&info->lock)->rlock){+.+.}, at: shmem_mfill_atomic_pte+0x1012/0x21c0 mm/shmem.c:2407
    but this lock was taken by another, SOFTIRQ-safe lock in the past:
     (&(&xa->xa_lock)->rlock#5){..-.}

    and interrupts could create inverse lock ordering between them.

    other info that might help us debug this:
     Possible interrupt unsafe locking scenario:

           CPU0                    CPU1
           ----                    ----
      lock(&(&info->lock)->rlock);
                                   local_irq_disable();
                                   lock(&(&xa->xa_lock)->rlock#5);
                                   lock(&(&info->lock)->rlock);
      <Interrupt>
        lock(&(&xa->xa_lock)->rlock#5);

     *** DEADLOCK ***

The full report is quite lengthy, please see:

  https://lore.kernel.org/linux-mm/alpine.LSU.2.11.2004152007370.13597@eggly.anvils/T/#m813b412c5f78e25ca8c6c7734886ed4de43f241d

It is because CPU 0 held info->lock with IRQ enabled in userfaultfd_copy
path, then CPU 1 is splitting a THP which held xa_lock and info->lock in
IRQ disabled context at the same time.  If softirq comes in to acquire
xa_lock, the deadlock would be triggered.

The fix is to acquire/release info->lock with *_irq version instead of
plain spin_{lock,unlock} to make it softirq safe.

Fixes: 4c27fe4c4c ("userfaultfd: shmem: add shmem_mcopy_atomic_pte for userfaultfd support")
Reported-by: syzbot+e27980339d305f2dbfd9@syzkaller.appspotmail.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: syzbot+e27980339d305f2dbfd9@syzkaller.appspotmail.com
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Link: http://lkml.kernel.org/r/1587061357-122619-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-02 08:48:54 +02:00
Muchun Song 5126bdeaf9 mm/ksm: fix NULL pointer dereference when KSM zero page is enabled
commit 56df70a63ed5d989c1d36deee94cae14342be6e9 upstream.

find_mergeable_vma() can return NULL.  In this case, it leads to a crash
when we access vm_mm(its offset is 0x40) later in write_protect_page.
And this case did happen on our server.  The following call trace is
captured in kernel 4.19 with the following patch applied and KSM zero
page enabled on our server.

  commit e86c59b1b1 ("mm/ksm: improve deduplication of zero pages with colouring")

So add a vma check to fix it.

  BUG: unable to handle kernel NULL pointer dereference at 0000000000000040
  Oops: 0000 [#1] SMP NOPTI
  CPU: 9 PID: 510 Comm: ksmd Kdump: loaded Tainted: G OE 4.19.36.bsk.9-amd64 #4.19.36.bsk.9
  RIP: try_to_merge_one_page+0xc7/0x760
  Code: 24 58 65 48 33 34 25 28 00 00 00 89 e8 0f 85 a3 06 00 00 48 83 c4
        60 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 8b 46 08 a8 01 75 b8 <49>
        8b 44 24 40 4c 8d 7c 24 20 b9 07 00 00 00 4c 89 e6 4c 89 ff 48
  RSP: 0018:ffffadbdd9fffdb0 EFLAGS: 00010246
  RAX: ffffda83ffd4be08 RBX: ffffda83ffd4be40 RCX: 0000002c6e800000
  RDX: 0000000000000000 RSI: ffffda83ffd4be40 RDI: 0000000000000000
  RBP: ffffa11939f02ec0 R08: 0000000094e1a447 R09: 00000000abe76577
  R10: 0000000000000962 R11: 0000000000004e6a R12: 0000000000000000
  R13: ffffda83b1e06380 R14: ffffa18f31f072c0 R15: ffffda83ffd4be40
  FS: 0000000000000000(0000) GS:ffffa0da43b80000(0000) knlGS:0000000000000000
  CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000040 CR3: 0000002c77c0a003 CR4: 00000000007626e0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  PKRU: 55555554
  Call Trace:
    ksm_scan_thread+0x115e/0x1960
    kthread+0xf5/0x130
    ret_from_fork+0x1f/0x30

[songmuchun@bytedance.com: if the vma is out of date, just exit]
  Link: http://lkml.kernel.org/r/20200416025034.29780-1-songmuchun@bytedance.com
[akpm@linux-foundation.org: add the conventional braces, replace /** with /*]
Fixes: e86c59b1b1 ("mm/ksm: improve deduplication of zero pages with colouring")
Co-developed-by: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com>
Cc: Markus Elfring <Markus.Elfring@web.de>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200416025034.29780-1-songmuchun@bytedance.com
Link: http://lkml.kernel.org/r/20200414132905.83819-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-29 16:33:15 +02:00
Longpeng 3c88e95cd1 mm/hugetlb: fix a addressing exception caused by huge_pte_offset
commit 3c1d7e6ccb644d517a12f73a7ff200870926f865 upstream.

Our machine encountered a panic(addressing exception) after run for a
long time and the calltrace is:

    RIP: hugetlb_fault+0x307/0xbe0
    RSP: 0018:ffff9567fc27f808  EFLAGS: 00010286
    RAX: e800c03ff1258d48 RBX: ffffd3bb003b69c0 RCX: e800c03ff1258d48
    RDX: 17ff3fc00eda72b7 RSI: 00003ffffffff000 RDI: e800c03ff1258d48
    RBP: ffff9567fc27f8c8 R08: e800c03ff1258d48 R09: 0000000000000080
    R10: ffffaba0704c22a8 R11: 0000000000000001 R12: ffff95c87b4b60d8
    R13: 00005fff00000000 R14: 0000000000000000 R15: ffff9567face8074
    FS:  00007fe2d9ffb700(0000) GS:ffff956900e40000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: ffffd3bb003b69c0 CR3: 000000be67374000 CR4: 00000000003627e0
    DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
    DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
    Call Trace:
      follow_hugetlb_page+0x175/0x540
      __get_user_pages+0x2a0/0x7e0
      __get_user_pages_unlocked+0x15d/0x210
      __gfn_to_pfn_memslot+0x3c5/0x460 [kvm]
      try_async_pf+0x6e/0x2a0 [kvm]
      tdp_page_fault+0x151/0x2d0 [kvm]
     ...
      kvm_arch_vcpu_ioctl_run+0x330/0x490 [kvm]
      kvm_vcpu_ioctl+0x309/0x6d0 [kvm]
      do_vfs_ioctl+0x3f0/0x540
      SyS_ioctl+0xa1/0xc0
      system_call_fastpath+0x22/0x27

For 1G hugepages, huge_pte_offset() wants to return NULL or pudp, but it
may return a wrong 'pmdp' if there is a race.  Please look at the
following code snippet:

    ...
    pud = pud_offset(p4d, addr);
    if (sz != PUD_SIZE && pud_none(*pud))
        return NULL;
    /* hugepage or swap? */
    if (pud_huge(*pud) || !pud_present(*pud))
        return (pte_t *)pud;

    pmd = pmd_offset(pud, addr);
    if (sz != PMD_SIZE && pmd_none(*pmd))
        return NULL;
    /* hugepage or swap? */
    if (pmd_huge(*pmd) || !pmd_present(*pmd))
        return (pte_t *)pmd;
    ...

The following sequence would trigger this bug:

 - CPU0: sz = PUD_SIZE and *pud = 0 , continue
 - CPU0: "pud_huge(*pud)" is false
 - CPU1: calling hugetlb_no_page and set *pud to xxxx8e7(PRESENT)
 - CPU0: "!pud_present(*pud)" is false, continue
 - CPU0: pmd = pmd_offset(pud, addr) and maybe return a wrong pmdp

However, we want CPU0 to return NULL or pudp in this case.

We must make sure there is exactly one dereference of pud and pmd.

Signed-off-by: Longpeng <longpeng2@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200413010342.771-1-longpeng2@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-29 16:33:14 +02:00
Jann Horn f4f235309b vmalloc: fix remap_vmalloc_range() bounds checks
commit bdebd6a2831b6fab69eb85cee74a8ba77f1a1cc2 upstream.

remap_vmalloc_range() has had various issues with the bounds checks it
promises to perform ("This function checks that addr is a valid
vmalloc'ed area, and that it is big enough to cover the vma") over time,
e.g.:

 - not detecting pgoff<<PAGE_SHIFT overflow

 - not detecting (pgoff<<PAGE_SHIFT)+usize overflow

 - not checking whether addr and addr+(pgoff<<PAGE_SHIFT) are the same
   vmalloc allocation

 - comparing a potentially wildly out-of-bounds pointer with the end of
   the vmalloc region

In particular, since commit fc9702273e2e ("bpf: Add mmap() support for
BPF_MAP_TYPE_ARRAY"), unprivileged users can cause kernel null pointer
dereferences by calling mmap() on a BPF map with a size that is bigger
than the distance from the start of the BPF map to the end of the
address space.

This could theoretically be used as a kernel ASLR bypass, by using
whether mmap() with a given offset oopses or returns an error code to
perform a binary search over the possible address range.

To allow remap_vmalloc_range_partial() to verify that addr and
addr+(pgoff<<PAGE_SHIFT) are in the same vmalloc region, pass the offset
to remap_vmalloc_range_partial() instead of adding it to the pointer in
remap_vmalloc_range().

In remap_vmalloc_range_partial(), fix the check against
get_vm_area_size() by using size comparisons instead of pointer
comparisons, and add checks for pgoff.

Fixes: 833423143c ("[PATCH] mm: introduce remap_vmalloc_range()")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Andrii Nakryiko <andriin@fb.com>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@chromium.org>
Link: http://lkml.kernel.org/r/20200415222312.236431-1-jannh@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-29 16:33:14 +02:00
Jakub Kicinski 5c84ab9c96 mm, memcg: do not high throttle allocators based on wraparound
commit 9b8b17541f13809d06f6f873325305ddbb760e3e upstream.

If a cgroup violates its memory.high constraints, we may end up unduly
penalising it.  For example, for the following hierarchy:

  A:   max high, 20 usage
  A/B: 9 high, 10 usage
  A/C: max high, 10 usage

We would end up doing the following calculation below when calculating
high delay for A/B:

  A/B: 10 - 9 = 1...
  A:   20 - PAGE_COUNTER_MAX = 21, so set max_overage to 21.

This gets worse with higher disparities in usage in the parent.

I have no idea how this disappeared from the final version of the patch,
but it is certainly Not Good(tm).  This wasn't obvious in testing because,
for a simple cgroup hierarchy with only one child, the result is usually
roughly the same.  It's only in more complex hierarchies that things go
really awry (although still, the effects are limited to a maximum of 2
seconds in schedule_timeout_killable at a maximum).

[chris@chrisdown.name: changelog]
Fixes: e26733e0d0ec ("mm, memcg: throttle allocators based on ancestral memory.high")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>	[5.4.x]
Link: http://lkml.kernel.org/r/20200331152424.GA1019937@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-17 10:50:17 +02:00
Kees Cook ea84a26ab6 slub: improve bit diffusion for freelist ptr obfuscation
commit 1ad53d9fa3f6168ebcf48a50e08b170432da2257 upstream.

Under CONFIG_SLAB_FREELIST_HARDENED=y, the obfuscation was relatively weak
in that the ptr and ptr address were usually so close that the first XOR
would result in an almost entirely 0-byte value[1], leaving most of the
"secret" number ultimately being stored after the third XOR.  A single
blind memory content exposure of the freelist was generally sufficient to
learn the secret.

Add a swab() call to mix bits a little more.  This is a cheap way (1
cycle) to make attacks need more than a single exposure to learn the
secret (or to know _where_ the exposure is in memory).

kmalloc-32 freelist walk, before:

ptr              ptr_addr            stored value      secret
ffff90c22e019020@ffff90c22e019000 is 86528eb656b3b5bd (86528eb656b3b59d)
ffff90c22e019040@ffff90c22e019020 is 86528eb656b3b5fd (86528eb656b3b59d)
ffff90c22e019060@ffff90c22e019040 is 86528eb656b3b5bd (86528eb656b3b59d)
ffff90c22e019080@ffff90c22e019060 is 86528eb656b3b57d (86528eb656b3b59d)
ffff90c22e0190a0@ffff90c22e019080 is 86528eb656b3b5bd (86528eb656b3b59d)
...

after:

ptr              ptr_addr            stored value      secret
ffff9eed6e019020@ffff9eed6e019000 is 793d1135d52cda42 (86528eb656b3b59d)
ffff9eed6e019040@ffff9eed6e019020 is 593d1135d52cda22 (86528eb656b3b59d)
ffff9eed6e019060@ffff9eed6e019040 is 393d1135d52cda02 (86528eb656b3b59d)
ffff9eed6e019080@ffff9eed6e019060 is 193d1135d52cdae2 (86528eb656b3b59d)
ffff9eed6e0190a0@ffff9eed6e019080 is f93d1135d52cdac2 (86528eb656b3b59d)

[1] https://blog.infosectcbr.com.au/2020/03/weaknesses-in-linux-kernel-heap.html

Fixes: 2482ddec67 ("mm: add SLUB free list pointer obfuscation")
Reported-by: Silvio Cesare <silvio.cesare@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/202003051623.AF4F8CB@keescook
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-13 10:48:07 +02:00
Randy Dunlap c3f87e03f9 mm: mempolicy: require at least one nodeid for MPOL_PREFERRED
commit aa9f7d5172fac9bf1f09e678c35e287a40a7b7dd upstream.

Using an empty (malformed) nodelist that is not caught during mount option
parsing leads to a stack-out-of-bounds access.

The option string that was used was: "mpol=prefer:,".  However,
MPOL_PREFERRED requires a single node number, which is not being provided
here.

Add a check that 'nodes' is not empty after parsing for MPOL_PREFERRED's
nodeid.

Fixes: 095f1fc4eb ("mempolicy: rework shmem mpol parsing and display")
Reported-by: Entropy Moe <3ntr0py1337@gmail.com>
Reported-by: syzbot+b055b1a6b2b958707a21@syzkaller.appspotmail.com
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: syzbot+b055b1a6b2b958707a21@syzkaller.appspotmail.com
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Link: http://lkml.kernel.org/r/89526377-7eb6-b662-e1d8-4430928abde9@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-08 09:08:47 +02:00
Roman Gushchin 159aef18f0 mm: fork: fix kernel_stack memcg stats for various stack implementations
commit 8380ce479010f2f779587b462a9b4681934297c3 upstream.

Depending on CONFIG_VMAP_STACK and the THREAD_SIZE / PAGE_SIZE ratio the
space for task stacks can be allocated using __vmalloc_node_range(),
alloc_pages_node() and kmem_cache_alloc_node().

In the first and the second cases page->mem_cgroup pointer is set, but
in the third it's not: memcg membership of a slab page should be
determined using the memcg_from_slab_page() function, which looks at
page->slab_cache->memcg_params.memcg .  In this case, using
mod_memcg_page_state() (as in account_kernel_stack()) is incorrect:
page->mem_cgroup pointer is NULL even for pages charged to a non-root
memory cgroup.

It can lead to kernel_stack per-memcg counters permanently showing 0 on
some architectures (depending on the configuration).

In order to fix it, let's introduce a mod_memcg_obj_state() helper,
which takes a pointer to a kernel object as a first argument, uses
mem_cgroup_from_obj() to get a RCU-protected memcg pointer and calls
mod_memcg_state().  It allows to handle all possible configurations
(CONFIG_VMAP_STACK and various THREAD_SIZE/PAGE_SIZE values) without
spilling any memcg/kmem specifics into fork.c .

Note: This is a special version of the patch created for stable
backports.  It contains code from the following two patches:
  - mm: memcg/slab: introduce mem_cgroup_from_obj()
  - mm: fork: fix kernel_stack memcg stats for various stack implementations

[guro@fb.com: introduce mem_cgroup_from_obj()]
  Link: http://lkml.kernel.org/r/20200324004221.GA36662@carbon.dhcp.thefacebook.com
Fixes: 4d96ba3530 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200303233550.251375-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-01 11:02:03 +02:00
Aneesh Kumar K.V cc5da743a4 mm/sparse: fix kernel crash with pfn_section_valid check
commit b943f045a9af9fd02f923e43fe8d7517e9961701 upstream.

Fix the crash like this:

    BUG: Kernel NULL pointer dereference on read at 0x00000000
    Faulting instruction address: 0xc000000000c3447c
    Oops: Kernel access of bad area, sig: 11 [#1]
    LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
    CPU: 11 PID: 7519 Comm: lt-ndctl Not tainted 5.6.0-rc7-autotest #1
    ...
    NIP [c000000000c3447c] vmemmap_populated+0x98/0xc0
    LR [c000000000088354] vmemmap_free+0x144/0x320
    Call Trace:
       section_deactivate+0x220/0x240
       __remove_pages+0x118/0x170
       arch_remove_memory+0x3c/0x150
       memunmap_pages+0x1cc/0x2f0
       devm_action_release+0x30/0x50
       release_nodes+0x2f8/0x3e0
       device_release_driver_internal+0x168/0x270
       unbind_store+0x130/0x170
       drv_attr_store+0x44/0x60
       sysfs_kf_write+0x68/0x80
       kernfs_fop_write+0x100/0x290
       __vfs_write+0x3c/0x70
       vfs_write+0xcc/0x240
       ksys_write+0x7c/0x140
       system_call+0x5c/0x68

The crash is due to NULL dereference at

	test_bit(idx, ms->usage->subsection_map);

due to ms->usage = NULL in pfn_section_valid()

With commit d41e2f3bd546 ("mm/hotplug: fix hot remove failure in
SPARSEMEM|!VMEMMAP case") section_mem_map is set to NULL after
depopulate_section_mem().  This was done so that pfn_page() can work
correctly with kernel config that disables SPARSEMEM_VMEMMAP.  With that
config pfn_to_page does

	__section_mem_map_addr(__sec) + __pfn;

where

  static inline struct page *__section_mem_map_addr(struct mem_section *section)
  {
	unsigned long map = section->section_mem_map;
	map &= SECTION_MAP_MASK;
	return (struct page *)map;
  }

Now with SPASEMEM_VMEMAP enabled, mem_section->usage->subsection_map is
used to check the pfn validity (pfn_valid()).  Since section_deactivate
release mem_section->usage if a section is fully deactivated,
pfn_valid() check after a subsection_deactivate cause a kernel crash.

  static inline int pfn_valid(unsigned long pfn)
  {
  ...
	return early_section(ms) || pfn_section_valid(ms, pfn);
  }

where

  static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
  {
	int idx = subsection_map_index(pfn);

	return test_bit(idx, ms->usage->subsection_map);
  }

Avoid this by clearing SECTION_HAS_MEM_MAP when mem_section->usage is
freed.  For architectures like ppc64 where large pages are used for
vmmemap mapping (16MB), a specific vmemmap mapping can cover multiple
sections.  Hence before a vmemmap mapping page can be freed, the kernel
needs to make sure there are no valid sections within that mapping.
Clearing the section valid bit before depopulate_section_memap enables
this.

[aneesh.kumar@linux.ibm.com: add comment]
  Link: http://lkml.kernel.org/r/20200326133235.343616-1-aneesh.kumar@linux.ibm.comLink: http://lkml.kernel.org/r/20200325031914.107660-1-aneesh.kumar@linux.ibm.com
Fixes: d41e2f3bd546 ("mm/hotplug: fix hot remove failure in SPARSEMEM|!VMEMMAP case")
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-01 11:02:03 +02:00
Naohiro Aota da458bbfb6 mm/swapfile.c: move inode_lock out of claim_swapfile
commit d795a90e2ba024dbf2f22107ae89c210b98b08b8 upstream.

claim_swapfile() currently keeps the inode locked when it is successful,
or the file is already swapfile (with -EBUSY).  And, on the other error
cases, it does not lock the inode.

This inconsistency of the lock state and return value is quite confusing
and actually causing a bad unlock balance as below in the "bad_swap"
section of __do_sys_swapon().

This commit fixes this issue by moving the inode_lock() and IS_SWAPFILE
check out of claim_swapfile().  The inode is unlocked in
"bad_swap_unlock_inode" section, so that the inode is ensured to be
unlocked at "bad_swap".  Thus, error handling codes after the locking now
jumps to "bad_swap_unlock_inode" instead of "bad_swap".

    =====================================
    WARNING: bad unlock balance detected!
    5.5.0-rc7+ #176 Not tainted
    -------------------------------------
    swapon/4294 is trying to release lock (&sb->s_type->i_mutex_key) at: __do_sys_swapon+0x94b/0x3550
    but there are no more locks to release!

    other info that might help us debug this:
    no locks held by swapon/4294.

    stack backtrace:
    CPU: 5 PID: 4294 Comm: swapon Not tainted 5.5.0-rc7-BTRFS-ZNS+ #176
    Hardware name: ASUS All Series/H87-PRO, BIOS 2102 07/29/2014
    Call Trace:
     dump_stack+0xa1/0xea
     print_unlock_imbalance_bug.cold+0x114/0x123
     lock_release+0x562/0xed0
     up_write+0x2d/0x490
     __do_sys_swapon+0x94b/0x3550
     __x64_sys_swapon+0x54/0x80
     do_syscall_64+0xa4/0x4b0
     entry_SYSCALL_64_after_hwframe+0x49/0xbe
    RIP: 0033:0x7f15da0a0dc7

Fixes: 1638045c36 ("mm: set S_SWAPFILE on blockdev swap devices")
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Qais Youef <qais.yousef@arm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200206090132.154869-1-naohiro.aota@wdc.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-01 11:02:02 +02:00
Joerg Roedel 66f28e1105 x86/mm: split vmalloc_sync_all()
commit 763802b53a427ed3cbd419dbba255c414fdd9e7c upstream.

Commit 3f8fd02b1b ("mm/vmalloc: Sync unmappings in
__purge_vmap_area_lazy()") introduced a call to vmalloc_sync_all() in
the vunmap() code-path.  While this change was necessary to maintain
correctness on x86-32-pae kernels, it also adds additional cycles for
architectures that don't need it.

Specifically on x86-64 with CONFIG_VMAP_STACK=y some people reported
severe performance regressions in micro-benchmarks because it now also
calls the x86-64 implementation of vmalloc_sync_all() on vunmap().  But
the vmalloc_sync_all() implementation on x86-64 is only needed for newly
created mappings.

To avoid the unnecessary work on x86-64 and to gain the performance
back, split up vmalloc_sync_all() into two functions:

	* vmalloc_sync_mappings(), and
	* vmalloc_sync_unmappings()

Most call-sites to vmalloc_sync_all() only care about new mappings being
synchronized.  The only exception is the new call-site added in the
above mentioned commit.

Shile Zhang directed us to a report of an 80% regression in reaim
throughput.

Fixes: 3f8fd02b1b ("mm/vmalloc: Sync unmappings in __purge_vmap_area_lazy()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Borislav Petkov <bp@suse.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>	[GHES]
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20191009124418.8286-1-joro@8bytes.org
Link: https://lists.01.org/hyperkitty/list/lkp@lists.01.org/thread/4D3JPPHBNOSPFK2KEPC6KGKS6J25AIDB/
Link: http://lkml.kernel.org/r/20191113095530.228959-1-shile.zhang@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25 08:25:58 +01:00
Vlastimil Babka 32991c960d mm, slub: prevent kmalloc_node crashes and memory leaks
commit 0715e6c516f106ed553828a671d30ad9a3431536 upstream.

Sachin reports [1] a crash in SLUB __slab_alloc():

  BUG: Kernel NULL pointer dereference on read at 0x000073b0
  Faulting instruction address: 0xc0000000003d55f4
  Oops: Kernel access of bad area, sig: 11 [#1]
  LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
  Modules linked in:
  CPU: 19 PID: 1 Comm: systemd Not tainted 5.6.0-rc2-next-20200218-autotest #1
  NIP:  c0000000003d55f4 LR: c0000000003d5b94 CTR: 0000000000000000
  REGS: c0000008b37836d0 TRAP: 0300   Not tainted  (5.6.0-rc2-next-20200218-autotest)
  MSR:  8000000000009033 <SF,EE,ME,IR,DR,RI,LE>  CR: 24004844  XER: 00000000
  CFAR: c00000000000dec4 DAR: 00000000000073b0 DSISR: 40000000 IRQMASK: 1
  GPR00: c0000000003d5b94 c0000008b3783960 c00000000155d400 c0000008b301f500
  GPR04: 0000000000000dc0 0000000000000002 c0000000003443d8 c0000008bb398620
  GPR08: 00000008ba2f0000 0000000000000001 0000000000000000 0000000000000000
  GPR12: 0000000024004844 c00000001ec52a00 0000000000000000 0000000000000000
  GPR16: c0000008a1b20048 c000000001595898 c000000001750c18 0000000000000002
  GPR20: c000000001750c28 c000000001624470 0000000fffffffe0 5deadbeef0000122
  GPR24: 0000000000000001 0000000000000dc0 0000000000000002 c0000000003443d8
  GPR28: c0000008b301f500 c0000008bb398620 0000000000000000 c00c000002287180
  NIP ___slab_alloc+0x1f4/0x760
  LR __slab_alloc+0x34/0x60
  Call Trace:
    ___slab_alloc+0x334/0x760 (unreliable)
    __slab_alloc+0x34/0x60
    __kmalloc_node+0x110/0x490
    kvmalloc_node+0x58/0x110
    mem_cgroup_css_online+0x108/0x270
    online_css+0x48/0xd0
    cgroup_apply_control_enable+0x2ec/0x4d0
    cgroup_mkdir+0x228/0x5f0
    kernfs_iop_mkdir+0x90/0xf0
    vfs_mkdir+0x110/0x230
    do_mkdirat+0xb0/0x1a0
    system_call+0x5c/0x68

This is a PowerPC platform with following NUMA topology:

  available: 2 nodes (0-1)
  node 0 cpus:
  node 0 size: 0 MB
  node 0 free: 0 MB
  node 1 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
  node 1 size: 35247 MB
  node 1 free: 30907 MB
  node distances:
  node   0   1
    0:  10  40
    1:  40  10

  possible numa nodes: 0-31

This only happens with a mmotm patch "mm/memcontrol.c: allocate
shrinker_map on appropriate NUMA node" [2] which effectively calls
kmalloc_node for each possible node.  SLUB however only allocates
kmem_cache_node on online N_NORMAL_MEMORY nodes, and relies on
node_to_mem_node to return such valid node for other nodes since commit
a561ce00b0 ("slub: fall back to node_to_mem_node() node if allocating
on memoryless node").  This is however not true in this configuration
where the _node_numa_mem_ array is not initialized for nodes 0 and 2-31,
thus it contains zeroes and get_partial() ends up accessing
non-allocated kmem_cache_node.

A related issue was reported by Bharata (originally by Ramachandran) [3]
where a similar PowerPC configuration, but with mainline kernel without
patch [2] ends up allocating large amounts of pages by kmalloc-1k
kmalloc-512.  This seems to have the same underlying issue with
node_to_mem_node() not behaving as expected, and might probably also
lead to an infinite loop with CONFIG_SLUB_CPU_PARTIAL [4].

This patch should fix both issues by not relying on node_to_mem_node()
anymore and instead simply falling back to NUMA_NO_NODE, when
kmalloc_node(node) is attempted for a node that's not online, or has no
usable memory.  The "usable memory" condition is also changed from
node_present_pages() to N_NORMAL_MEMORY node state, as that is exactly
the condition that SLUB uses to allocate kmem_cache_node structures.
The check in get_partial() is removed completely, as the checks in
___slab_alloc() are now sufficient to prevent get_partial() being
reached with an invalid node.

[1] https://lore.kernel.org/linux-next/3381CD91-AB3D-4773-BA04-E7A072A63968@linux.vnet.ibm.com/
[2] https://lore.kernel.org/linux-mm/fff0e636-4c36-ed10-281c-8cdb0687c839@virtuozzo.com/
[3] https://lore.kernel.org/linux-mm/20200317092624.GB22538@in.ibm.com/
[4] https://lore.kernel.org/linux-mm/088b5996-faae-8a56-ef9c-5b567125ae54@suse.cz/

Fixes: a561ce00b0 ("slub: fall back to node_to_mem_node() node if allocating on memoryless node")
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Reported-by: PUVICHAKRAVARTHY RAMACHANDRAN <puvichakravarthy@in.ibm.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Tested-by: Bharata B Rao <bharata@linux.ibm.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200320115533.9604-1-vbabka@suse.cz
Debugged-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25 08:25:58 +01:00
Linus Torvalds 6235157392 mm: slub: be more careful about the double cmpxchg of freelist
commit 5076190daded2197f62fe92cf69674488be44175 upstream.

This is just a cleanup addition to Jann's fix to properly update the
transaction ID for the slub slowpath in commit fd4d9c7d0c71 ("mm: slub:
add missing TID bump..").

The transaction ID is what protects us against any concurrent accesses,
but we should really also make sure to make the 'freelist' comparison
itself always use the same freelist value that we then used as the new
next free pointer.

Jann points out that if we do all of this carefully, we could skip the
transaction ID update for all the paths that only remove entries from
the lists, and only update the TID when adding entries (to avoid the ABA
issue with cmpxchg and list handling re-adding a previously seen value).

But this patch just does the "make sure to cmpxchg the same value we
used" rather than then try to be clever.

Acked-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25 08:25:57 +01:00
Michal Hocko 69f434a05f mm: do not allow MADV_PAGEOUT for CoW pages
commit 12e967fd8e4e6c3d275b4c69c890adc838891300 upstream.

Jann has brought up a very interesting point [1].  While shared pages
are excluded from MADV_PAGEOUT normally, CoW pages can be easily
reclaimed that way.  This can lead to all sorts of hard to debug
problems.  E.g.  performance problems outlined by Daniel [2].

There are runtime environments where there is a substantial memory
shared among security domains via CoW memory and a easy to reclaim way
of that memory, which MADV_{COLD,PAGEOUT} offers, can lead to either
performance degradation in for the parent process which might be more
privileged or even open side channel attacks.

The feasibility of the latter is not really clear to me TBH but there is
no real reason for exposure at this stage.  It seems there is no real
use case to depend on reclaiming CoW memory via madvise at this stage so
it is much easier to simply disallow it and this is what this patch
does.  Put it simply MADV_{PAGEOUT,COLD} can operate only on the
exclusively owned memory which is a straightforward semantic.

[1] http://lkml.kernel.org/r/CAG48ez0G3JkMq61gUmyQAaCq=_TwHbi1XKzWRooxZkv08PQKuw@mail.gmail.com
[2] http://lkml.kernel.org/r/CAKOZueua_v8jHCpmEtTB6f3i9e2YnmX4mqdYVWhV4E=Z-n+zRQ@mail.gmail.com

Fixes: 9c276cc65a ("mm: introduce MADV_COLD")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "Joel Fernandes (Google)" <joel@joelfernandes.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200312082248.GS23944@dhcp22.suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25 08:25:57 +01:00
Baoquan He c3f54f0a68 mm/hotplug: fix hot remove failure in SPARSEMEM|!VMEMMAP case
commit d41e2f3bd54699f85b3d6f45abd09fa24a222cb9 upstream.

In section_deactivate(), pfn_to_page() doesn't work any more after
ms->section_mem_map is resetting to NULL in SPARSEMEM|!VMEMMAP case.  It
causes a hot remove failure:

  kernel BUG at mm/page_alloc.c:4806!
  invalid opcode: 0000 [#1] SMP PTI
  CPU: 3 PID: 8 Comm: kworker/u16:0 Tainted: G        W         5.5.0-next-20200205+ #340
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
  Workqueue: kacpi_hotplug acpi_hotplug_work_fn
  RIP: 0010:free_pages+0x85/0xa0
  Call Trace:
   __remove_pages+0x99/0xc0
   arch_remove_memory+0x23/0x4d
   try_remove_memory+0xc8/0x130
   __remove_memory+0xa/0x11
   acpi_memory_device_remove+0x72/0x100
   acpi_bus_trim+0x55/0x90
   acpi_device_hotplug+0x2eb/0x3d0
   acpi_hotplug_work_fn+0x1a/0x30
   process_one_work+0x1a7/0x370
   worker_thread+0x30/0x380
   kthread+0x112/0x130
   ret_from_fork+0x35/0x40

Let's move the ->section_mem_map resetting after
depopulate_section_memmap() to fix it.

[akpm@linux-foundation.org: remove unneeded initialization, per David]
Fixes: ba72b4c8cf ("mm/sparsemem: support sub-section hotplug")
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200307084229.28251-2-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25 08:25:57 +01:00
Chris Down 61cfbcce9e mm, memcg: throttle allocators based on ancestral memory.high
commit e26733e0d0ec6798eca93daa300bc3f43616127f upstream.

Prior to this commit, we only directly check the affected cgroup's
memory.high against its usage.  However, it's possible that we are being
reclaimed as a result of hitting an ancestor memory.high and should be
penalised based on that, instead.

This patch changes memory.high overage throttling to use the largest
overage in its ancestors when considering how many penalty jiffies to
charge.  This makes sure that we penalise poorly behaving cgroups in the
same way regardless of at what level of the hierarchy memory.high was
breached.

Fixes: 0e4b01df86 ("mm, memcg: throttle allocators when failing reclaim over memory.high")
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>	[5.4.x+]
Link: http://lkml.kernel.org/r/8cd132f84bd7e16cdb8fde3378cdbf05ba00d387.1584036142.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25 08:25:57 +01:00
Chris Down 77c4bc4bf6 mm, memcg: fix corruption on 64-bit divisor in memory.high throttling
commit d397a45fc741c80c32a14e2de008441e9976f50c upstream.

Commit 0e4b01df86 had a bunch of fixups to use the right division
method.  However, it seems that after all that it still wasn't right --
div_u64 takes a 32-bit divisor.

The headroom is still large (2^32 pages), so on mundane systems you
won't hit this, but this should definitely be fixed.

Fixes: 0e4b01df86 ("mm, memcg: throttle allocators when failing reclaim over memory.high")
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: <stable@vger.kernel.org>	[5.4.x+]
Link: http://lkml.kernel.org/r/80780887060514967d414b3cd91f9a316a16ab98.1584036142.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25 08:25:57 +01:00
Chunguang Xu ceca26903b memcg: fix NULL pointer dereference in __mem_cgroup_usage_unregister_event
commit 7d36665a5886c27ca4c4d0afd3ecc50b400f3587 upstream.

An eventfd monitors multiple memory thresholds of the cgroup, closes them,
the kernel deletes all events related to this eventfd.  Before all events
are deleted, another eventfd monitors the memory threshold of this cgroup,
leading to a crash:

  BUG: kernel NULL pointer dereference, address: 0000000000000004
  #PF: supervisor write access in kernel mode
  #PF: error_code(0x0002) - not-present page
  PGD 800000033058e067 P4D 800000033058e067 PUD 3355ce067 PMD 0
  Oops: 0002 [#1] SMP PTI
  CPU: 2 PID: 14012 Comm: kworker/2:6 Kdump: loaded Not tainted 5.6.0-rc4 #3
  Hardware name: LENOVO 20AWS01K00/20AWS01K00, BIOS GLET70WW (2.24 ) 05/21/2014
  Workqueue: events memcg_event_remove
  RIP: 0010:__mem_cgroup_usage_unregister_event+0xb3/0x190
  RSP: 0018:ffffb47e01c4fe18 EFLAGS: 00010202
  RAX: 0000000000000001 RBX: ffff8bb223a8a000 RCX: 0000000000000001
  RDX: 0000000000000001 RSI: ffff8bb22fb83540 RDI: 0000000000000001
  RBP: ffffb47e01c4fe48 R08: 0000000000000000 R09: 0000000000000010
  R10: 000000000000000c R11: 071c71c71c71c71c R12: ffff8bb226aba880
  R13: ffff8bb223a8a480 R14: 0000000000000000 R15: 0000000000000000
  FS:  0000000000000000(0000) GS:ffff8bb242680000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000004 CR3: 000000032c29c003 CR4: 00000000001606e0
  Call Trace:
    memcg_event_remove+0x32/0x90
    process_one_work+0x172/0x380
    worker_thread+0x49/0x3f0
    kthread+0xf8/0x130
    ret_from_fork+0x35/0x40
  CR2: 0000000000000004

We can reproduce this problem in the following ways:

1. We create a new cgroup subdirectory and a new eventfd, and then we
   monitor multiple memory thresholds of the cgroup through this eventfd.

2.  closing this eventfd, and __mem_cgroup_usage_unregister_event ()
   will be called multiple times to delete all events related to this
   eventfd.

The first time __mem_cgroup_usage_unregister_event() is called, the
kernel will clear all items related to this eventfd in thresholds->
primary.

Since there is currently only one eventfd, thresholds-> primary becomes
empty, so the kernel will set thresholds-> primary and hresholds-> spare
to NULL.  If at this time, the user creates a new eventfd and monitor
the memory threshold of this cgroup, kernel will re-initialize
thresholds-> primary.

Then when __mem_cgroup_usage_unregister_event () is called for the
second time, because thresholds-> primary is not empty, the system will
access thresholds-> spare, but thresholds-> spare is NULL, which will
trigger a crash.

In general, the longer it takes to delete all events related to this
eventfd, the easier it is to trigger this problem.

The solution is to check whether the thresholds associated with the
eventfd has been cleared when deleting the event.  If so, we do nothing.

[akpm@linux-foundation.org: fix comment, per Kirill]
Fixes: 907860ed38 ("cgroups: make cftype.unregister_event() void-returning")
Signed-off-by: Chunguang Xu <brookxu@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/077a6f67-aefa-4591-efec-f2f3af2b0b02@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-25 08:25:57 +01:00
Jann Horn ae119b7e12 mm: slub: add missing TID bump in kmem_cache_alloc_bulk()
commit fd4d9c7d0c71866ec0c2825189ebd2ce35bd95b8 upstream.

When kmem_cache_alloc_bulk() attempts to allocate N objects from a percpu
freelist of length M, and N > M > 0, it will first remove the M elements
from the percpu freelist, then call ___slab_alloc() to allocate the next
element and repopulate the percpu freelist. ___slab_alloc() can re-enable
IRQs via allocate_slab(), so the TID must be bumped before ___slab_alloc()
to properly commit the freelist head change.

Fix it by unconditionally bumping c->tid when entering the slowpath.

Cc: stable@vger.kernel.org
Fixes: ebe909e0fd ("slub: improve bulk alloc strategy")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-21 08:11:58 +01:00
Shakeel Butt 4a14448182 net: memcg: late association of sock to memcg
[ Upstream commit d752a4986532cb6305dfd5290a614cde8072769d ]

If a TCP socket is allocated in IRQ context or cloned from unassociated
(i.e. not associated to a memcg) in IRQ context then it will remain
unassociated for its whole life. Almost half of the TCPs created on the
system are created in IRQ context, so, memory used by such sockets will
not be accounted by the memcg.

This issue is more widespread in cgroup v1 where network memory
accounting is opt-in but it can happen in cgroup v2 if the source socket
for the cloning was created in root memcg.

To fix the issue, just do the association of the sockets at the accept()
time in the process context and then force charge the memory buffer
already used and reserved by the socket.

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-18 07:17:43 +01:00
Shakeel Butt 01f4cb0005 cgroup: memcg: net: do not associate sock with unrelated cgroup
[ Upstream commit e876ecc67db80dfdb8e237f71e5b43bb88ae549c ]

We are testing network memory accounting in our setup and noticed
inconsistent network memory usage and often unrelated cgroups network
usage correlates with testing workload. On further inspection, it
seems like mem_cgroup_sk_alloc() and cgroup_sk_alloc() are broken in
irq context specially for cgroup v1.

mem_cgroup_sk_alloc() and cgroup_sk_alloc() can be called in irq context
and kind of assumes that this can only happen from sk_clone_lock()
and the source sock object has already associated cgroup. However in
cgroup v1, where network memory accounting is opt-in, the source sock
can be unassociated with any cgroup and the new cloned sock can get
associated with unrelated interrupted cgroup.

Cgroup v2 can also suffer if the source sock object was created by
process in the root cgroup or if sk_alloc() is called in irq context.
The fix is to just do nothing in interrupt.

WARNING: Please note that about half of the TCP sockets are allocated
from the IRQ context, so, memory used by such sockets will not be
accouted by the memcg.

The stack trace of mem_cgroup_sk_alloc() from IRQ-context:

CPU: 70 PID: 12720 Comm: ssh Tainted:  5.6.0-smp-DEV #1
Hardware name: ...
Call Trace:
 <IRQ>
 dump_stack+0x57/0x75
 mem_cgroup_sk_alloc+0xe9/0xf0
 sk_clone_lock+0x2a7/0x420
 inet_csk_clone_lock+0x1b/0x110
 tcp_create_openreq_child+0x23/0x3b0
 tcp_v6_syn_recv_sock+0x88/0x730
 tcp_check_req+0x429/0x560
 tcp_v6_rcv+0x72d/0xa40
 ip6_protocol_deliver_rcu+0xc9/0x400
 ip6_input+0x44/0xd0
 ? ip6_protocol_deliver_rcu+0x400/0x400
 ip6_rcv_finish+0x71/0x80
 ipv6_rcv+0x5b/0xe0
 ? ip6_sublist_rcv+0x2e0/0x2e0
 process_backlog+0x108/0x1e0
 net_rx_action+0x26b/0x460
 __do_softirq+0x104/0x2a6
 do_softirq_own_stack+0x2a/0x40
 </IRQ>
 do_softirq.part.19+0x40/0x50
 __local_bh_enable_ip+0x51/0x60
 ip6_finish_output2+0x23d/0x520
 ? ip6table_mangle_hook+0x55/0x160
 __ip6_finish_output+0xa1/0x100
 ip6_finish_output+0x30/0xd0
 ip6_output+0x73/0x120
 ? __ip6_finish_output+0x100/0x100
 ip6_xmit+0x2e3/0x600
 ? ipv6_anycast_cleanup+0x50/0x50
 ? inet6_csk_route_socket+0x136/0x1e0
 ? skb_free_head+0x1e/0x30
 inet6_csk_xmit+0x95/0xf0
 __tcp_transmit_skb+0x5b4/0xb20
 __tcp_send_ack.part.60+0xa3/0x110
 tcp_send_ack+0x1d/0x20
 tcp_rcv_state_process+0xe64/0xe80
 ? tcp_v6_connect+0x5d1/0x5f0
 tcp_v6_do_rcv+0x1b1/0x3f0
 ? tcp_v6_do_rcv+0x1b1/0x3f0
 __release_sock+0x7f/0xd0
 release_sock+0x30/0xa0
 __inet_stream_connect+0x1c3/0x3b0
 ? prepare_to_wait+0xb0/0xb0
 inet_stream_connect+0x3b/0x60
 __sys_connect+0x101/0x120
 ? __sys_getsockopt+0x11b/0x140
 __x64_sys_connect+0x1a/0x20
 do_syscall_64+0x51/0x200
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

The stack trace of mem_cgroup_sk_alloc() from IRQ-context:
Fixes: 2d75807383 ("mm: memcontrol: consolidate cgroup socket tracking")
Fixes: d979a39d72 ("cgroup: duplicate cgroup reference when cloning sockets")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-18 07:17:43 +01:00
Vlastimil Babka d467fbc93c mm, hotplug: fix page online with DEBUG_PAGEALLOC compiled but not enabled
commit c87cbc1f007c4b46165f05ceca04e1973cda0b9c upstream.

Commit cd02cf1ace ("mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC")
fixed memory hotplug with debug_pagealloc enabled, where onlining a page
goes through page freeing, which removes the direct mapping.  Some arches
don't like when the page is not mapped in the first place, so
generic_online_page() maps it first.  This is somewhat wasteful, but
better than special casing page freeing fast paths.

The commit however missed that DEBUG_PAGEALLOC configured doesn't mean
it's actually enabled.  One has to test debug_pagealloc_enabled() since
031bc5743f ("mm/debug-pagealloc: make debug-pagealloc boottime
configurable"), or alternatively debug_pagealloc_enabled_static() since
8e57f8acbbd1 ("mm, debug_pagealloc: don't rely on static keys too early"),
but this is not done.

As a result, a s390 kernel with DEBUG_PAGEALLOC configured but not enabled
will crash:

Unable to handle kernel pointer dereference in virtual kernel address space
Failing address: 0000000000000000 TEID: 0000000000000483
Fault in home space mode while using kernel ASCE.
AS:0000001ece13400b R2:000003fff7fd000b R3:000003fff7fcc007 S:000003fff7fd7000 P:000000000000013d
Oops: 0004 ilc:2 [#1] SMP
CPU: 1 PID: 26015 Comm: chmem Kdump: loaded Tainted: GX 5.3.18-5-default #1 SLE15-SP2 (unreleased)
Krnl PSW : 0704e00180000000 0000001ecd281b9e (__kernel_map_pages+0x166/0x188)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 0000000000000000 0000000000000800 0000400b00000000 0000000000000100
0000000000000001 0000000000000000 0000000000000002 0000000000000100
0000001ece139230 0000001ecdd98d40 0000400b00000100 0000000000000000
000003ffa17e4000 001fffe0114f7d08 0000001ecd4d93ea 001fffe0114f7b20
Krnl Code: 0000001ecd281b8e: ec17ffff00d8 ahik %r1,%r7,-1
0000001ecd281b94: ec111dbc0355 risbg %r1,%r1,29,188,3
>0000001ecd281b9e: 94fb5006 ni 6(%r5),251
0000001ecd281ba2: 41505008 la %r5,8(%r5)
0000001ecd281ba6: ec51fffc6064 cgrj %r5,%r1,6,1ecd281b9e
0000001ecd281bac: 1a07 ar %r0,%r7
0000001ecd281bae: ec03ff584076 crj %r0,%r3,4,1ecd281a5e
Call Trace:
[<0000001ecd281b9e>] __kernel_map_pages+0x166/0x188
[<0000001ecd4d9516>] online_pages_range+0xf6/0x128
[<0000001ecd2a8186>] walk_system_ram_range+0x7e/0xd8
[<0000001ecda28aae>] online_pages+0x2fe/0x3f0
[<0000001ecd7d02a6>] memory_subsys_online+0x8e/0xc0
[<0000001ecd7add42>] device_online+0x5a/0xc8
[<0000001ecd7d0430>] state_store+0x88/0x118
[<0000001ecd5b9f62>] kernfs_fop_write+0xc2/0x200
[<0000001ecd5064b6>] vfs_write+0x176/0x1e0
[<0000001ecd50676a>] ksys_write+0xa2/0x100
[<0000001ecda315d4>] system_call+0xd8/0x2c8

Fix this by checking debug_pagealloc_enabled_static() before calling
kernel_map_pages(). Backports for kernel before 5.5 should use
debug_pagealloc_enabled() instead. Also add comments.

Fixes: cd02cf1ace ("mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC")
Reported-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/20200224094651.18257-1-vbabka@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-12 13:00:19 +01:00
Huang Ying c204328194 mm: fix possible PMD dirty bit lost in set_pmd_migration_entry()
commit 8a8683ad9ba48b4b52a57f013513d1635c1ca5c4 upstream.

In set_pmd_migration_entry(), pmdp_invalidate() is used to change PMD
atomically.  But the PMD is read before that with an ordinary memory
reading.  If the THP (transparent huge page) is written between the PMD
reading and pmdp_invalidate(), the PMD dirty bit may be lost, and cause
data corruption.  The race window is quite small, but still possible in
theory, so need to be fixed.

The race is fixed via using the return value of pmdp_invalidate() to get
the original content of PMD, which is a read/modify/write atomic
operation.  So no THP writing can occur in between.

The race has been introduced when the THP migration support is added in
the commit 616b837153 ("mm: thp: enable thp migration in generic path").
But this fix depends on the commit d52605d7cb ("mm: do not lose dirty
and accessed bits in pmdp_invalidate()").  So it's easy to be backported
after v4.16.  But the race window is really small, so it may be fine not
to backport the fix at all.

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Link: http://lkml.kernel.org/r/20200220075220.2327056-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-12 13:00:19 +01:00
Mel Gorman 4b62bbcc86 mm, numa: fix bad pmd by atomically check for pmd_trans_huge when marking page tables prot_numa
commit 8b272b3cbbb50a6a8e62d8a15affd473a788e184 upstream.

: A user reported a bug against a distribution kernel while running a
: proprietary workload described as "memory intensive that is not swapping"
: that is expected to apply to mainline kernels.  The workload is
: read/write/modifying ranges of memory and checking the contents.  They
: reported that within a few hours that a bad PMD would be reported followed
: by a memory corruption where expected data was all zeros.  A partial
: report of the bad PMD looked like
:
:   [ 5195.338482] ../mm/pgtable-generic.c:33: bad pmd ffff8888157ba008(000002e0396009e2)
:   [ 5195.341184] ------------[ cut here ]------------
:   [ 5195.356880] kernel BUG at ../mm/pgtable-generic.c:35!
:   ....
:   [ 5195.410033] Call Trace:
:   [ 5195.410471]  [<ffffffff811bc75d>] change_protection_range+0x7dd/0x930
:   [ 5195.410716]  [<ffffffff811d4be8>] change_prot_numa+0x18/0x30
:   [ 5195.410918]  [<ffffffff810adefe>] task_numa_work+0x1fe/0x310
:   [ 5195.411200]  [<ffffffff81098322>] task_work_run+0x72/0x90
:   [ 5195.411246]  [<ffffffff81077139>] exit_to_usermode_loop+0x91/0xc2
:   [ 5195.411494]  [<ffffffff81003a51>] prepare_exit_to_usermode+0x31/0x40
:   [ 5195.411739]  [<ffffffff815e56af>] retint_user+0x8/0x10
:
: Decoding revealed that the PMD was a valid prot_numa PMD and the bad PMD
: was a false detection.  The bug does not trigger if automatic NUMA
: balancing or transparent huge pages is disabled.
:
: The bug is due a race in change_pmd_range between a pmd_trans_huge and
: pmd_nond_or_clear_bad check without any locks held.  During the
: pmd_trans_huge check, a parallel protection update under lock can have
: cleared the PMD and filled it with a prot_numa entry between the transhuge
: check and the pmd_none_or_clear_bad check.
:
: While this could be fixed with heavy locking, it's only necessary to make
: a copy of the PMD on the stack during change_pmd_range and avoid races.  A
: new helper is created for this as the check if quite subtle and the
: existing similar helpful is not suitable.  This passed 154 hours of
: testing (usually triggers between 20 minutes and 24 hours) without
: detecting bad PMDs or corruption.  A basic test of an autonuma-intensive
: workload showed no significant change in behaviour.

Although Mel withdrew the patch on the face of LKML comment
https://lkml.org/lkml/2017/4/10/922 the race window aforementioned is
still open, and we have reports of Linpack test reporting bad residuals
after the bad PMD warning is observed.  In addition to that, bad
rss-counter and non-zero pgtables assertions are triggered on mm teardown
for the task hitting the bad PMD.

 host kernel: mm/pgtable-generic.c:40: bad pmd 00000000b3152f68(8000000d2d2008e7)
 ....
 host kernel: BUG: Bad rss-counter state mm:00000000b583043d idx:1 val:512
 host kernel: BUG: non-zero pgtables_bytes on freeing mm: 4096

The issue is observed on a v4.18-based distribution kernel, but the race
window is expected to be applicable to mainline kernels, as well.

[akpm@linux-foundation.org: fix comment typo, per Rafael]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200216191800.22423-1-aquini@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-12 13:00:19 +01:00
David Rientjes 0bae7e7fac mm, thp: fix defrag setting if newline is not used
commit f42f25526502d851d0e3ca1e46297da8aafce8a7 upstream.

If thp defrag setting "defer" is used and a newline is *not* used when
writing to the sysfs file, this is interpreted as the "defer+madvise"
option.

This is because we do prefix matching and if five characters are written
without a newline, the current code ends up comparing to the first five
bytes of the "defer+madvise" option and using that instead.

Use the more appropriate sysfs_streq() that handles the trailing newline
for us.  Since this doubles as a nice cleanup, do it in enabled_store()
as well.

The current implementation relies on prefix matching: the number of
bytes compared is either the number of bytes written or the length of
the option being compared.  With a newline, "defer\n" does not match
"defer+"madvise"; without a newline, however, "defer" is considered to
match "defer+madvise" (prefix matching is only comparing the first five
bytes).  End result is that writing "defer" is broken unless it has an
additional trailing character.

This means that writing "madv" in the past would match and set
"madvise".  With strict checking, that no longer is the case but it is
unlikely anybody is currently doing this.

Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2001171411020.56385@chino.kir.corp.google.com
Fixes: 21440d7eb9 ("mm, thp: add new defer+madvise defrag option")
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-05 16:43:51 +01:00
Wei Yang 0eb282cb1f mm/huge_memory.c: use head to check huge zero page
commit cb829624867b5ab10bc6a7036d183b1b82bfe9f8 upstream.

The page could be a tail page, if this is the case, this BUG_ON will
never be triggered.

Link: http://lkml.kernel.org/r/20200110032610.26499-1-richardw.yang@linux.intel.com
Fixes: e9b61f1985 ("thp: reintroduce split_huge_page()")

Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-05 16:43:51 +01:00
John Hubbard 8cb5db61af mm/gup: allow FOLL_FORCE for get_user_pages_fast()
commit f4000fdf435b8301a11cf85237c561047f8c4c72 upstream.

Commit 817be129e6 ("mm: validate get_user_pages_fast flags") allowed
only FOLL_WRITE and FOLL_LONGTERM to be passed to get_user_pages_fast().
This, combined with the fact that get_user_pages_fast() falls back to
"slow gup", which *does* accept FOLL_FORCE, leads to an odd situation:
if you need FOLL_FORCE, you cannot call get_user_pages_fast().

There does not appear to be any reason for filtering out FOLL_FORCE.
There is nothing in the _fast() implementation that requires that we
avoid writing to the pages.  So it appears to have been an oversight.

Fix by allowing FOLL_FORCE to be set for get_user_pages_fast().

Link: http://lkml.kernel.org/r/20200107224558.2362728-9-jhubbard@nvidia.com
Fixes: 817be129e6 ("mm: validate get_user_pages_fast flags")
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Leon Romanovsky <leonro@mellanox.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Björn Töpel <bjorn.topel@intel.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-05 16:43:51 +01:00
Vlastimil Babka 2bb9bfcde8 mm/debug.c: always print flags in dump_page()
commit 5b57b8f22709f07c0ab5921c94fd66e8c59c3e11 upstream.

Commit 76a1850e45 ("mm/debug.c: __dump_page() prints an extra line")
inadvertently removed printing of page flags for pages that are neither
anon nor ksm nor have a mapping.  Fix that.

Using pr_cont() again would be a solution, but the commit explicitly
removed its use.  Avoiding the danger of mixing up split lines from
multiple CPUs might be beneficial for near-panic dumps like this, so fix
this without reintroducing pr_cont().

Link: http://lkml.kernel.org/r/9f884d5c-ca60-dc7b-219c-c081c755fab6@suse.cz
Fixes: 76a1850e45 ("mm/debug.c: __dump_page() prints an extra line")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reported-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-05 16:43:51 +01:00
Catalin Marinas 95236ae76b mm: Avoid creating virtual address aliases in brk()/mmap()/mremap()
commit dcde237319e626d1ec3c9d8b7613032f0fd4663a upstream.

Currently the arm64 kernel ignores the top address byte passed to brk(),
mmap() and mremap(). When the user is not aware of the 56-bit address
limit or relies on the kernel to return an error, untagging such
pointers has the potential to create address aliases in user-space.
Passing a tagged address to munmap(), madvise() is permitted since the
tagged pointer is expected to be inside an existing mapping.

The current behaviour breaks the existing glibc malloc() implementation
which relies on brk() with an address beyond 56-bit to be rejected by
the kernel.

Remove untagging in the above functions by partially reverting commit
ce18d171cb ("mm: untag user pointers in mmap/munmap/mremap/brk"). In
addition, update the arm64 tagged-address-abi.rst document accordingly.

Link: https://bugzilla.redhat.com/1797052
Fixes: ce18d171cb ("mm: untag user pointers in mmap/munmap/mremap/brk")
Cc: <stable@vger.kernel.org> # 5.4.x-
Cc: Florian Weimer <fweimer@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reported-by: Victor Stinner <vstinner@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 17:22:21 +01:00
Wei Yang ef32399bf7 mm/sparsemem: pfn_to_page is not valid yet on SPARSEMEM
commit 18e19f195cd888f65643a77a0c6aee8f5be6439a upstream.

When we use SPARSEMEM instead of SPARSEMEM_VMEMMAP, pfn_to_page()
doesn't work before sparse_init_one_section() is called.

This leads to a crash when hotplug memory:

    BUG: unable to handle page fault for address: 0000000006400000
    #PF: supervisor write access in kernel mode
    #PF: error_code(0x0002) - not-present page
    PGD 0 P4D 0
    Oops: 0002 [#1] SMP PTI
    CPU: 3 PID: 221 Comm: kworker/u16:1 Tainted: G        W         5.5.0-next-20200205+ #343
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
    Workqueue: kacpi_hotplug acpi_hotplug_work_fn
    RIP: 0010:__memset+0x24/0x30
    Code: cc cc cc cc cc cc 0f 1f 44 00 00 49 89 f9 48 89 d1 83 e2 07 48 c1 e9 03 40 0f b6 f6 48 b8 01 01 01 01 01 01 01 01 48 0f af c6 <f3> 48 ab 89 d1 f3 aa 4c 89 c8 c3 90 49 89 f9 40 88 f0 48 89 d1 f3
    RSP: 0018:ffffb43ac0373c80 EFLAGS: 00010a87
    RAX: ffffffffffffffff RBX: ffff8a1518800000 RCX: 0000000000050000
    RDX: 0000000000000000 RSI: 00000000000000ff RDI: 0000000006400000
    RBP: 0000000000140000 R08: 0000000000100000 R09: 0000000006400000
    R10: 0000000000000000 R11: 0000000000000002 R12: 0000000000000000
    R13: 0000000000000028 R14: 0000000000000000 R15: ffff8a153ffd9280
    FS:  0000000000000000(0000) GS:ffff8a153ab00000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: 0000000006400000 CR3: 0000000136fca000 CR4: 00000000000006e0
    DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
    DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
    Call Trace:
     sparse_add_section+0x1c9/0x26a
     __add_pages+0xbf/0x150
     add_pages+0x12/0x60
     add_memory_resource+0xc8/0x210
     __add_memory+0x62/0xb0
     acpi_memory_device_add+0x13f/0x300
     acpi_bus_attach+0xf6/0x200
     acpi_bus_scan+0x43/0x90
     acpi_device_hotplug+0x275/0x3d0
     acpi_hotplug_work_fn+0x1a/0x30
     process_one_work+0x1a7/0x370
     worker_thread+0x30/0x380
     kthread+0x112/0x130
     ret_from_fork+0x35/0x40

We should use memmap as it did.

On x86 the impact is limited to x86_32 builds, or x86_64 configurations
that override the default setting for SPARSEMEM_VMEMMAP.

Other memory hotplug archs (arm64, ia64, and ppc) also default to
SPARSEMEM_VMEMMAP=y.

[dan.j.williams@intel.com: changelog update]
{rppt@linux.ibm.com: changelog update]
Link: http://lkml.kernel.org/r/20200219030454.4844-1-bhe@redhat.com
Fixes: ba72b4c8cf ("mm/sparsemem: support sub-section hotplug")
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 17:22:20 +01:00
Gavin Shan 198f5aa0f7 mm/vmscan.c: don't round up scan size for online memory cgroup
commit 76073c646f5f4999d763f471df9e38a5a912d70d upstream.

Commit 68600f623d ("mm: don't miss the last page because of round-off
error") makes the scan size round up to @denominator regardless of the
memory cgroup's state, online or offline.  This affects the overall
reclaiming behavior: the corresponding LRU list is eligible for
reclaiming only when its size logically right shifted by @sc->priority
is bigger than zero in the former formula.

For example, the inactive anonymous LRU list should have at least 0x4000
pages to be eligible for reclaiming when we have 60/12 for
swappiness/priority and without taking scan/rotation ratio into account.

After the roundup is applied, the inactive anonymous LRU list becomes
eligible for reclaiming when its size is bigger than or equal to 0x1000
in the same condition.

    (0x4000 >> 12) * 60 / (60 + 140 + 1) = 1
    ((0x1000 >> 12) * 60) + 200) / (60 + 140 + 1) = 1

aarch64 has 512MB huge page size when the base page size is 64KB.  The
memory cgroup that has a huge page is always eligible for reclaiming in
that case.

The reclaiming is likely to stop after the huge page is reclaimed,
meaing the further iteration on @sc->priority and the silbing and child
memory cgroups will be skipped.  The overall behaviour has been changed.
This fixes the issue by applying the roundup to offlined memory cgroups
only, to give more preference to reclaim memory from offlined memory
cgroup.  It sounds reasonable as those memory is unlikedly to be used by
anyone.

The issue was found by starting up 8 VMs on a Ampere Mustang machine,
which has 8 CPUs and 16 GB memory.  Each VM is given with 2 vCPUs and
2GB memory.  It took 264 seconds for all VMs to be completely up and
784MB swap is consumed after that.  With this patch applied, it took 236
seconds and 60MB swap to do same thing.  So there is 10% performance
improvement for my case.  Note that KSM is disable while THP is enabled
in the testing.

         total     used    free   shared  buff/cache   available
   Mem:  16196    10065    2049       16        4081        3749
   Swap:  8175      784    7391
         total     used    free   shared  buff/cache   available
   Mem:  16196    11324    3656       24        1215        2936
   Swap:  8175       60    8115

Link: http://lkml.kernel.org/r/20200211024514.8730-1-gshan@redhat.com
Fixes: 68600f623d ("mm: don't miss the last page because of round-off error")
Signed-off-by: Gavin Shan <gshan@redhat.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>	[4.20+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 17:22:20 +01:00
Vasily Averin e078c8d897 mm/memcontrol.c: lost css_put in memcg_expand_shrinker_maps()
commit 75866af62b439859d5146b7093ceb6b482852683 upstream.

for_each_mem_cgroup() increases css reference counter for memory cgroup
and requires to use mem_cgroup_iter_break() if the walk is cancelled.

Link: http://lkml.kernel.org/r/c98414fb-7e1f-da0f-867a-9340ec4bd30b@virtuozzo.com
Fixes: 0a4465d340 ("mm, memcg: assign memcg-aware shrinkers bitmap to memcg")
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 17:22:20 +01:00
Peter Zijlstra 806cabd311 mm/mmu_gather: invalidate TLB correctly on batch allocation failure and flush
commit 0ed1325967ab5f7a4549a2641c6ebe115f76e228 upstream.

Architectures for which we have hardware walkers of Linux page table
should flush TLB on mmu gather batch allocation failures and batch flush.
Some architectures like POWER supports multiple translation modes (hash
and radix) and in the case of POWER only radix translation mode needs the
above TLBI.  This is because for hash translation mode kernel wants to
avoid this extra flush since there are no hardware walkers of linux page
table.  With radix translation, the hardware also walks linux page table
and with that, kernel needs to make sure to TLB invalidate page walk cache
before page table pages are freed.

More details in commit d86564a2f0 ("mm/tlb, x86/mm: Support invalidating
TLB caches for RCU_TABLE_FREE")

The changes to sparc are to make sure we keep the old behavior since we
are now removing HAVE_RCU_TABLE_NO_INVALIDATE.  The default value for
tlb_needs_table_invalidate is to always force an invalidate and sparc can
avoid the table invalidate.  Hence we define tlb_needs_table_invalidate to
false for sparc architecture.

Link: http://lkml.kernel.org/r/20200116064531.483522-3-aneesh.kumar@linux.ibm.com
Fixes: a46cc7a90f ("powerpc/mm/radix: Improve TLB/PWC flushes")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Cc: <stable@vger.kernel.org>	[4.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:42 -08:00
David Hildenbrand ed53278ee8 mm/page_alloc.c: fix uninitialized memmaps on a partially populated last section
commit e822969cab48b786b64246aad1a3ba2a774f5d23 upstream.

Patch series "mm: fix max_pfn not falling on section boundary", v2.

Playing with different memory sizes for a x86-64 guest, I discovered that
some memmaps (highest section if max_mem does not fall on the section
boundary) are marked as being valid and online, but contain garbage.  We
have to properly initialize these memmaps.

Looking at /proc/kpageflags and friends, I found some more issues,
partially related to this.

This patch (of 3):

If max_pfn is not aligned to a section boundary, we can easily run into
BUGs.  This can e.g., be triggered on x86-64 under QEMU by specifying a
memory size that is not a multiple of 128MB (e.g., 4097MB, but also
4160MB).  I was told that on real HW, we can easily have this scenario
(esp., one of the main reasons sub-section hotadd of devmem was added).

The issue is, that we have a valid memmap (pfn_valid()) for the whole
section, and the whole section will be marked "online".
pfn_to_online_page() will succeed, but the memmap contains garbage.

E.g., doing a "./page-types -r -a 0x144001" when QEMU was started with "-m
4160M" - (see tools/vm/page-types.c):

[  200.476376] BUG: unable to handle page fault for address: fffffffffffffffe
[  200.477500] #PF: supervisor read access in kernel mode
[  200.478334] #PF: error_code(0x0000) - not-present page
[  200.479076] PGD 59614067 P4D 59614067 PUD 59616067 PMD 0
[  200.479557] Oops: 0000 [#4] SMP NOPTI
[  200.479875] CPU: 0 PID: 603 Comm: page-types Tainted: G      D W         5.5.0-rc1-next-20191209 #93
[  200.480646] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu4
[  200.481648] RIP: 0010:stable_page_flags+0x4d/0x410
[  200.482061] Code: f3 ff 41 89 c0 48 b8 00 00 00 00 01 00 00 00 45 84 c0 0f 85 cd 02 00 00 48 8b 53 08 48 8b 2b 48f
[  200.483644] RSP: 0018:ffffb139401cbe60 EFLAGS: 00010202
[  200.484091] RAX: fffffffffffffffe RBX: fffffbeec5100040 RCX: 0000000000000000
[  200.484697] RDX: 0000000000000001 RSI: ffffffff9535c7cd RDI: 0000000000000246
[  200.485313] RBP: ffffffffffffffff R08: 0000000000000000 R09: 0000000000000000
[  200.485917] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000144001
[  200.486523] R13: 00007ffd6ba55f48 R14: 00007ffd6ba55f40 R15: ffffb139401cbf08
[  200.487130] FS:  00007f68df717580(0000) GS:ffff9ec77fa00000(0000) knlGS:0000000000000000
[  200.487804] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  200.488295] CR2: fffffffffffffffe CR3: 0000000135d48000 CR4: 00000000000006f0
[  200.488897] Call Trace:
[  200.489115]  kpageflags_read+0xe9/0x140
[  200.489447]  proc_reg_read+0x3c/0x60
[  200.489755]  vfs_read+0xc2/0x170
[  200.490037]  ksys_pread64+0x65/0xa0
[  200.490352]  do_syscall_64+0x5c/0xa0
[  200.490665]  entry_SYSCALL_64_after_hwframe+0x49/0xbe

But it can be triggered much easier via "cat /proc/kpageflags > /dev/null"
after cold/hot plugging a DIMM to such a system:

[root@localhost ~]# cat /proc/kpageflags > /dev/null
[  111.517275] BUG: unable to handle page fault for address: fffffffffffffffe
[  111.517907] #PF: supervisor read access in kernel mode
[  111.518333] #PF: error_code(0x0000) - not-present page
[  111.518771] PGD a240e067 P4D a240e067 PUD a2410067 PMD 0

This patch fixes that by at least zero-ing out that memmap (so e.g.,
page_to_pfn() will not crash).  Commit 907ec5fca3 ("mm: zero remaining
unavailable struct pages") tried to fix a similar issue, but forgot to
consider this special case.

After this patch, there are still problems to solve.  E.g., not all of
these pages falling into a memory hole will actually get initialized later
and set PageReserved - they are only zeroed out - but at least the
immediate crashes are gone.  A follow-up patch will take care of this.

Link: http://lkml.kernel.org/r/20191211163201.17179-2-david@redhat.com
Fixes: f7f99100d8 ("mm: stop zeroing memory during allocation in vmemmap")
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: <stable@vger.kernel.org>	[4.15+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:42 -08:00
Yang Shi d364e9b37c mm: move_pages: report the number of non-attempted pages
commit 5984fabb6e82d9ab4e6305cb99694c85d46de8ae upstream.

Since commit a49bd4d716 ("mm, numa: rework do_pages_move"), the
semantic of move_pages() has changed to return the number of
non-migrated pages if they were result of a non-fatal reasons (usually a
busy page).

This was an unintentional change that hasn't been noticed except for LTP
tests which checked for the documented behavior.

There are two ways to go around this change.  We can even get back to
the original behavior and return -EAGAIN whenever migrate_pages is not
able to migrate pages due to non-fatal reasons.  Another option would be
to simply continue with the changed semantic and extend move_pages
documentation to clarify that -errno is returned on an invalid input or
when migration simply cannot succeed (e.g.  -ENOMEM, -EBUSY) or the
number of pages that couldn't have been migrated due to ephemeral
reasons (e.g.  page is pinned or locked for other reasons).

This patch implements the second option because this behavior is in
place for some time without anybody complaining and possibly new users
depending on it.  Also it allows to have a slightly easier error
handling as the caller knows that it is worth to retry when err > 0.

But since the new semantic would be aborted immediately if migration is
failed due to ephemeral reasons, need include the number of
non-attempted pages in the return value too.

Link: http://lkml.kernel.org/r/1580160527-109104-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: a49bd4d716 ("mm, numa: rework do_pages_move")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Cc: <stable@vger.kernel.org>    [4.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:13 -08:00
Wei Yang 95419e7ef2 mm: thp: don't need care deferred split queue in memcg charge move path
commit fac0516b5534897bf4c4a88daa06a8cfa5611b23 upstream.

If compound is true, this means it is a PMD mapped THP.  Which implies
the page is not linked to any defer list.  So the first code chunk will
not be executed.

Also with this reason, it would not be proper to add this page to a
defer list.  So the second code chunk is not correct.

Based on this, we should remove the defer list related code.

[yang.shi@linux.alibaba.com: better patch title]
Link: http://lkml.kernel.org/r/20200117233836.3434-1-richardw.yang@linux.intel.com
Fixes: 87eaceb3fa ("mm: thp: make deferred split shrinker memcg aware")
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>    [5.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:13 -08:00
Dan Williams aab4189dfd mm/memory_hotplug: fix remove_memory() lockdep splat
commit f1037ec0cc8ac1a450974ad9754e991f72884f48 upstream.

The daxctl unit test for the dax_kmem driver currently triggers the
(false positive) lockdep splat below.  It results from the fact that
remove_memory_block_devices() is invoked under the mem_hotplug_lock()
causing lockdep entanglements with cpu_hotplug_lock() and sysfs (kernfs
active state tracking).  It is a false positive because the sysfs
attribute path triggering the memory remove is not the same attribute
path associated with memory-block device.

sysfs_break_active_protection() is not applicable since there is no real
deadlock conflict, instead move memory-block device removal outside the
lock.  The mem_hotplug_lock() is not needed to synchronize the
memory-block device removal vs the page online state, that is already
handled by lock_device_hotplug().  Specifically, lock_device_hotplug()
is sufficient to allow try_remove_memory() to check the offline state of
the memblocks and be assured that any in progress online attempts are
flushed / blocked by kernfs_drain() / attribute removal.

The add_memory() path safely creates memblock devices under the
mem_hotplug_lock().  There is no kernfs active state synchronization in
the memblock device_register() path, so nothing to fix there.

This change is only possible thanks to the recent change that refactored
memory block device removal out of arch_remove_memory() (commit
4c4b7f9ba9 "mm/memory_hotplug: remove memory block devices before
arch_remove_memory()"), and David's due diligence tracking down the
guarantees afforded by kernfs_drain().  Not flagged for -stable since
this only impacts ongoing development and lockdep validation, not a
runtime issue.

    ======================================================
    WARNING: possible circular locking dependency detected
    5.5.0-rc3+ #230 Tainted: G           OE
    ------------------------------------------------------
    lt-daxctl/6459 is trying to acquire lock:
    ffff99c7f0003510 (kn->count#241){++++}, at: kernfs_remove_by_name_ns+0x41/0x80

    but task is already holding lock:
    ffffffffa76a5450 (mem_hotplug_lock.rw_sem){++++}, at: percpu_down_write+0x20/0xe0

    which lock already depends on the new lock.

    the existing dependency chain (in reverse order) is:

    -> #2 (mem_hotplug_lock.rw_sem){++++}:
           __lock_acquire+0x39c/0x790
           lock_acquire+0xa2/0x1b0
           get_online_mems+0x3e/0xb0
           kmem_cache_create_usercopy+0x2e/0x260
           kmem_cache_create+0x12/0x20
           ptlock_cache_init+0x20/0x28
           start_kernel+0x243/0x547
           secondary_startup_64+0xb6/0xc0

    -> #1 (cpu_hotplug_lock.rw_sem){++++}:
           __lock_acquire+0x39c/0x790
           lock_acquire+0xa2/0x1b0
           cpus_read_lock+0x3e/0xb0
           online_pages+0x37/0x300
           memory_subsys_online+0x17d/0x1c0
           device_online+0x60/0x80
           state_store+0x65/0xd0
           kernfs_fop_write+0xcf/0x1c0
           vfs_write+0xdb/0x1d0
           ksys_write+0x65/0xe0
           do_syscall_64+0x5c/0xa0
           entry_SYSCALL_64_after_hwframe+0x49/0xbe

    -> #0 (kn->count#241){++++}:
           check_prev_add+0x98/0xa40
           validate_chain+0x576/0x860
           __lock_acquire+0x39c/0x790
           lock_acquire+0xa2/0x1b0
           __kernfs_remove+0x25f/0x2e0
           kernfs_remove_by_name_ns+0x41/0x80
           remove_files.isra.0+0x30/0x70
           sysfs_remove_group+0x3d/0x80
           sysfs_remove_groups+0x29/0x40
           device_remove_attrs+0x39/0x70
           device_del+0x16a/0x3f0
           device_unregister+0x16/0x60
           remove_memory_block_devices+0x82/0xb0
           try_remove_memory+0xb5/0x130
           remove_memory+0x26/0x40
           dev_dax_kmem_remove+0x44/0x6a [kmem]
           device_release_driver_internal+0xe4/0x1c0
           unbind_store+0xef/0x120
           kernfs_fop_write+0xcf/0x1c0
           vfs_write+0xdb/0x1d0
           ksys_write+0x65/0xe0
           do_syscall_64+0x5c/0xa0
           entry_SYSCALL_64_after_hwframe+0x49/0xbe

    other info that might help us debug this:

    Chain exists of:
      kn->count#241 --> cpu_hotplug_lock.rw_sem --> mem_hotplug_lock.rw_sem

     Possible unsafe locking scenario:

           CPU0                    CPU1
           ----                    ----
      lock(mem_hotplug_lock.rw_sem);
                                   lock(cpu_hotplug_lock.rw_sem);
                                   lock(mem_hotplug_lock.rw_sem);
      lock(kn->count#241);

     *** DEADLOCK ***

No fixes tag as this has been a long standing issue that predated the
addition of kernfs lockdep annotations.

Link: http://lkml.kernel.org/r/157991441887.2763922.4770790047389427325.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:12 -08:00
Pingfan Liu af823232b0 mm/sparse.c: reset section's mem_map when fully deactivated
commit 1f503443e7df8dc8366608b4d810ce2d6669827c upstream.

After commit ba72b4c8cf ("mm/sparsemem: support sub-section hotplug"),
when a mem section is fully deactivated, section_mem_map still records
the section's start pfn, which is not used any more and will be
reassigned during re-addition.

In analogy with alloc/free pattern, it is better to clear all fields of
section_mem_map.

Beside this, it breaks the user space tool "makedumpfile" [1], which
makes assumption that a hot-removed section has mem_map as NULL, instead
of checking directly against SECTION_MARKED_PRESENT bit.  (makedumpfile
will be better to change the assumption, and need a patch)

The bug can be reproduced on IBM POWERVM by "drmgr -c mem -r -q 5" ,
trigger a crash, and save vmcore by makedumpfile

[1]: makedumpfile, commit e73016540293 ("[v1.6.7] Update version")

Link: http://lkml.kernel.org/r/1579487594-28889-1-git-send-email-kernelfans@gmail.com
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Kazuhito Hagio <k-hagio@ab.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:12 -08:00
Theodore Ts'o c2c814fc9a memcg: fix a crash in wb_workfn when a device disappears
commit 68f23b89067fdf187763e75a56087550624fdbee upstream.

Without memcg, there is a one-to-one mapping between the bdi and
bdi_writeback structures.  In this world, things are fairly
straightforward; the first thing bdi_unregister() does is to shutdown
the bdi_writeback structure (or wb), and part of that writeback ensures
that no other work queued against the wb, and that the wb is fully
drained.

With memcg, however, there is a one-to-many relationship between the bdi
and bdi_writeback structures; that is, there are multiple wb objects
which can all point to a single bdi.  There is a refcount which prevents
the bdi object from being released (and hence, unregistered).  So in
theory, the bdi_unregister() *should* only get called once its refcount
goes to zero (bdi_put will drop the refcount, and when it is zero,
release_bdi gets called, which calls bdi_unregister).

Unfortunately, del_gendisk() in block/gen_hd.c never got the memo about
the Brave New memcg World, and calls bdi_unregister directly.  It does
this without informing the file system, or the memcg code, or anything
else.  This causes the root wb associated with the bdi to be
unregistered, but none of the memcg-specific wb's are shutdown.  So when
one of these wb's are woken up to do delayed work, they try to
dereference their wb->bdi->dev to fetch the device name, but
unfortunately bdi->dev is now NULL, thanks to the bdi_unregister()
called by del_gendisk().  As a result, *boom*.

Fortunately, it looks like the rest of the writeback path is perfectly
happy with bdi->dev and bdi->owner being NULL, so the simplest fix is to
create a bdi_dev_name() function which can handle bdi->dev being NULL.
This also allows us to bulletproof the writeback tracepoints to prevent
them from dereferencing a NULL pointer and crashing the kernel if one is
tracing with memcg's enabled, and an iSCSI device dies or a USB storage
stick is pulled.

The most common way of triggering this will be hotremoval of a device
while writeback with memcg enabled is going on.  It was triggering
several times a day in a heavily loaded production environment.

Google Bug Id: 145475544

Link: https://lore.kernel.org/r/20191227194829.150110-1-tytso@mit.edu
Link: http://lkml.kernel.org/r/20191228005211.163952-1-tytso@mit.edu
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:11 -08:00
Wei Yang 52cf138f5c mm/migrate.c: also overwrite error when it is bigger than zero
[ Upstream commit dfe9aa23cab7880a794db9eb2d176c00ed064eb6 ]

If we get here after successfully adding page to list, err would be 1 to
indicate the page is queued in the list.

Current code has two problems:

  * on success, 0 is not returned
  * on error, if add_page_for_migratioin() return 1, and the following err1
    from do_move_pages_to_node() is set, the err1 is not returned since err
    is 1

And these behaviors break the user interface.

Link: http://lkml.kernel.org/r/20200119065753.21694-1-richardw.yang@linux.intel.com
Fixes: e0153fc2c760 ("mm: move_pages: return valid node id in status if the page is already on the target node").
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-05 21:22:53 +00:00
Dan Carpenter 9bcdb8ba5a mm/mempolicy.c: fix out of bounds write in mpol_parse_str()
commit c7a91bc7c2e17e0a9c8b9745a2cb118891218fd1 upstream.

What we are trying to do is change the '=' character to a NUL terminator
and then at the end of the function we restore it back to an '='.  The
problem is there are two error paths where we jump to the end of the
function before we have replaced the '=' with NUL.

We end up putting the '=' in the wrong place (possibly one element
before the start of the buffer).

Link: http://lkml.kernel.org/r/20200115055426.vdjwvry44nfug7yy@kili.mountain
Reported-by: syzbot+e64a13c5369a194d67df@syzkaller.appspotmail.com
Fixes: 095f1fc4eb ("mempolicy: rework shmem mpol parsing and display")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-05 21:22:40 +00:00
Wen Yang 36875206a3 mm/page-writeback.c: avoid potential division by zero in wb_min_max_ratio()
commit 6d9e8c651dd979aa666bee15f086745f3ea9c4b3 upstream.

Patch series "use div64_ul() instead of div_u64() if the divisor is
unsigned long".

We were first inspired by commit b0ab99e773 ("sched: Fix possible divide
by zero in avg_atom () calculation"), then refer to the recently analyzed
mm code, we found this suspicious place.

 201                 if (min) {
 202                         min *= this_bw;
 203                         do_div(min, tot_bw);
 204                 }

And we also disassembled and confirmed it:

  /usr/src/debug/kernel-4.9.168-016.ali3000/linux-4.9.168-016.ali3000.alios7.x86_64/mm/page-writeback.c: 201
  0xffffffff811c37da <__wb_calc_thresh+234>:      xor    %r10d,%r10d
  0xffffffff811c37dd <__wb_calc_thresh+237>:      test   %rax,%rax
  0xffffffff811c37e0 <__wb_calc_thresh+240>:      je 0xffffffff811c3800 <__wb_calc_thresh+272>
  /usr/src/debug/kernel-4.9.168-016.ali3000/linux-4.9.168-016.ali3000.alios7.x86_64/mm/page-writeback.c: 202
  0xffffffff811c37e2 <__wb_calc_thresh+242>:      imul   %r8,%rax
  /usr/src/debug/kernel-4.9.168-016.ali3000/linux-4.9.168-016.ali3000.alios7.x86_64/mm/page-writeback.c: 203
  0xffffffff811c37e6 <__wb_calc_thresh+246>:      mov    %r9d,%r10d    ---> truncates it to 32 bits here
  0xffffffff811c37e9 <__wb_calc_thresh+249>:      xor    %edx,%edx
  0xffffffff811c37eb <__wb_calc_thresh+251>:      div    %r10
  0xffffffff811c37ee <__wb_calc_thresh+254>:      imul   %rbx,%rax
  0xffffffff811c37f2 <__wb_calc_thresh+258>:      shr    $0x2,%rax
  0xffffffff811c37f6 <__wb_calc_thresh+262>:      mul    %rcx
  0xffffffff811c37f9 <__wb_calc_thresh+265>:      shr    $0x2,%rdx
  0xffffffff811c37fd <__wb_calc_thresh+269>:      mov    %rdx,%r10

This series uses div64_ul() instead of div_u64() if the divisor is
unsigned long, to avoid truncation to 32-bit on 64-bit platforms.

This patch (of 3):

The variables 'min' and 'max' are unsigned long and do_div truncates
them to 32 bits, which means it can test non-zero and be truncated to
zero for division.  Fix this issue by using div64_ul() instead.

Link: http://lkml.kernel.org/r/20200102081442.8273-2-wenyang@linux.alibaba.com
Fixes: 693108a8a6 ("writeback: make bdi->min/max_ratio handling cgroup writeback aware")
Signed-off-by: Wen Yang <wenyang@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23 08:22:41 +01:00
David Hildenbrand 5147a518f5 mm/memory_hotplug: don't free usage map when removing a re-added early section
commit 8068df3b60373c390198f660574ea14c8098de57 upstream.

When we remove an early section, we don't free the usage map, as the
usage maps of other sections are placed into the same page.  Once the
section is removed, it is no longer an early section (especially, the
memmap is freed).  When we re-add that section, the usage map is reused,
however, it is no longer an early section.  When removing that section
again, we try to kfree() a usage map that was allocated during early
boot - bad.

Let's check against PageReserved() to see if we are dealing with an
usage map that was allocated during boot.  We could also check against
!(PageSlab(usage_page) || PageCompound(usage_page)), but PageReserved() is
cleaner.

Can be triggered using memtrace under ppc64/powernv:

  $ mount -t debugfs none /sys/kernel/debug/
  $ echo 0x20000000 > /sys/kernel/debug/powerpc/memtrace/enable
  $ echo 0x20000000 > /sys/kernel/debug/powerpc/memtrace/enable
   ------------[ cut here ]------------
   kernel BUG at mm/slub.c:3969!
   Oops: Exception in kernel mode, sig: 5 [#1]
   LE PAGE_SIZE=3D64K MMU=3DHash SMP NR_CPUS=3D2048 NUMA PowerNV
   Modules linked in:
   CPU: 0 PID: 154 Comm: sh Not tainted 5.5.0-rc2-next-20191216-00005-g0be1dba7b7c0 #61
   NIP kfree+0x338/0x3b0
   LR section_deactivate+0x138/0x200
   Call Trace:
     section_deactivate+0x138/0x200
     __remove_pages+0x114/0x150
     arch_remove_memory+0x3c/0x160
     try_remove_memory+0x114/0x1a0
     __remove_memory+0x20/0x40
     memtrace_enable_set+0x254/0x850
     simple_attr_write+0x138/0x160
     full_proxy_write+0x8c/0x110
     __vfs_write+0x38/0x70
     vfs_write+0x11c/0x2a0
     ksys_write+0x84/0x140
     system_call+0x5c/0x68
   ---[ end trace 4b053cbd84e0db62 ]---

The first invocation will offline+remove memory blocks.  The second
invocation will first add+online them again, in order to offline+remove
them again (usually we are lucky and the exact same memory blocks will
get "reallocated").

Tested on powernv with boot memory: The usage map will not get freed.
Tested on x86-64 with DIMMs: The usage map will get freed.

Using Dynamic Memory under a Power DLAPR can trigger it easily.

Triggering removal (I assume after previously removed+re-added) of
memory from the HMC GUI can crash the kernel with the same call trace
and is fixed by this patch.

Link: http://lkml.kernel.org/r/20191217104637.5509-1-david@redhat.com
Fixes: 326e1b8f83 ("mm/sparsemem: introduce a SECTION_IS_EARLY flag")
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Pingfan Liu <piliu@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23 08:22:41 +01:00
Vlastimil Babka d30dce3510 mm, debug_pagealloc: don't rely on static keys too early
commit 8e57f8acbbd121ecfb0c9dc13b8b030f86c6bd3b upstream.

Commit 96a2b03f28 ("mm, debug_pagelloc: use static keys to enable
debugging") has introduced a static key to reduce overhead when
debug_pagealloc is compiled in but not enabled.  It relied on the
assumption that jump_label_init() is called before parse_early_param()
as in start_kernel(), so when the "debug_pagealloc=on" option is parsed,
it is safe to enable the static key.

However, it turns out multiple architectures call parse_early_param()
earlier from their setup_arch().  x86 also calls jump_label_init() even
earlier, so no issue was found while testing the commit, but same is not
true for e.g.  ppc64 and s390 where the kernel would not boot with
debug_pagealloc=on as found by our QA.

To fix this without tricky changes to init code of multiple
architectures, this patch partially reverts the static key conversion
from 96a2b03f28.  Init-time and non-fastpath calls (such as in arch
code) of debug_pagealloc_enabled() will again test a simple bool
variable.  Fastpath mm code is converted to a new
debug_pagealloc_enabled_static() variant that relies on the static key,
which is enabled in a well-defined point in mm_init() where it's
guaranteed that jump_label_init() has been called, regardless of
architecture.

[sfr@canb.auug.org.au: export _debug_pagealloc_enabled_early]
  Link: http://lkml.kernel.org/r/20200106164944.063ac07b@canb.auug.org.au
Link: http://lkml.kernel.org/r/20191219130612.23171-1-vbabka@suse.cz
Fixes: 96a2b03f28 ("mm, debug_pagelloc: use static keys to enable debugging")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23 08:22:40 +01:00
Adrian Huang 904c1db4b3 mm: memcg/slab: call flush_memcg_workqueue() only if memcg workqueue is valid
commit 2fe20210fc5f5e62644678b8f927c49f2c6f42a7 upstream.

When booting with amd_iommu=off, the following WARNING message
appears:

  AMD-Vi: AMD IOMMU disabled on kernel command-line
  ------------[ cut here ]------------
  WARNING: CPU: 0 PID: 0 at kernel/workqueue.c:2772 flush_workqueue+0x42e/0x450
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.5.0-rc3-amd-iommu #6
  Hardware name: Lenovo ThinkSystem SR655-2S/7D2WRCZ000, BIOS D8E101L-1.00 12/05/2019
  RIP: 0010:flush_workqueue+0x42e/0x450
  Code: ff 0f 0b e9 7a fd ff ff 4d 89 ef e9 33 fe ff ff 0f 0b e9 7f fd ff ff 0f 0b e9 bc fd ff ff 0f 0b e9 a8 fd ff ff e8 52 2c fe ff <0f> 0b 31 d2 48 c7 c6 e0 88 c5 95 48 c7 c7 d8 ad f0 95 e8 19 f5 04
  Call Trace:
   kmem_cache_destroy+0x69/0x260
   iommu_go_to_state+0x40c/0x5ab
   amd_iommu_prepare+0x16/0x2a
   irq_remapping_prepare+0x36/0x5f
   enable_IR_x2apic+0x21/0x172
   default_setup_apic_routing+0x12/0x6f
   apic_intr_mode_init+0x1a1/0x1f1
   x86_late_time_init+0x17/0x1c
   start_kernel+0x480/0x53f
   secondary_startup_64+0xb6/0xc0
  ---[ end trace 30894107c3749449 ]---
  x2apic: IRQ remapping doesn't support X2APIC mode
  x2apic disabled

The warning is caused by the calling of 'kmem_cache_destroy()'
in free_iommu_resources(). Here is the call path:

  free_iommu_resources
    kmem_cache_destroy
      flush_memcg_workqueue
        flush_workqueue

The root cause is that the IOMMU subsystem runs before the workqueue
subsystem, which the variable 'wq_online' is still 'false'.  This leads
to the statement 'if (WARN_ON(!wq_online))' in flush_workqueue() is
'true'.

Since the variable 'memcg_kmem_cache_wq' is not allocated during the
time, it is unnecessary to call flush_memcg_workqueue().  This prevents
the WARNING message triggered by flush_workqueue().

Link: http://lkml.kernel.org/r/20200103085503.1665-1-ahuang12@lenovo.com
Fixes: 92ee383f6d ("mm: fix race between kmem_cache destroy, create and deactivate")
Signed-off-by: Adrian Huang <ahuang12@lenovo.com>
Reported-by: Xiaochun Lee <lixc17@lenovo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23 08:22:39 +01:00
Roman Gushchin 090892ba70 mm: memcg/slab: fix percpu slab vmstats flushing
commit 4a87e2a25dc27131c3cce5e94421622193305638 upstream.

Currently slab percpu vmstats are flushed twice: during the memcg
offlining and just before freeing the memcg structure.  Each time percpu
counters are summed, added to the atomic counterparts and propagated up
by the cgroup tree.

The second flushing is required due to how recursive vmstats are
implemented: counters are batched in percpu variables on a local level,
and once a percpu value is crossing some predefined threshold, it spills
over to atomic values on the local and each ascendant levels.  It means
that without flushing some numbers cached in percpu variables will be
dropped on floor each time a cgroup is destroyed.  And with uptime the
error on upper levels might become noticeable.

The first flushing aims to make counters on ancestor levels more
precise.  Dying cgroups may resume in the dying state for a long time.
After kmem_cache reparenting which is performed during the offlining
slab counters of the dying cgroup don't have any chances to be updated,
because any slab operations will be performed on the parent level.  It
means that the inaccuracy caused by percpu batching will not decrease up
to the final destruction of the cgroup.  By the original idea flushing
slab counters during the offlining should minimize the visible
inaccuracy of slab counters on the parent level.

The problem is that percpu counters are not zeroed after the first
flushing.  So every cached percpu value is summed twice.  It creates a
small error (up to 32 pages per cpu, but usually less) which accumulates
on parent cgroup level.  After creating and destroying of thousands of
child cgroups, slab counter on parent level can be way off the real
value.

For now, let's just stop flushing slab counters on memcg offlining.  It
can't be done correctly without scheduling a work on each cpu: reading
and zeroing it during css offlining can race with an asynchronous
update, which doesn't expect values to be changed underneath.

With this change, slab counters on parent level will become eventually
consistent.  Once all dying children are gone, values are correct.  And
if not, the error is capped by 32 * NR_CPUS pages per dying cgroup.

It's not perfect, as slab are reparented, so any updates after the
reparenting will happen on the parent level.  It means that if a slab
page was allocated, a counter on child level was bumped, then the page
was reparented and freed, the annihilation of positive and negative
counter values will not happen until the child cgroup is released.  It
makes slab counters different from others, and it might want us to
implement flushing in a correct form again.  But it's also a question of
performance: scheduling a work on each cpu isn't free, and it's an open
question if the benefit of having more accurate counters is worth it.

We might also consider flushing all counters on offlining, not only slab
counters.

So let's fix the main problem now: make the slab counters eventually
consistent, so at least the error won't grow with uptime (or more
precisely the number of created and destroyed cgroups).  And think about
the accuracy of counters separately.

Link: http://lkml.kernel.org/r/20191220042728.1045881-1-guro@fb.com
Fixes: bee07b33db ("mm: memcontrol: flush percpu slab vmstats on kmem offlining")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23 08:22:39 +01:00
Kirill A. Shutemov 194e7fcd19 mm/huge_memory.c: thp: fix conflict of above-47bit hint address and PMD alignment
commit 97d3d0f9a1cf132c63c0b8b8bd497b8a56283dd9 upstream.

Patch series "Fix two above-47bit hint address vs.  THP bugs".

The two get_unmapped_area() implementations have to be fixed to provide
THP-friendly mappings if above-47bit hint address is specified.

This patch (of 2):

Filesystems use thp_get_unmapped_area() to provide THP-friendly
mappings.  For DAX in particular.

Normally, the kernel doesn't create userspace mappings above 47-bit,
even if the machine allows this (such as with 5-level paging on x86-64).
Not all user space is ready to handle wide addresses.  It's known that
at least some JIT compilers use higher bits in pointers to encode their
information.

Userspace can ask for allocation from full address space by specifying
hint address (with or without MAP_FIXED) above 47-bits.  If the
application doesn't need a particular address, but wants to allocate
from whole address space it can specify -1 as a hint address.

Unfortunately, this trick breaks thp_get_unmapped_area(): the function
would not try to allocate PMD-aligned area if *any* hint address
specified.

Modify the routine to handle it correctly:

 - Try to allocate the space at the specified hint address with length
   padding required for PMD alignment.
 - If failed, retry without length padding (but with the same hint
   address);
 - If the returned address matches the hint address return it.
 - Otherwise, align the address as required for THP and return.

The user specified hint address is passed down to get_unmapped_area() so
above-47bit hint address will be taken into account without breaking
alignment requirements.

Link: http://lkml.kernel.org/r/20191220142548.7118-2-kirill.shutemov@linux.intel.com
Fixes: b569bab78d ("x86/mm: Prepare to expose larger address space to userspace")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Thomas Willhalm <thomas.willhalm@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Bruggeman, Otto G" <otto.g.bruggeman@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23 08:22:39 +01:00
Kirill A. Shutemov 5e56519a98 mm/shmem.c: thp, shmem: fix conflict of above-47bit hint address and PMD alignment
commit 991589974d9c9ecb24ee3799ec8c415c730598a2 upstream.

Shmem/tmpfs tries to provide THP-friendly mappings if huge pages are
enabled.  But it doesn't work well with above-47bit hint address.

Normally, the kernel doesn't create userspace mappings above 47-bit,
even if the machine allows this (such as with 5-level paging on x86-64).
Not all user space is ready to handle wide addresses.  It's known that
at least some JIT compilers use higher bits in pointers to encode their
information.

Userspace can ask for allocation from full address space by specifying
hint address (with or without MAP_FIXED) above 47-bits.  If the
application doesn't need a particular address, but wants to allocate
from whole address space it can specify -1 as a hint address.

Unfortunately, this trick breaks THP alignment in shmem/tmp:
shmem_get_unmapped_area() would not try to allocate PMD-aligned area if
*any* hint address specified.

This can be fixed by requesting the aligned area if the we failed to
allocated at user-specified hint address.  The request with inflated
length will also take the user-specified hint address.  This way we will
not lose an allocation request from the full address space.

[kirill@shutemov.name: fold in a fixup]
  Link: http://lkml.kernel.org/r/20191223231309.t6bh5hkbmokihpfu@box
Link: http://lkml.kernel.org/r/20191220142548.7118-3-kirill.shutemov@linux.intel.com
Fixes: b569bab78d ("x86/mm: Prepare to expose larger address space to userspace")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Willhalm, Thomas" <thomas.willhalm@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Bruggeman, Otto G" <otto.g.bruggeman@intel.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-23 08:22:39 +01:00
Daniel Borkmann e5194ee4bf uaccess: Add non-pagefault user-space write function
commit 1d1585ca0f48fe7ed95c3571f3e4a82b2b5045dc upstream.

Commit 3d7081822f ("uaccess: Add non-pagefault user-space read functions")
missed to add probe write function, therefore factor out a probe_write_common()
helper with most logic of probe_kernel_write() except setting KERNEL_DS, and
add a new probe_user_write() helper so it can be used from BPF side.

Again, on some archs, the user address space and kernel address space can
co-exist and be overlapping, so in such case, setting KERNEL_DS would mean
that the given address is treated as being in kernel address space.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/bpf/9df2542e68141bfa3addde631441ee45503856a8.1572649915.git.daniel@iogearbox.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-17 19:48:40 +01:00
Waiman Long 3a43ea2747 mm/hugetlb: defer freeing of huge pages if in non-task context
[ Upstream commit c77c0a8ac4c522638a8242fcb9de9496e3cdbb2d ]

The following lockdep splat was observed when a certain hugetlbfs test
was run:

  ================================
  WARNING: inconsistent lock state
  4.18.0-159.el8.x86_64+debug #1 Tainted: G        W --------- -  -
  --------------------------------
  inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
  swapper/30/0 [HC0[0]:SC1[1]:HE1:SE0] takes:
  ffffffff9acdc038 (hugetlb_lock){+.?.}, at: free_huge_page+0x36f/0xaa0
  {SOFTIRQ-ON-W} state was registered at:
    lock_acquire+0x14f/0x3b0
    _raw_spin_lock+0x30/0x70
    __nr_hugepages_store_common+0x11b/0xb30
    hugetlb_sysctl_handler_common+0x209/0x2d0
    proc_sys_call_handler+0x37f/0x450
    vfs_write+0x157/0x460
    ksys_write+0xb8/0x170
    do_syscall_64+0xa5/0x4d0
    entry_SYSCALL_64_after_hwframe+0x6a/0xdf
  irq event stamp: 691296
  hardirqs last  enabled at (691296): [<ffffffff99bb034b>] _raw_spin_unlock_irqrestore+0x4b/0x60
  hardirqs last disabled at (691295): [<ffffffff99bb0ad2>] _raw_spin_lock_irqsave+0x22/0x81
  softirqs last  enabled at (691284): [<ffffffff97ff0c63>] irq_enter+0xc3/0xe0
  softirqs last disabled at (691285): [<ffffffff97ff0ebe>] irq_exit+0x23e/0x2b0

  other info that might help us debug this:
   Possible unsafe locking scenario:

         CPU0
         ----
    lock(hugetlb_lock);
    <Interrupt>
      lock(hugetlb_lock);

   *** DEADLOCK ***
      :
  Call Trace:
   <IRQ>
   __lock_acquire+0x146b/0x48c0
   lock_acquire+0x14f/0x3b0
   _raw_spin_lock+0x30/0x70
   free_huge_page+0x36f/0xaa0
   bio_check_pages_dirty+0x2fc/0x5c0
   clone_endio+0x17f/0x670 [dm_mod]
   blk_update_request+0x276/0xe50
   scsi_end_request+0x7b/0x6a0
   scsi_io_completion+0x1c6/0x1570
   blk_done_softirq+0x22e/0x350
   __do_softirq+0x23d/0xad8
   irq_exit+0x23e/0x2b0
   do_IRQ+0x11a/0x200
   common_interrupt+0xf/0xf
   </IRQ>

Both the hugetbl_lock and the subpool lock can be acquired in
free_huge_page().  One way to solve the problem is to make both locks
irq-safe.  However, Mike Kravetz had learned that the hugetlb_lock is
held for a linear scan of ALL hugetlb pages during a cgroup reparentling
operation.  So it is just too long to have irq disabled unless we can
break hugetbl_lock down into finer-grained locks with shorter lock hold
times.

Another alternative is to defer the freeing to a workqueue job.  This
patch implements the deferred freeing by adding a free_hpage_workfn()
work function to do the actual freeing.  The free_huge_page() call in a
non-task context saves the page to be freed in the hpage_freelist linked
list in a lockless manner using the llist APIs.

The generic workqueue is used to process the work, but a dedicated
workqueue can be used instead if it is desirable to have the huge page
freed ASAP.

Thanks to Kirill Tkhai <ktkhai@virtuozzo.com> for suggesting the use of
llist APIs which simplfy the code.

Link: http://lkml.kernel.org/r/20191217170331.30893-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-09 10:20:07 +01:00
Ilya Leoshkevich 5e71be1a60 mm/sparse.c: mark populate_section_memmap as __meminit
[ Upstream commit 030eab4f9ffb469344c10a46bc02c5149db0a2a9 ]

Building the kernel on s390 with -Og produces the following warning:

  WARNING: vmlinux.o(.text+0x28dabe): Section mismatch in reference from the function populate_section_memmap() to the function .meminit.text:__populate_section_memmap()
  The function populate_section_memmap() references
  the function __meminit __populate_section_memmap().
  This is often because populate_section_memmap lacks a __meminit
  annotation or the annotation of __populate_section_memmap is wrong.

While -Og is not supported, in theory this might still happen with
another compiler or on another architecture.  So fix this by using the
correct section annotations.

[iii@linux.ibm.com: v2]
  Link: http://lkml.kernel.org/r/20191030151639.41486-1-iii@linux.ibm.com
Link: http://lkml.kernel.org/r/20191028165549.14478-1-iii@linux.ibm.com
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-09 10:20:06 +01:00
Catalin Marinas 623e5ae074 arm64: Revert support for execute-only user mappings
commit 24cecc37746393432d994c0dbc251fb9ac7c5d72 upstream.

The ARMv8 64-bit architecture supports execute-only user permissions by
clearing the PTE_USER and PTE_UXN bits, practically making it a mostly
privileged mapping but from which user running at EL0 can still execute.

The downside, however, is that the kernel at EL1 inadvertently reading
such mapping would not trip over the PAN (privileged access never)
protection.

Revert the relevant bits from commit cab15ce604 ("arm64: Introduce
execute-only page access permissions") so that PROT_EXEC implies
PROT_READ (and therefore PTE_USER) until the architecture gains proper
support for execute-only user mappings.

Fixes: cab15ce604 ("arm64: Introduce execute-only page access permissions")
Cc: <stable@vger.kernel.org> # 4.9.x-
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-09 10:20:01 +01:00
Navid Emamdoost 20170bfa3d mm/gup: fix memory leak in __gup_benchmark_ioctl
commit a7c46c0c0e3d62f2764cd08b90934cd2aaaf8545 upstream.

In the implementation of __gup_benchmark_ioctl() the allocated pages
should be released before returning in case of an invalid cmd.  Release
pages via kvfree().

[akpm@linux-foundation.org: rework code flow, return -EINVAL rather than -1]
Link: http://lkml.kernel.org/r/20191211174653.4102-1-navid.emamdoost@gmail.com
Fixes: 714a3a1eba ("mm/gup_benchmark.c: add additional pinning methods")
Signed-off-by: Navid Emamdoost <navid.emamdoost@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-09 10:20:00 +01:00
Ilya Dryomov 7123ee7b3f mm/oom: fix pgtables units mismatch in Killed process message
commit 941f762bcb276259a78e7931674668874ccbda59 upstream.

pr_err() expects kB, but mm_pgtables_bytes() returns the number of bytes.
As everything else is printed in kB, I chose to fix the value rather than
the string.

Before:

[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name
...
[   1878]  1000  1878   217253   151144  1269760        0             0 python
...
Out of memory: Killed process 1878 (python) total-vm:869012kB, anon-rss:604572kB, file-rss:4kB, shmem-rss:0kB, UID:1000 pgtables:1269760kB oom_score_adj:0

After:

[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name
...
[   1436]  1000  1436   217253   151890  1294336        0             0 python
...
Out of memory: Killed process 1436 (python) total-vm:869012kB, anon-rss:607516kB, file-rss:44kB, shmem-rss:0kB, UID:1000 pgtables:1264kB oom_score_adj:0

Link: http://lkml.kernel.org/r/20191211202830.1600-1-idryomov@gmail.com
Fixes: 70cb6d2677 ("mm/oom: add oom_score_adj and pgtables to Killed process message")
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Edward Chron <echron@arista.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-09 10:19:57 +01:00
Yang Shi 366b5dce6d mm: move_pages: return valid node id in status if the page is already on the target node
commit e0153fc2c7606f101392b682e720a7a456d6c766 upstream.

Felix Abecassis reports move_pages() would return random status if the
pages are already on the target node by the below test program:

  int main(void)
  {
	const long node_id = 1;
	const long page_size = sysconf(_SC_PAGESIZE);
	const int64_t num_pages = 8;

	unsigned long nodemask =  1 << node_id;
	long ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask));
	if (ret < 0)
		return (EXIT_FAILURE);

	void **pages = malloc(sizeof(void*) * num_pages);
	for (int i = 0; i < num_pages; ++i) {
		pages[i] = mmap(NULL, page_size, PROT_WRITE | PROT_READ,
				MAP_PRIVATE | MAP_POPULATE | MAP_ANONYMOUS,
				-1, 0);
		if (pages[i] == MAP_FAILED)
			return (EXIT_FAILURE);
	}

	ret = set_mempolicy(MPOL_DEFAULT, NULL, 0);
	if (ret < 0)
		return (EXIT_FAILURE);

	int *nodes = malloc(sizeof(int) * num_pages);
	int *status = malloc(sizeof(int) * num_pages);
	for (int i = 0; i < num_pages; ++i) {
		nodes[i] = node_id;
		status[i] = 0xd0; /* simulate garbage values */
	}

	ret = move_pages(0, num_pages, pages, nodes, status, MPOL_MF_MOVE);
	printf("move_pages: %ld\n", ret);
	for (int i = 0; i < num_pages; ++i)
		printf("status[%d] = %d\n", i, status[i]);
  }

Then running the program would return nonsense status values:

  $ ./move_pages_bug
  move_pages: 0
  status[0] = 208
  status[1] = 208
  status[2] = 208
  status[3] = 208
  status[4] = 208
  status[5] = 208
  status[6] = 208
  status[7] = 208

This is because the status is not set if the page is already on the
target node, but move_pages() should return valid status as long as it
succeeds.  The valid status may be errno or node id.

We can't simply initialize status array to zero since the pages may be
not on node 0.  Fix it by updating status with node id which the page is
already on.

Link: http://lkml.kernel.org/r/1575584353-125392-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: a49bd4d716 ("mm, numa: rework do_pages_move")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reported-by: Felix Abecassis <fabecassis@nvidia.com>
Tested-by: Felix Abecassis <fabecassis@nvidia.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>	[4.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-09 10:19:57 +01:00
Chanho Min cdc57bac99 mm/zsmalloc.c: fix the migrated zspage statistics.
commit ac8f05da5174c560de122c499ce5dfb5d0dfbee5 upstream.

When zspage is migrated to the other zone, the zone page state should be
updated as well, otherwise the NR_ZSPAGE for each zone shows wrong
counts including proc/zoneinfo in practice.

Link: http://lkml.kernel.org/r/1575434841-48009-1-git-send-email-chanho.min@lge.com
Fixes: 91537fee00 ("mm: add NR_ZSMALLOC to vmstat")
Signed-off-by: Chanho Min <chanho.min@lge.com>
Signed-off-by: Jinsuk Choi <jjinsuk.choi@lge.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org>        [4.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-09 10:19:56 +01:00
David Hildenbrand e84c5b7617 mm/memory_hotplug: shrink zones when offlining memory
commit feee6b2989165631b17ac6d4ccdbf6759254e85a upstream.

We currently try to shrink a single zone when removing memory.  We use
the zone of the first page of the memory we are removing.  If that
memmap was never initialized (e.g., memory was never onlined), we will
read garbage and can trigger kernel BUGs (due to a stale pointer):

    BUG: unable to handle page fault for address: 000000000000353d
    #PF: supervisor write access in kernel mode
    #PF: error_code(0x0002) - not-present page
    PGD 0 P4D 0
    Oops: 0002 [#1] SMP PTI
    CPU: 1 PID: 7 Comm: kworker/u8:0 Not tainted 5.3.0-rc5-next-20190820+ #317
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.4
    Workqueue: kacpi_hotplug acpi_hotplug_work_fn
    RIP: 0010:clear_zone_contiguous+0x5/0x10
    Code: 48 89 c6 48 89 c3 e8 2a fe ff ff 48 85 c0 75 cf 5b 5d c3 c6 85 fd 05 00 00 01 5b 5d c3 0f 1f 840
    RSP: 0018:ffffad2400043c98 EFLAGS: 00010246
    RAX: 0000000000000000 RBX: 0000000200000000 RCX: 0000000000000000
    RDX: 0000000000200000 RSI: 0000000000140000 RDI: 0000000000002f40
    RBP: 0000000140000000 R08: 0000000000000000 R09: 0000000000000001
    R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000140000
    R13: 0000000000140000 R14: 0000000000002f40 R15: ffff9e3e7aff3680
    FS:  0000000000000000(0000) GS:ffff9e3e7bb00000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: 000000000000353d CR3: 0000000058610000 CR4: 00000000000006e0
    DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
    DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
    Call Trace:
     __remove_pages+0x4b/0x640
     arch_remove_memory+0x63/0x8d
     try_remove_memory+0xdb/0x130
     __remove_memory+0xa/0x11
     acpi_memory_device_remove+0x70/0x100
     acpi_bus_trim+0x55/0x90
     acpi_device_hotplug+0x227/0x3a0
     acpi_hotplug_work_fn+0x1a/0x30
     process_one_work+0x221/0x550
     worker_thread+0x50/0x3b0
     kthread+0x105/0x140
     ret_from_fork+0x3a/0x50
    Modules linked in:
    CR2: 000000000000353d

Instead, shrink the zones when offlining memory or when onlining failed.
Introduce and use remove_pfn_range_from_zone(() for that.  We now
properly shrink the zones, even if we have DIMMs whereby

 - Some memory blocks fall into no zone (never onlined)

 - Some memory blocks fall into multiple zones (offlined+re-onlined)

 - Multiple memory blocks that fall into different zones

Drop the zone parameter (with a potential dubious value) from
__remove_pages() and __remove_section().

Link: http://lkml.kernel.org/r/20191006085646.5768-6-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online")	[visible after d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: <stable@vger.kernel.org>	[5.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-09 10:19:56 +01:00
Johannes Weiner 173fa52f7f mm: drop mmap_sem before calling balance_dirty_pages() in write fault
[ Upstream commit 89b15332af7c0312a41e50846819ca6613b58b4c ]

One of our services is observing hanging ps/top/etc under heavy write
IO, and the task states show this is an mmap_sem priority inversion:

A write fault is holding the mmap_sem in read-mode and waiting for
(heavily cgroup-limited) IO in balance_dirty_pages():

    balance_dirty_pages+0x724/0x905
    balance_dirty_pages_ratelimited+0x254/0x390
    fault_dirty_shared_page.isra.96+0x4a/0x90
    do_wp_page+0x33e/0x400
    __handle_mm_fault+0x6f0/0xfa0
    handle_mm_fault+0xe4/0x200
    __do_page_fault+0x22b/0x4a0
    page_fault+0x45/0x50

Somebody tries to change the address space, contending for the mmap_sem in
write-mode:

    call_rwsem_down_write_failed_killable+0x13/0x20
    do_mprotect_pkey+0xa8/0x330
    SyS_mprotect+0xf/0x20
    do_syscall_64+0x5b/0x100
    entry_SYSCALL_64_after_hwframe+0x3d/0xa2

The waiting writer locks out all subsequent readers to avoid lock
starvation, and several threads can be seen hanging like this:

    call_rwsem_down_read_failed+0x14/0x30
    proc_pid_cmdline_read+0xa0/0x480
    __vfs_read+0x23/0x140
    vfs_read+0x87/0x130
    SyS_read+0x42/0x90
    do_syscall_64+0x5b/0x100
    entry_SYSCALL_64_after_hwframe+0x3d/0xa2

To fix this, do what we do for cache read faults already: drop the
mmap_sem before calling into anything IO bound, in this case the
balance_dirty_pages() function, and return VM_FAULT_RETRY.

Link: http://lkml.kernel.org/r/20190924194238.GA29030@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-09 10:19:55 +01:00
Kirill A. Shutemov d7af03159b shmem: pin the file in shmem_fault() if mmap_sem is dropped
[ Upstream commit 8897c1b1a1795cab23d5ac13e4e23bf0b5f4e0c6 ]

syzbot found the following crash:

  BUG: KASAN: use-after-free in perf_trace_lock_acquire+0x401/0x530 include/trace/events/lock.h:13
  Read of size 8 at addr ffff8880a5cf2c50 by task syz-executor.0/26173

  CPU: 0 PID: 26173 Comm: syz-executor.0 Not tainted 5.3.0-rc6 #146
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Call Trace:
     perf_trace_lock_acquire+0x401/0x530 include/trace/events/lock.h:13
     trace_lock_acquire include/trace/events/lock.h:13 [inline]
     lock_acquire+0x2de/0x410 kernel/locking/lockdep.c:4411
     __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline]
     _raw_spin_lock+0x2f/0x40 kernel/locking/spinlock.c:151
     spin_lock include/linux/spinlock.h:338 [inline]
     shmem_fault+0x5ec/0x7b0 mm/shmem.c:2034
     __do_fault+0x111/0x540 mm/memory.c:3083
     do_shared_fault mm/memory.c:3535 [inline]
     do_fault mm/memory.c:3613 [inline]
     handle_pte_fault mm/memory.c:3840 [inline]
     __handle_mm_fault+0x2adf/0x3f20 mm/memory.c:3964
     handle_mm_fault+0x1b5/0x6b0 mm/memory.c:4001
     do_user_addr_fault arch/x86/mm/fault.c:1441 [inline]
     __do_page_fault+0x536/0xdd0 arch/x86/mm/fault.c:1506
     do_page_fault+0x38/0x590 arch/x86/mm/fault.c:1530
     page_fault+0x39/0x40 arch/x86/entry/entry_64.S:1202

It happens if the VMA got unmapped under us while we dropped mmap_sem
and inode got freed.

Pinning the file if we drop mmap_sem fixes the issue.

Link: http://lkml.kernel.org/r/20190927083908.rhifa4mmaxefc24r@box
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: syzbot+03ee87124ee05af991bd@syzkaller.appspotmail.com
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-09 10:19:54 +01:00
Yang Shi b58b8e9331 mm: vmscan: protect shrinker idr replace with CONFIG_MEMCG
commit 42a9a53bb394a1de2247ef78f0b802ae86798122 upstream.

Since commit 0a432dcbeb ("mm: shrinker: make shrinker not depend on
memcg kmem"), shrinkers' idr is protected by CONFIG_MEMCG instead of
CONFIG_MEMCG_KMEM, so it makes no sense to protect shrinker idr replace
with CONFIG_MEMCG_KMEM.

And in the CONFIG_MEMCG && CONFIG_SLOB case, shrinker_idr contains only
shrinker, and it is deferred_split_shrinker.  But it is never actually
called, since idr_replace() is never compiled due to the wrong #ifdef.
The deferred_split_shrinker all the time is staying in half-registered
state, and it's never called for subordinate mem cgroups.

Link: http://lkml.kernel.org/r/1575486978-45249-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: 0a432dcbeb ("mm: shrinker: make shrinker not depend on memcg kmem")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>	[5.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-31 16:46:07 +01:00
Chen Jun 12de9bf4bf mm/shmem.c: cast the type of unmap_start to u64
commit aa71ecd8d86500da6081a72da6b0b524007e0627 upstream.

In 64bit system. sb->s_maxbytes of shmem filesystem is MAX_LFS_FILESIZE,
which equal LLONG_MAX.

If offset > LLONG_MAX - PAGE_SIZE, offset + len < LLONG_MAX in
shmem_fallocate, which will pass the checking in vfs_fallocate.

	/* Check for wrap through zero too */
	if (((offset + len) > inode->i_sb->s_maxbytes) || ((offset + len) < 0))
		return -EFBIG;

loff_t unmap_start = round_up(offset, PAGE_SIZE) in shmem_fallocate
causes a overflow.

Syzkaller reports a overflow problem in mm/shmem:

  UBSAN: Undefined behaviour in mm/shmem.c:2014:10
  signed integer overflow: '9223372036854775807 + 1' cannot be represented in type 'long long int'
  CPU: 0 PID:17076 Comm: syz-executor0 Not tainted 4.1.46+ #1
  Hardware name: linux, dummy-virt (DT)
  Call trace:
     dump_backtrace+0x0/0x2c8 arch/arm64/kernel/traps.c:100
     show_stack+0x20/0x30 arch/arm64/kernel/traps.c:238
     __dump_stack lib/dump_stack.c:15 [inline]
     ubsan_epilogue+0x18/0x70 lib/ubsan.c:164
     handle_overflow+0x158/0x1b0 lib/ubsan.c:195
     shmem_fallocate+0x6d0/0x820 mm/shmem.c:2104
     vfs_fallocate+0x238/0x428 fs/open.c:312
     SYSC_fallocate fs/open.c:335 [inline]
     SyS_fallocate+0x54/0xc8 fs/open.c:239

The highest bit of unmap_start will be appended with sign bit 1
(overflow) when calculate shmem_falloc.start:

    shmem_falloc.start = unmap_start >> PAGE_SHIFT.

Fix it by casting the type of unmap_start to u64, when right shifted.

This bug is found in LTS Linux 4.1.  It also seems to exist in mainline.

Link: http://lkml.kernel.org/r/1573867464-5107-1-git-send-email-chenjun102@huawei.com
Signed-off-by: Chen Jun <chenjun102@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-17 19:56:51 +01:00
Roman Gushchin e4d09b31ad mm: memcg/slab: wait for !root kmem_cache refcnt killing on root kmem_cache destruction
commit a264df74df38855096393447f1b8f386069a94b9 upstream.

Christian reported a warning like the following obtained during running
some KVM-related tests on s390:

    WARNING: CPU: 8 PID: 208 at lib/percpu-refcount.c:108 percpu_ref_exit+0x50/0x58
    Modules linked in: kvm(-) xt_CHECKSUM xt_MASQUERADE bonding xt_tcpudp ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ip6table_na>
    CPU: 8 PID: 208 Comm: kworker/8:1 Not tainted 5.2.0+ #66
    Hardware name: IBM 2964 NC9 712 (LPAR)
    Workqueue: events sysfs_slab_remove_workfn
    Krnl PSW : 0704e00180000000 0000001529746850 (percpu_ref_exit+0x50/0x58)
               R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
    Krnl GPRS: 00000000ffff8808 0000001529746740 000003f4e30e8e18 0036008100000000
               0000001f00000000 0035008100000000 0000001fb3573ab8 0000000000000000
               0000001fbdb6de00 0000000000000000 0000001529f01328 0000001fb3573b00
               0000001fbb27e000 0000001fbdb69300 000003e009263d00 000003e009263cd0
    Krnl Code: 0000001529746842: f0a0000407fe        srp        4(11,%r0),2046,0
               0000001529746848: 47000700            bc         0,1792
              #000000152974684c: a7f40001            brc        15,152974684e
              >0000001529746850: a7f4fff2            brc        15,1529746834
               0000001529746854: 0707                bcr        0,%r7
               0000001529746856: 0707                bcr        0,%r7
               0000001529746858: eb8ff0580024        stmg       %r8,%r15,88(%r15)
               000000152974685e: a738ffff            lhi        %r3,-1
    Call Trace:
    ([<000003e009263d00>] 0x3e009263d00)
     [<00000015293252ea>] slab_kmem_cache_release+0x3a/0x70
     [<0000001529b04882>] kobject_put+0xaa/0xe8
     [<000000152918cf28>] process_one_work+0x1e8/0x428
     [<000000152918d1b0>] worker_thread+0x48/0x460
     [<00000015291942c6>] kthread+0x126/0x160
     [<0000001529b22344>] ret_from_fork+0x28/0x30
     [<0000001529b2234c>] kernel_thread_starter+0x0/0x10
    Last Breaking-Event-Address:
     [<000000152974684c>] percpu_ref_exit+0x4c/0x58
    ---[ end trace b035e7da5788eb09 ]---

The problem occurs because kmem_cache_destroy() is called immediately
after deleting of a memcg, so it races with the memcg kmem_cache
deactivation.

flush_memcg_workqueue() at the beginning of kmem_cache_destroy() is
supposed to guarantee that all deactivation processes are finished, but
failed to do so.  It waits for an rcu grace period, after which all
children kmem_caches should be deactivated.  During the deactivation
percpu_ref_kill() is called for non root kmem_cache refcounters, but it
requires yet another rcu grace period to finish the transition to the
atomic (dead) state.

So in a rare case when not all children kmem_caches are destroyed at the
moment when the root kmem_cache is about to be gone, we need to wait
another rcu grace period before destroying the root kmem_cache.

This issue can be triggered only with dynamically created kmem_caches
which are used with memcg accounting.  In this case per-memcg child
kmem_caches are created.  They are deactivated from the cgroup removing
path.  If the destruction of the root kmem_cache is racing with the
removal of the cgroup (both are quite complicated multi-stage
processes), the described issue can occur.  The only known way to
trigger it in the real life, is to unload some kernel module which
creates a dedicated kmem_cache, used from different memory cgroups with
GFP_ACCOUNT flag.  If the unloading happens immediately after calling
rmdir on the corresponding cgroup, there is some chance to trigger the
issue.

Link: http://lkml.kernel.org/r/20191129025011.3076017-1-guro@fb.com
Fixes: f0a3a24b53 ("mm: memcg/slab: rework non-root kmem_cache lifecycle management")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-17 19:56:49 +01:00