Commit Graph

177 Commits

Author SHA1 Message Date
Eric Biggers 228a4203d8 fscrypt: add fscrypt_symlink_getattr() for computing st_size
commit d18760560593e5af921f51a8c9b64b6109d634c2 upstream.

Add a helper function fscrypt_symlink_getattr() which will be called
from the various filesystems' ->getattr() methods to read and decrypt
the target of encrypted symlinks in order to report the correct st_size.

Detailed explanation:

As required by POSIX and as documented in various man pages, st_size for
a symlink is supposed to be the length of the symlink target.
Unfortunately, st_size has always been wrong for encrypted symlinks
because st_size is populated from i_size from disk, which intentionally
contains the length of the encrypted symlink target.  That's slightly
greater than the length of the decrypted symlink target (which is the
symlink target that userspace usually sees), and usually won't match the
length of the no-key encoded symlink target either.

This hadn't been fixed yet because reporting the correct st_size would
require reading the symlink target from disk and decrypting or encoding
it, which historically has been considered too heavyweight to do in
->getattr().  Also historically, the wrong st_size had only broken a
test (LTP lstat03) and there were no known complaints from real users.
(This is probably because the st_size of symlinks isn't used too often,
and when it is, typically it's for a hint for what buffer size to pass
to readlink() -- which a slightly-too-large size still works for.)

However, a couple things have changed now.  First, there have recently
been complaints about the current behavior from real users:

- Breakage in rpmbuild:
  https://github.com/rpm-software-management/rpm/issues/1682
  https://github.com/google/fscrypt/issues/305

- Breakage in toybox cpio:
  https://www.mail-archive.com/toybox@lists.landley.net/msg07193.html

- Breakage in libgit2: https://issuetracker.google.com/issues/189629152
  (on Android public issue tracker, requires login)

Second, we now cache decrypted symlink targets in ->i_link.  Therefore,
taking the performance hit of reading and decrypting the symlink target
in ->getattr() wouldn't be as big a deal as it used to be, since usually
it will just save having to do the same thing later.

Also note that eCryptfs ended up having to read and decrypt symlink
targets in ->getattr() as well, to fix this same issue; see
commit 3a60a1686f ("eCryptfs: Decrypt symlink target for stat size").

So, let's just bite the bullet, and read and decrypt the symlink target
in ->getattr() in order to report the correct st_size.  Add a function
fscrypt_symlink_getattr() which the filesystems will call to do this.

(Alternatively, we could store the decrypted size of symlinks on-disk.
But there isn't a great place to do so, and encryption is meant to hide
the original size to some extent; that property would be lost.)

Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210702065350.209646-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-12 08:56:38 +02:00
Eric Biggers 0e105eed09 fscrypt: don't ignore minor_hash when hash is 0
commit 77f30bfcfcf484da7208affd6a9e63406420bf91 upstream.

When initializing a no-key name, fscrypt_fname_disk_to_usr() sets the
minor_hash to 0 if the (major) hash is 0.

This doesn't make sense because 0 is a valid hash code, so we shouldn't
ignore the filesystem-provided minor_hash in that case.  Fix this by
removing the special case for 'hash == 0'.

This is an old bug that appears to have originated when the encryption
code in ext4 and f2fs was moved into fs/crypto/.  The original ext4 and
f2fs code passed the hash by pointer instead of by value.  So
'if (hash)' actually made sense then, as it was checking whether a
pointer was NULL.  But now the hashes are passed by value, and
filesystems just pass 0 for any hashes they don't have.  There is no
need to handle this any differently from the hashes actually being 0.

It is difficult to reproduce this bug, as it only made a difference in
the case where a filename's 32-bit major hash happened to be 0.
However, it probably had the largest chance of causing problems on
ubifs, since ubifs uses minor_hash to do lookups of no-key names, in
addition to using it as a readdir cookie.  ext4 only uses minor_hash as
a readdir cookie, and f2fs doesn't use minor_hash at all.

Fixes: 0b81d07790 ("fs crypto: move per-file encryption from f2fs tree to fs/crypto")
Cc: <stable@vger.kernel.org> # v4.6+
Link: https://lore.kernel.org/r/20210527235236.2376556-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-19 08:53:14 +02:00
Eric Biggers 29c2d3e91e fscrypt: remove kernel-internal constants from UAPI header
commit 3ceb6543e9cf6ed87cc1fbc6f23ca2db903564cd upstream.

There isn't really any valid reason to use __FSCRYPT_MODE_MAX or
FSCRYPT_POLICY_FLAGS_VALID in a userspace program.  These constants are
only meant to be used by the kernel internally, and they are defined in
the UAPI header next to the mode numbers and flags only so that kernel
developers don't forget to update them when adding new modes or flags.

In https://lkml.kernel.org/r/20201005074133.1958633-2-satyat@google.com
there was an example of someone wanting to use __FSCRYPT_MODE_MAX in a
user program, and it was wrong because the program would have broken if
__FSCRYPT_MODE_MAX were ever increased.  So having this definition
available is harmful.  FSCRYPT_POLICY_FLAGS_VALID has the same problem.

So, remove these definitions from the UAPI header.  Replace
FSCRYPT_POLICY_FLAGS_VALID with just listing the valid flags explicitly
in the one kernel function that needs it.  Move __FSCRYPT_MODE_MAX to
fscrypt_private.h, remove the double underscores (which were only
present to discourage use by userspace), and add a BUILD_BUG_ON() and
comments to (hopefully) ensure it is kept in sync.

Keep the old name FS_POLICY_FLAGS_VALID, since it's been around for
longer and there's a greater chance that removing it would break source
compatibility with some program.  Indeed, mtd-utils is using it in
an #ifdef, and removing it would introduce compiler warnings (about
FS_POLICY_FLAGS_PAD_* being redefined) into the mtd-utils build.
However, reduce its value to 0x07 so that it only includes the flags
with old names (the ones present before Linux 5.4), and try to make it
clear that it's now "frozen" and no new flags should be added to it.

Fixes: 2336d0deb2 ("fscrypt: use FSCRYPT_ prefix for uapi constants")
Cc: <stable@vger.kernel.org> # v5.4+
Link: https://lore.kernel.org/r/20201024005132.495952-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-06 14:48:35 +01:00
Eric Biggers 34f000524d fscrypt: add fscrypt_is_nokey_name()
commit 159e1de201b6fca10bfec50405a3b53a561096a8 upstream.

It's possible to create a duplicate filename in an encrypted directory
by creating a file concurrently with adding the encryption key.

Specifically, sys_open(O_CREAT) (or sys_mkdir(), sys_mknod(), or
sys_symlink()) can lookup the target filename while the directory's
encryption key hasn't been added yet, resulting in a negative no-key
dentry.  The VFS then calls ->create() (or ->mkdir(), ->mknod(), or
->symlink()) because the dentry is negative.  Normally, ->create() would
return -ENOKEY due to the directory's key being unavailable.  However,
if the key was added between the dentry lookup and ->create(), then the
filesystem will go ahead and try to create the file.

If the target filename happens to already exist as a normal name (not a
no-key name), a duplicate filename may be added to the directory.

In order to fix this, we need to fix the filesystems to prevent
->create(), ->mkdir(), ->mknod(), and ->symlink() on no-key names.
(->rename() and ->link() need it too, but those are already handled
correctly by fscrypt_prepare_rename() and fscrypt_prepare_link().)

In preparation for this, add a helper function fscrypt_is_nokey_name()
that filesystems can use to do this check.  Use this helper function for
the existing checks that fs/crypto/ does for rename and link.

Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20201118075609.120337-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-06 14:48:35 +01:00
Eric Biggers ea1299be02 fscrypt: don't evict dirty inodes after removing key
commit 2b4eae95c7361e0a147b838715c8baa1380a428f upstream.

After FS_IOC_REMOVE_ENCRYPTION_KEY removes a key, it syncs the
filesystem and tries to get and put all inodes that were unlocked by the
key so that unused inodes get evicted via fscrypt_drop_inode().
Normally, the inodes are all clean due to the sync.

However, after the filesystem is sync'ed, userspace can modify and close
one of the files.  (Userspace is *supposed* to close the files before
removing the key.  But it doesn't always happen, and the kernel can't
assume it.)  This causes the inode to be dirtied and have i_count == 0.
Then, fscrypt_drop_inode() failed to consider this case and indicated
that the inode can be dropped, causing the write to be lost.

On f2fs, other problems such as a filesystem freeze could occur due to
the inode being freed while still on f2fs's dirty inode list.

Fix this bug by making fscrypt_drop_inode() only drop clean inodes.

I've written an xfstest which detects this bug on ext4, f2fs, and ubifs.

Fixes: b1c0ec3599 ("fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl")
Cc: <stable@vger.kernel.org> # v5.4+
Link: https://lore.kernel.org/r/20200305084138.653498-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-03-18 07:17:53 +01:00
Eric Biggers 9220bf17ae fscrypt: don't print name of busy file when removing key
commit 13a10da94615d81087e718517794f2868a8b3fab upstream.

When an encryption key can't be fully removed due to file(s) protected
by it still being in-use, we shouldn't really print the path to one of
these files to the kernel log, since parts of this path are likely to be
encrypted on-disk, and (depending on how the system is set up) the
confidentiality of this path might be lost by printing it to the log.

This is a trade-off: a single file path often doesn't matter at all,
especially if it's a directory; the kernel log might still be protected
in some way; and I had originally hoped that any "inode(s) still busy"
bugs (which are security weaknesses in their own right) would be quickly
fixed and that to do so it would be super helpful to always know the
file path and not have to run 'find dir -inum $inum' after the fact.

But in practice, these bugs can be hard to fix (e.g. due to asynchronous
process killing that is difficult to eliminate, for performance
reasons), and also not tied to specific files, so knowing a file path
doesn't necessarily help.

So to be safe, for now let's just show the inode number, not the path.
If someone really wants to know a path they can use 'find -inum'.

Fixes: b1c0ec3599 ("fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl")
Cc: <stable@vger.kernel.org> # v5.4+
Link: https://lore.kernel.org/r/20200120060732.390362-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 04:35:20 -08:00
Eric Biggers 5ab7189a31 fscrypt: require that key be added when setting a v2 encryption policy
By looking up the master keys in a filesystem-level keyring rather than
in the calling processes' key hierarchy, it becomes possible for a user
to set an encryption policy which refers to some key they don't actually
know, then encrypt their files using that key.  Cryptographically this
isn't much of a problem, but the semantics of this would be a bit weird.
Thus, enforce that a v2 encryption policy can only be set if the user
has previously added the key, or has capable(CAP_FOWNER).

We tolerate that this problem will continue to exist for v1 encryption
policies, however; there is no way around that.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:50 -07:00
Eric Biggers 78a1b96bcf fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS ioctl
Add a root-only variant of the FS_IOC_REMOVE_ENCRYPTION_KEY ioctl which
removes all users' claims of the key, not just the current user's claim.
I.e., it always removes the key itself, no matter how many users have
added it.

This is useful for forcing a directory to be locked, without having to
figure out which user ID(s) the key was added under.  This is planned to
be used by a command like 'sudo fscrypt lock DIR --all-users' in the
fscrypt userspace tool (http://github.com/google/fscrypt).

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:50 -07:00
Eric Biggers 23c688b540 fscrypt: allow unprivileged users to add/remove keys for v2 policies
Allow the FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY
ioctls to be used by non-root users to add and remove encryption keys
from the filesystem-level crypto keyrings, subject to limitations.

Motivation: while privileged fscrypt key management is sufficient for
some users (e.g. Android and Chromium OS, where a privileged process
manages all keys), the old API by design also allows non-root users to
set up and use encrypted directories, and we don't want to regress on
that.  Especially, we don't want to force users to continue using the
old API, running into the visibility mismatch between files and keyrings
and being unable to "lock" encrypted directories.

Intuitively, the ioctls have to be privileged since they manipulate
filesystem-level state.  However, it's actually safe to make them
unprivileged if we very carefully enforce some specific limitations.

First, each key must be identified by a cryptographic hash so that a
user can't add the wrong key for another user's files.  For v2
encryption policies, we use the key_identifier for this.  v1 policies
don't have this, so managing keys for them remains privileged.

Second, each key a user adds is charged to their quota for the keyrings
service.  Thus, a user can't exhaust memory by adding a huge number of
keys.  By default each non-root user is allowed up to 200 keys; this can
be changed using the existing sysctl 'kernel.keys.maxkeys'.

Third, if multiple users add the same key, we keep track of those users
of the key (of which there remains a single copy), and won't really
remove the key, i.e. "lock" the encrypted files, until all those users
have removed it.  This prevents denial of service attacks that would be
possible under simpler schemes, such allowing the first user who added a
key to remove it -- since that could be a malicious user who has
compromised the key.  Of course, encryption keys should be kept secret,
but the idea is that using encryption should never be *less* secure than
not using encryption, even if your key was compromised.

We tolerate that a user will be unable to really remove a key, i.e.
unable to "lock" their encrypted files, if another user has added the
same key.  But in a sense, this is actually a good thing because it will
avoid providing a false notion of security where a key appears to have
been removed when actually it's still in memory, available to any
attacker who compromises the operating system kernel.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:50 -07:00
Eric Biggers 5dae460c22 fscrypt: v2 encryption policy support
Add a new fscrypt policy version, "v2".  It has the following changes
from the original policy version, which we call "v1" (*):

- Master keys (the user-provided encryption keys) are only ever used as
  input to HKDF-SHA512.  This is more flexible and less error-prone, and
  it avoids the quirks and limitations of the AES-128-ECB based KDF.
  Three classes of cryptographically isolated subkeys are defined:

    - Per-file keys, like used in v1 policies except for the new KDF.

    - Per-mode keys.  These implement the semantics of the DIRECT_KEY
      flag, which for v1 policies made the master key be used directly.
      These are also planned to be used for inline encryption when
      support for it is added.

    - Key identifiers (see below).

- Each master key is identified by a 16-byte master_key_identifier,
  which is derived from the key itself using HKDF-SHA512.  This prevents
  users from associating the wrong key with an encrypted file or
  directory.  This was easily possible with v1 policies, which
  identified the key by an arbitrary 8-byte master_key_descriptor.

- The key must be provided in the filesystem-level keyring, not in a
  process-subscribed keyring.

The following UAPI additions are made:

- The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a
  fscrypt_policy_v2 to set a v2 encryption policy.  It's disambiguated
  from fscrypt_policy/fscrypt_policy_v1 by the version code prefix.

- A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added.  It allows
  getting the v1 or v2 encryption policy of an encrypted file or
  directory.  The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not
  be used because it did not have a way for userspace to indicate which
  policy structure is expected.  The new ioctl includes a size field, so
  it is extensible to future fscrypt policy versions.

- The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY,
  and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2
  encryption policies.  Such keys are kept logically separate from keys
  for v1 encryption policies, and are identified by 'identifier' rather
  than by 'descriptor'.  The 'identifier' need not be provided when
  adding a key, since the kernel will calculate it anyway.

This patch temporarily keeps adding/removing v2 policy keys behind the
same permission check done for adding/removing v1 policy keys:
capable(CAP_SYS_ADMIN).  However, the next patch will carefully take
advantage of the cryptographically secure master_key_identifier to allow
non-root users to add/remove v2 policy keys, thus providing a full
replacement for v1 policies.

(*) Actually, in the API fscrypt_policy::version is 0 while on-disk
    fscrypt_context::format is 1.  But I believe it makes the most sense
    to advance both to '2' to have them be in sync, and to consider the
    numbering to start at 1 except for the API quirk.

Reviewed-by: Paul Crowley <paulcrowley@google.com>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:50 -07:00
Eric Biggers c1144c9b8a fscrypt: add an HKDF-SHA512 implementation
Add an implementation of HKDF (RFC 5869) to fscrypt, for the purpose of
deriving additional key material from the fscrypt master keys for v2
encryption policies.  HKDF is a key derivation function built on top of
HMAC.  We choose SHA-512 for the underlying unkeyed hash, and use an
"hmac(sha512)" transform allocated from the crypto API.

We'll be using this to replace the AES-ECB based KDF currently used to
derive the per-file encryption keys.  While the AES-ECB based KDF is
believed to meet the original security requirements, it is nonstandard
and has problems that don't exist in modern KDFs such as HKDF:

1. It's reversible.  Given a derived key and nonce, an attacker can
   easily compute the master key.  This is okay if the master key and
   derived keys are equally hard to compromise, but now we'd like to be
   more robust against threats such as a derived key being compromised
   through a timing attack, or a derived key for an in-use file being
   compromised after the master key has already been removed.

2. It doesn't evenly distribute the entropy from the master key; each 16
   input bytes only affects the corresponding 16 output bytes.

3. It isn't easily extensible to deriving other values or keys, such as
   a public hash for securely identifying the key, or per-mode keys.
   Per-mode keys will be immediately useful for Adiantum encryption, for
   which fscrypt currently uses the master key directly, introducing
   unnecessary usage constraints.  Per-mode keys will also be useful for
   hardware inline encryption, which is currently being worked on.

HKDF solves all the above problems.

Reviewed-by: Paul Crowley <paulcrowley@google.com>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:50 -07:00
Eric Biggers 5a7e29924d fscrypt: add FS_IOC_GET_ENCRYPTION_KEY_STATUS ioctl
Add a new fscrypt ioctl, FS_IOC_GET_ENCRYPTION_KEY_STATUS.  Given a key
specified by 'struct fscrypt_key_specifier' (the same way a key is
specified for the other fscrypt key management ioctls), it returns
status information in a 'struct fscrypt_get_key_status_arg'.

The main motivation for this is that applications need to be able to
check whether an encrypted directory is "unlocked" or not, so that they
can add the key if it is not, and avoid adding the key (which may
involve prompting the user for a passphrase) if it already is.

It's possible to use some workarounds such as checking whether opening a
regular file fails with ENOKEY, or checking whether the filenames "look
like gibberish" or not.  However, no workaround is usable in all cases.

Like the other key management ioctls, the keyrings syscalls may seem at
first to be a good fit for this.  Unfortunately, they are not.  Even if
we exposed the keyring ID of the ->s_master_keys keyring and gave
everyone Search permission on it (note: currently the keyrings
permission system would also allow everyone to "invalidate" the keyring
too), the fscrypt keys have an additional state that doesn't map cleanly
to the keyrings API: the secret can be removed, but we can be still
tracking the files that were using the key, and the removal can be
re-attempted or the secret added again.

After later patches, some applications will also need a way to determine
whether a key was added by the current user vs. by some other user.
Reserved fields are included in fscrypt_get_key_status_arg for this and
other future extensions.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:50 -07:00
Eric Biggers b1c0ec3599 fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl
Add a new fscrypt ioctl, FS_IOC_REMOVE_ENCRYPTION_KEY.  This ioctl
removes an encryption key that was added by FS_IOC_ADD_ENCRYPTION_KEY.
It wipes the secret key itself, then "locks" the encrypted files and
directories that had been unlocked using that key -- implemented by
evicting the relevant dentries and inodes from the VFS caches.

The problem this solves is that many fscrypt users want the ability to
remove encryption keys, causing the corresponding encrypted directories
to appear "locked" (presented in ciphertext form) again.  Moreover,
users want removing an encryption key to *really* remove it, in the
sense that the removed keys cannot be recovered even if kernel memory is
compromised, e.g. by the exploit of a kernel security vulnerability or
by a physical attack.  This is desirable after a user logs out of the
system, for example.  In many cases users even already assume this to be
the case and are surprised to hear when it's not.

It is not sufficient to simply unlink the master key from the keyring
(or to revoke or invalidate it), since the actual encryption transform
objects are still pinned in memory by their inodes.  Therefore, to
really remove a key we must also evict the relevant inodes.

Currently one workaround is to run 'sync && echo 2 >
/proc/sys/vm/drop_caches'.  But, that evicts all unused inodes in the
system rather than just the inodes associated with the key being
removed, causing severe performance problems.  Moreover, it requires
root privileges, so regular users can't "lock" their encrypted files.

Another workaround, used in Chromium OS kernels, is to add a new
VFS-level ioctl FS_IOC_DROP_CACHE which is a more restricted version of
drop_caches that operates on a single super_block.  It does:

        shrink_dcache_sb(sb);
        invalidate_inodes(sb, false);

But it's still a hack.  Yet, the major users of filesystem encryption
want this feature badly enough that they are actually using these hacks.

To properly solve the problem, start maintaining a list of the inodes
which have been "unlocked" using each master key.  Originally this
wasn't possible because the kernel didn't keep track of in-use master
keys at all.  But, with the ->s_master_keys keyring it is now possible.

Then, add an ioctl FS_IOC_REMOVE_ENCRYPTION_KEY.  It finds the specified
master key in ->s_master_keys, then wipes the secret key itself, which
prevents any additional inodes from being unlocked with the key.  Then,
it syncs the filesystem and evicts the inodes in the key's list.  The
normal inode eviction code will free and wipe the per-file keys (in
->i_crypt_info).  Note that freeing ->i_crypt_info without evicting the
inodes was also considered, but would have been racy.

Some inodes may still be in use when a master key is removed, and we
can't simply revoke random file descriptors, mmap's, etc.  Thus, the
ioctl simply skips in-use inodes, and returns -EBUSY to indicate that
some inodes weren't evicted.  The master key *secret* is still removed,
but the fscrypt_master_key struct remains to keep track of the remaining
inodes.  Userspace can then retry the ioctl to evict the remaining
inodes.  Alternatively, if userspace adds the key again, the refreshed
secret will be associated with the existing list of inodes so they
remain correctly tracked for future key removals.

The ioctl doesn't wipe pagecache pages.  Thus, we tolerate that after a
kernel compromise some portions of plaintext file contents may still be
recoverable from memory.  This can be solved by enabling page poisoning
system-wide, which security conscious users may choose to do.  But it's
very difficult to solve otherwise, e.g. note that plaintext file
contents may have been read in other places than pagecache pages.

Like FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY is
initially restricted to privileged users only.  This is sufficient for
some use cases, but not all.  A later patch will relax this restriction,
but it will require introducing key hashes, among other changes.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:18:49 -07:00
Eric Biggers 22d94f493b fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl
Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY.  This ioctl adds an
encryption key to the filesystem's fscrypt keyring ->s_master_keys,
making any files encrypted with that key appear "unlocked".

Why we need this
~~~~~~~~~~~~~~~~

The main problem is that the "locked/unlocked" (ciphertext/plaintext)
status of encrypted files is global, but the fscrypt keys are not.
fscrypt only looks for keys in the keyring(s) the process accessing the
filesystem is subscribed to: the thread keyring, process keyring, and
session keyring, where the session keyring may contain the user keyring.

Therefore, userspace has to put fscrypt keys in the keyrings for
individual users or sessions.  But this means that when a process with a
different keyring tries to access encrypted files, whether they appear
"unlocked" or not is nondeterministic.  This is because it depends on
whether the files are currently present in the inode cache.

Fixing this by consistently providing each process its own view of the
filesystem depending on whether it has the key or not isn't feasible due
to how the VFS caches work.  Furthermore, while sometimes users expect
this behavior, it is misguided for two reasons.  First, it would be an
OS-level access control mechanism largely redundant with existing access
control mechanisms such as UNIX file permissions, ACLs, LSMs, etc.
Encryption is actually for protecting the data at rest.

Second, almost all users of fscrypt actually do need the keys to be
global.  The largest users of fscrypt, Android and Chromium OS, achieve
this by having PID 1 create a "session keyring" that is inherited by
every process.  This works, but it isn't scalable because it prevents
session keyrings from being used for any other purpose.

On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't
similarly abuse the session keyring, so to make 'sudo' work on all
systems it has to link all the user keyrings into root's user keyring
[2].  This is ugly and raises security concerns.  Moreover it can't make
the keys available to system services, such as sshd trying to access the
user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to
read certificates from the user's home directory (see [5]); or to Docker
containers (see [6], [7]).

By having an API to add a key to the *filesystem* we'll be able to fix
the above bugs, remove userspace workarounds, and clearly express the
intended semantics: the locked/unlocked status of an encrypted directory
is global, and encryption is orthogonal to OS-level access control.

Why not use the add_key() syscall
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We use an ioctl for this API rather than the existing add_key() system
call because the ioctl gives us the flexibility needed to implement
fscrypt-specific semantics that will be introduced in later patches:

- Supporting key removal with the semantics such that the secret is
  removed immediately and any unused inodes using the key are evicted;
  also, the eviction of any in-use inodes can be retried.

- Calculating a key-dependent cryptographic identifier and returning it
  to userspace.

- Allowing keys to be added and removed by non-root users, but only keys
  for v2 encryption policies; and to prevent denial-of-service attacks,
  users can only remove keys they themselves have added, and a key is
  only really removed after all users who added it have removed it.

Trying to shoehorn these semantics into the keyrings syscalls would be
very difficult, whereas the ioctls make things much easier.

However, to reuse code the implementation still uses the keyrings
service internally.  Thus we get lockless RCU-mode key lookups without
having to re-implement it, and the keys automatically show up in
/proc/keys for debugging purposes.

References:

    [1] https://github.com/google/fscrypt
    [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb
    [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939
    [4] https://github.com/google/fscrypt/issues/116
    [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715
    [6] https://github.com/google/fscrypt/issues/128
    [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:06:13 -07:00
Eric Biggers feed825861 fscrypt: rename keyinfo.c to keysetup.c
Rename keyinfo.c to keysetup.c since this better describes what the file
does (sets up the key), and it matches the new file keysetup_v1.c.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:06:06 -07:00
Eric Biggers 0109ce76dd fscrypt: move v1 policy key setup to keysetup_v1.c
In preparation for introducing v2 encryption policies which will find
and derive encryption keys differently from the current v1 encryption
policies, move the v1 policy-specific key setup code from keyinfo.c into
keysetup_v1.c.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:06:00 -07:00
Eric Biggers 3ec4f2a629 fscrypt: refactor key setup code in preparation for v2 policies
Do some more refactoring of the key setup code, in preparation for
introducing a filesystem-level keyring and v2 encryption policies:

- Now that ci_inode exists, don't pass around the inode unnecessarily.

- Define a function setup_file_encryption_key() which handles the crypto
  key setup given an under-construction fscrypt_info.  Don't pass the
  fscrypt_context, since everything is in the fscrypt_info.
  [This will be extended for v2 policies and the fs-level keyring.]

- Define a function fscrypt_set_derived_key() which sets the per-file
  key, without depending on anything specific to v1 policies.
  [This will also be used for v2 policies.]

- Define a function fscrypt_setup_v1_file_key() which takes the raw
  master key, thus separating finding the key from using it.
  [This will also be used if the key is found in the fs-level keyring.]

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:05:51 -07:00
Eric Biggers a828daabb2 fscrypt: rename fscrypt_master_key to fscrypt_direct_key
In preparation for introducing a filesystem-level keyring which will
contain fscrypt master keys, rename the existing 'struct
fscrypt_master_key' to 'struct fscrypt_direct_key'.  This is the
structure in the existing table of master keys that's maintained to
deduplicate the crypto transforms for v1 DIRECT_KEY policies.

I've chosen to keep this table as-is rather than make it automagically
add/remove the keys to/from the filesystem-level keyring, since that
would add a lot of extra complexity to the filesystem-level keyring.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:05:27 -07:00
Eric Biggers 59dc6a8e1f fscrypt: add ->ci_inode to fscrypt_info
Add an inode back-pointer to 'struct fscrypt_info', such that
inode->i_crypt_info->ci_inode == inode.

This will be useful for:

1. Evicting the inodes when a fscrypt key is removed, since we'll track
   the inodes using a given key by linking their fscrypt_infos together,
   rather than the inodes directly.  This avoids bloating 'struct inode'
   with a new list_head.

2. Simplifying the per-file key setup, since the inode pointer won't
   have to be passed around everywhere just in case something goes wrong
   and it's needed for fscrypt_warn().

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:05:22 -07:00
Eric Biggers 3b6df59bc4 fscrypt: use FSCRYPT_* definitions, not FS_*
Update fs/crypto/ to use the new names for the UAPI constants rather
than the old names, then make the old definitions conditional on
!__KERNEL__.

Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:05:19 -07:00
Eric Biggers 29a98c1caf fscrypt: use ENOPKG when crypto API support missing
Return ENOPKG rather than ENOENT when trying to open a file that's
encrypted using algorithms not available in the kernel's crypto API.

This avoids an ambiguity, since ENOENT is also returned when the file
doesn't exist.

Note: this is the same approach I'm taking for fs-verity.

Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:04:44 -07:00
Eric Biggers a4d14e915b fscrypt: improve warnings for missing crypto API support
Users of fscrypt with non-default algorithms will encounter an error
like the following if they fail to include the needed algorithms into
the crypto API when configuring the kernel (as per the documentation):

    Error allocating 'adiantum(xchacha12,aes)' transform: -2

This requires that the user figure out what the "-2" error means.
Make it more friendly by printing a warning like the following instead:

    Missing crypto API support for Adiantum (API name: "adiantum(xchacha12,aes)")

Also upgrade the log level for *other* errors to KERN_ERR.

Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:04:44 -07:00
Eric Biggers 63f668f0de fscrypt: improve warning messages for unsupported encryption contexts
When fs/crypto/ encounters an inode with an invalid encryption context,
currently it prints a warning if the pair of encryption modes are
unrecognized, but it's silent if there are other problems such as
unsupported context size, format, or flags.  To help people debug such
situations, add more warning messages.

Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:04:44 -07:00
Eric Biggers 886da8b39c fscrypt: make fscrypt_msg() take inode instead of super_block
Most of the warning and error messages in fs/crypto/ are for situations
related to a specific inode, not merely to a super_block.  So to make
things easier, make fscrypt_msg() take an inode rather than a
super_block, and make it print the inode number.

Note: This is the same approach I'm taking for fsverity_msg().

Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:04:44 -07:00
Eric Biggers 1c5100a2aa fscrypt: clean up base64 encoding/decoding
Some minor cleanups for the code that base64 encodes and decodes
encrypted filenames and long name digests:

- Rename "digest_{encode,decode}()" => "base64_{encode,decode}()" since
  they are used for filenames too, not just for long name digests.
- Replace 'while' loops with more conventional 'for' loops.
- Use 'u8' for binary data.  Keep 'char' for string data.
- Fully constify the lookup table (pointer was not const).
- Improve comment.

No actual change in behavior.

Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:04:44 -07:00
Eric Biggers 75798f85f2 fscrypt: remove loadable module related code
Since commit 643fa9612b ("fscrypt: remove filesystem specific build
config option"), fs/crypto/ can no longer be built as a loadable module.
Thus it no longer needs a module_exit function, nor a MODULE_LICENSE.
So remove them, and change module_init to late_initcall.

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12 19:04:41 -07:00
Eric Biggers adbd9b4dee fscrypt: remove selection of CONFIG_CRYPTO_SHA256
fscrypt only uses SHA-256 for AES-128-CBC-ESSIV, which isn't the default
and is only recommended on platforms that have hardware accelerated
AES-CBC but not AES-XTS.  There's no link-time dependency, since SHA-256
is requested via the crypto API on first use.

To reduce bloat, we should limit FS_ENCRYPTION to selecting the default
algorithms only.  SHA-256 by itself isn't that much bloat, but it's
being discussed to move ESSIV into a crypto API template, which would
incidentally bring in other things like "authenc" support, which would
all end up being built-in since FS_ENCRYPTION is now a bool.

For Adiantum encryption we already just document that users who want to
use it have to enable CONFIG_CRYPTO_ADIANTUM themselves.  So, let's do
the same for AES-128-CBC-ESSIV and CONFIG_CRYPTO_SHA256.

Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-06-27 10:29:33 -07:00
Eric Biggers 0bb06cac06 fscrypt: remove unnecessary includes of ratelimit.h
These should have been removed during commit 544d08fde2 ("fscrypt: use
a common logging function"), but I missed them.

Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-06-10 19:01:33 -07:00
Hongjie Fang 5858bdad4d fscrypt: don't set policy for a dead directory
The directory may have been removed when entering
fscrypt_ioctl_set_policy().  If so, the empty_dir() check will return
error for ext4 file system.

ext4_rmdir() sets i_size = 0, then ext4_empty_dir() reports an error
because 'inode->i_size < EXT4_DIR_REC_LEN(1) + EXT4_DIR_REC_LEN(2)'.  If
the fs is mounted with errors=panic, it will trigger a panic issue.

Add the check IS_DEADDIR() to fix this problem.

Fixes: 9bd8212f98 ("ext4 crypto: add encryption policy and password salt support")
Cc: <stable@vger.kernel.org> # v4.1+
Signed-off-by: Hongjie Fang <hongjiefang@asrmicro.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:48:23 -07:00
Eric Biggers ffceeefb33 fscrypt: decrypt only the needed blocks in __fscrypt_decrypt_bio()
In __fscrypt_decrypt_bio(), only decrypt the blocks that actually
comprise the bio, rather than assuming blocksize == PAGE_SIZE and
decrypting the entirety of every page used in the bio.

This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.

This is based on work by Chandan Rajendra.

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:27:53 -07:00
Eric Biggers aa8bc1ac6e fscrypt: support decrypting multiple filesystem blocks per page
Rename fscrypt_decrypt_page() to fscrypt_decrypt_pagecache_blocks() and
redefine its behavior to decrypt all filesystem blocks in the given
region of the given page, rather than assuming that the region consists
of just one filesystem block.  Also remove the 'inode' and 'lblk_num'
parameters, since they can be retrieved from the page as it's already
assumed to be a pagecache page.

This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.

This is based on work by Chandan Rajendra.

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:27:53 -07:00
Eric Biggers 41adbcb726 fscrypt: introduce fscrypt_decrypt_block_inplace()
Currently fscrypt_decrypt_page() does one of two logically distinct
things depending on whether FS_CFLG_OWN_PAGES is set in the filesystem's
fscrypt_operations: decrypt a pagecache page in-place, or decrypt a
filesystem block in-place in any page.  Currently these happen to share
the same implementation, but this conflates the notion of blocks and
pages.  It also makes it so that all callers have to provide inode and
lblk_num, when fscrypt could determine these itself for pagecache pages.

Therefore, move the FS_CFLG_OWN_PAGES behavior into a new function
fscrypt_decrypt_block_inplace().  This mirrors
fscrypt_encrypt_block_inplace().

This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:27:53 -07:00
Eric Biggers 930d453995 fscrypt: handle blocksize < PAGE_SIZE in fscrypt_zeroout_range()
Adjust fscrypt_zeroout_range() to encrypt a block at a time rather than
a page at a time, so that it works when blocksize < PAGE_SIZE.

This isn't optimized for performance, but then again this function
already wasn't optimized for performance.  As a future optimization, we
could submit much larger bios here.

This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.

This is based on work by Chandan Rajendra.

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:27:53 -07:00
Eric Biggers 53bc1d854c fscrypt: support encrypting multiple filesystem blocks per page
Rename fscrypt_encrypt_page() to fscrypt_encrypt_pagecache_blocks() and
redefine its behavior to encrypt all filesystem blocks from the given
region of the given page, rather than assuming that the region consists
of just one filesystem block.  Also remove the 'inode' and 'lblk_num'
parameters, since they can be retrieved from the page as it's already
assumed to be a pagecache page.

This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.

This is based on work by Chandan Rajendra.

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:27:53 -07:00
Eric Biggers 03569f2fb8 fscrypt: introduce fscrypt_encrypt_block_inplace()
fscrypt_encrypt_page() behaves very differently depending on whether the
filesystem set FS_CFLG_OWN_PAGES in its fscrypt_operations.  This makes
the function difficult to understand and document.  It also makes it so
that all callers have to provide inode and lblk_num, when fscrypt could
determine these itself for pagecache pages.

Therefore, move the FS_CFLG_OWN_PAGES behavior into a new function
fscrypt_encrypt_block_inplace().

This is in preparation for allowing encryption on ext4 filesystems with
blocksize != PAGE_SIZE.

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:27:52 -07:00
Eric Biggers eeacfdc68a fscrypt: clean up some BUG_ON()s in block encryption/decryption
Replace some BUG_ON()s with WARN_ON_ONCE() and returning an error code,
and move the check for len divisible by FS_CRYPTO_BLOCK_SIZE into
fscrypt_crypt_block() so that it's done for both encryption and
decryption, not just encryption.

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:27:52 -07:00
Eric Biggers f47fcbb2b5 fscrypt: rename fscrypt_do_page_crypto() to fscrypt_crypt_block()
fscrypt_do_page_crypto() only does a single encryption or decryption
operation, with a single logical block number (single IV).  So it
actually operates on a filesystem block, not a "page" per se.  To
reflect this, rename it to fscrypt_crypt_block().

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:27:52 -07:00
Eric Biggers 2a415a0257 fscrypt: remove the "write" part of struct fscrypt_ctx
Now that fscrypt_ctx is not used for writes, remove the 'w' fields.

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:27:52 -07:00
Eric Biggers d2d0727b16 fscrypt: simplify bounce page handling
Currently, bounce page handling for writes to encrypted files is
unnecessarily complicated.  A fscrypt_ctx is allocated along with each
bounce page, page_private(bounce_page) points to this fscrypt_ctx, and
fscrypt_ctx::w::control_page points to the original pagecache page.

However, because writes don't use the fscrypt_ctx for anything else,
there's no reason why page_private(bounce_page) can't just point to the
original pagecache page directly.

Therefore, this patch makes this change.  In the process, it also cleans
up the API exposed to filesystems that allows testing whether a page is
a bounce page, getting the pagecache page from a bounce page, and
freeing a bounce page.

Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28 10:27:52 -07:00
Thomas Gleixner ec8f24b7fa treewide: Add SPDX license identifier - Makefile/Kconfig
Add SPDX license identifiers to all Make/Kconfig files which:

 - Have no license information of any form

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:46 +02:00
Thomas Gleixner 09c434b8a0 treewide: Add SPDX license identifier for more missed files
Add SPDX license identifiers to all files which:

 - Have no license information of any form

 - Have MODULE_LICENCE("GPL*") inside which was used in the initial
   scan/conversion to ignore the file

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:45 +02:00
Thomas Gleixner 457c899653 treewide: Add SPDX license identifier for missed files
Add SPDX license identifiers to all files which:

 - Have no license information of any form

 - Have EXPORT_.*_SYMBOL_GPL inside which was used in the
   initial scan/conversion to ignore the file

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:45 +02:00
Linus Torvalds a9fbcd6728 Clean up fscrypt's dcache revalidation support, and other
miscellaneous cleanups.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAlzSEfQACgkQ8vlZVpUN
 gaNKrQf+O4JCCc8jqhpvUcNr8+DJNhWYpvRo7yDXoWbAyA6eZHV2fTRX5Vw6T8bW
 iQAj9ofkRnakOq6JvnaUyW8eAuRcqellF7HnwFwTxGOpZ1x3UPAV/roKutAhe8sT
 9dA0VxjugBAISbL2AMQKRPYNuzV07D9As6wZRlPuliFVLLnuPG5SseHRhdn3tm1n
 Jwyipu8P6BjomFtfHT25amISaWRx/uGpjTa1fmjwUxIC8EI6V9K6hKNCAUPsk/3g
 m8zEBpBKSmPK66sFPGxddPNGYAyyFluUboQxB7DuSCF7J3cULO8TxRZbsW/5jaio
 ZR8utWezuXnrI80vG/VtCMhqG3398Q==
 =0Bak
 -----END PGP SIGNATURE-----

Merge tag 'fscrypt_for_linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt

Pull fscrypt updates from Ted Ts'o:
 "Clean up fscrypt's dcache revalidation support, and other
  miscellaneous cleanups"

* tag 'fscrypt_for_linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
  fscrypt: cache decrypted symlink target in ->i_link
  vfs: use READ_ONCE() to access ->i_link
  fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext
  fscrypt: only set dentry_operations on ciphertext dentries
  fs, fscrypt: clear DCACHE_ENCRYPTED_NAME when unaliasing directory
  fscrypt: fix race allowing rename() and link() of ciphertext dentries
  fscrypt: clean up and improve dentry revalidation
  fscrypt: use READ_ONCE() to access ->i_crypt_info
  fscrypt: remove WARN_ON_ONCE() when decryption fails
  fscrypt: drop inode argument from fscrypt_get_ctx()
2019-05-07 21:28:04 -07:00
Linus Torvalds 67a2422239 for-5.2/block-20190507
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlzR0AAQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpo0MD/47D1kBK9rGzkAwIz1Jkh1Qy/ITVaDJzmHJ
 UP5uncQsgKFLKMR1LbRcrWtmk2MwFDNULGbteHFeCYE1ypCrTgpWSp5+SJluKd1Q
 hma9krLSAXO9QiSaZ4jafshXFIZxz6IjakOW8c9LrT80Ze47yh7AxiLwDafcp/Jj
 x6NW790qB7ENDtfarDkZk14NCS8HGLRHO5B21LB+hT0Kfbh0XZaLzJdj7Mck1wPA
 VT8hL9mPuA++AjF7Ra4kUjwSakgmajTa3nS2fpkwTYdztQfas7x5Jiv7FWxrrelb
 qbabkNkWKepcHAPEiZR7o53TyfCucGeSK/jG+dsJ9KhNp26kl1ci3frl5T6PfVMP
 SPPDjsKIHs+dqFrU9y5rSGhLJqewTs96hHthnLGxyF67+5sRb5+YIy+dcqgiyc/b
 TUVyjCD6r0cO2q4v9VhwnhOyeBUA9Rwbu8nl7JV5Q45uG7qI4BC39l1jfubMNDPO
 GLNGUUzb6ER7z6lYINjRSF2Jhejsx8SR9P7jhpb1Q7k/VvDDxO1T4FpwvqWFz9+s
 Gn+s6//+cA6LL+42eZkQjvwF2CUNE7TaVT8zdb+s5HP1RQkZToqUnsQCGeRTrFni
 RqWXfW9o9+awYRp431417oMdX/LvLGq9+ZtifRk9DqDcowXevTaf0W2RpplWSuiX
 RcCuPeLAVg==
 =Ot0g
 -----END PGP SIGNATURE-----

Merge tag 'for-5.2/block-20190507' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:
 "Nothing major in this series, just fixes and improvements all over the
  map. This contains:

   - Series of fixes for sed-opal (David, Jonas)

   - Fixes and performance tweaks for BFQ (via Paolo)

   - Set of fixes for bcache (via Coly)

   - Set of fixes for md (via Song)

   - Enabling multi-page for passthrough requests (Ming)

   - Queue release fix series (Ming)

   - Device notification improvements (Martin)

   - Propagate underlying device rotational status in loop (Holger)

   - Removal of mtip32xx trim support, which has been disabled for years
     (Christoph)

   - Improvement and cleanup of nvme command handling (Christoph)

   - Add block SPDX tags (Christoph)

   - Cleanup/hardening of bio/bvec iteration (Christoph)

   - A few NVMe pull requests (Christoph)

   - Removal of CONFIG_LBDAF (Christoph)

   - Various little fixes here and there"

* tag 'for-5.2/block-20190507' of git://git.kernel.dk/linux-block: (164 commits)
  block: fix mismerge in bvec_advance
  block: don't drain in-progress dispatch in blk_cleanup_queue()
  blk-mq: move cancel of hctx->run_work into blk_mq_hw_sysfs_release
  blk-mq: always free hctx after request queue is freed
  blk-mq: split blk_mq_alloc_and_init_hctx into two parts
  blk-mq: free hw queue's resource in hctx's release handler
  blk-mq: move cancel of requeue_work into blk_mq_release
  blk-mq: grab .q_usage_counter when queuing request from plug code path
  block: fix function name in comment
  nvmet: protect discovery change log event list iteration
  nvme: mark nvme_core_init and nvme_core_exit static
  nvme: move command size checks to the core
  nvme-fabrics: check more command sizes
  nvme-pci: check more command sizes
  nvme-pci: remove an unneeded variable initialization
  nvme-pci: unquiesce admin queue on shutdown
  nvme-pci: shutdown on timeout during deletion
  nvme-pci: fix psdt field for single segment sgls
  nvme-multipath: don't print ANA group state by default
  nvme-multipath: split bios with the ns_head bio_set before submitting
  ...
2019-05-07 18:14:36 -07:00
Christoph Hellwig 2b070cfe58 block: remove the i argument to bio_for_each_segment_all
We only have two callers that need the integer loop iterator, and they
can easily maintain it themselves.

Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Coly Li <colyli@suse.de>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-30 09:26:13 -06:00
Eric Biggers 877b5691f2 crypto: shash - remove shash_desc::flags
The flags field in 'struct shash_desc' never actually does anything.
The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP.
However, no shash algorithm ever sleeps, making this flag a no-op.

With this being the case, inevitably some users who can't sleep wrongly
pass MAY_SLEEP.  These would all need to be fixed if any shash algorithm
actually started sleeping.  For example, the shash_ahash_*() functions,
which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP
from the ahash API to the shash API.  However, the shash functions are
called under kmap_atomic(), so actually they're assumed to never sleep.

Even if it turns out that some users do need preemption points while
hashing large buffers, we could easily provide a helper function
crypto_shash_update_large() which divides the data into smaller chunks
and calls crypto_shash_update() and cond_resched() for each chunk.  It's
not necessary to have a flag in 'struct shash_desc', nor is it necessary
to make individual shash algorithms aware of this at all.

Therefore, remove shash_desc::flags, and document that the
crypto_shash_*() functions can be called from any context.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-04-25 15:38:12 +08:00
Eric Biggers 2c58d548f5 fscrypt: cache decrypted symlink target in ->i_link
Path lookups that traverse encrypted symlink(s) are very slow because
each encrypted symlink needs to be decrypted each time it's followed.
This also involves dropping out of rcu-walk mode.

Make encrypted symlinks faster by caching the decrypted symlink target
in ->i_link.  The first call to fscrypt_get_symlink() sets it.  Then,
the existing VFS path lookup code uses the non-NULL ->i_link to take the
fast path where ->get_link() isn't called, and lookups in rcu-walk mode
remain in rcu-walk mode.

Also set ->i_link immediately when a new encrypted symlink is created.

To safely free the symlink target after an RCU grace period has elapsed,
introduce a new function fscrypt_free_inode(), and make the relevant
filesystems call it just before actually freeing the inode.

Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-17 12:43:29 -04:00
Eric Biggers b01531db6c fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext
->lookup() in an encrypted directory begins as follows:

1. fscrypt_prepare_lookup():
    a. Try to load the directory's encryption key.
    b. If the key is unavailable, mark the dentry as a ciphertext name
       via d_flags.
2. fscrypt_setup_filename():
    a. Try to load the directory's encryption key.
    b. If the key is available, encrypt the name (treated as a plaintext
       name) to get the on-disk name.  Otherwise decode the name
       (treated as a ciphertext name) to get the on-disk name.

But if the key is concurrently added, it may be found at (2a) but not at
(1a).  In this case, the dentry will be wrongly marked as a ciphertext
name even though it was actually treated as plaintext.

This will cause the dentry to be wrongly invalidated on the next lookup,
potentially causing problems.  For example, if the racy ->lookup() was
part of sys_mount(), then the new mount will be detached when anything
tries to access it.  This is despite the mountpoint having a plaintext
path, which should remain valid now that the key was added.

Of course, this is only possible if there's a userspace race.  Still,
the additional kernel-side race is confusing and unexpected.

Close the kernel-side race by changing fscrypt_prepare_lookup() to also
set the on-disk filename (step 2b), consistent with the d_flags update.

Fixes: 28b4c26396 ("ext4 crypto: revalidate dentry after adding or removing the key")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-17 10:07:51 -04:00
Eric Biggers d456a33f04 fscrypt: only set dentry_operations on ciphertext dentries
Plaintext dentries are always valid, so only set fscrypt_d_ops on
ciphertext dentries.

Besides marginally improved performance, this allows overlayfs to use an
fscrypt-encrypted upperdir, provided that all the following are true:

    (1) The fscrypt encryption key is placed in the keyring before
	mounting overlayfs, and remains while the overlayfs is mounted.

    (2) The overlayfs workdir uses the same encryption policy.

    (3) No dentries for the ciphertext names of subdirectories have been
	created in the upperdir or workdir yet.  (Since otherwise
	d_splice_alias() will reuse the old dentry with ->d_op set.)

One potential use case is using an ephemeral encryption key to encrypt
all files created or changed by a container, so that they can be
securely erased ("crypto-shredded") after the container stops.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-17 10:06:32 -04:00
Eric Biggers 968dd6d0c6 fscrypt: fix race allowing rename() and link() of ciphertext dentries
Close some race conditions where fscrypt allowed rename() and link() on
ciphertext dentries that had been looked up just prior to the key being
concurrently added.  It's better to return -ENOKEY in this case.

This avoids doing the nonsensical thing of encrypting the names a second
time when searching for the actual on-disk dir entries.  It also
guarantees that DCACHE_ENCRYPTED_NAME dentries are never rename()d, so
the dcache won't have support all possible combinations of moving
DCACHE_ENCRYPTED_NAME around during __d_move().

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-04-17 09:51:20 -04:00