Merge pull request #60 from zandrey/4.19.x+fslc

4.19.x+fslc: upgrade 4.19.78 to 4.19.107
This commit is contained in:
Otavio Salvador 2020-03-04 23:13:08 -03:00 committed by GitHub
commit a764f56c76
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3844 changed files with 43251 additions and 22988 deletions

View File

@ -199,7 +199,7 @@ Description:
What: /sys/bus/iio/devices/iio:deviceX/in_positionrelative_x_raw
What: /sys/bus/iio/devices/iio:deviceX/in_positionrelative_y_raw
KernelVersion: 4.18
KernelVersion: 4.19
Contact: linux-iio@vger.kernel.org
Description:
Relative position in direction x or y on a pad (may be

View File

@ -4,7 +4,7 @@ KernelVersion: 3.10
Contact: Samuel Ortiz <sameo@linux.intel.com>
linux-mei@linux.intel.com
Description: Stores the same MODALIAS value emitted by uevent
Format: mei:<mei device name>:<device uuid>:
Format: mei:<mei device name>:<device uuid>:<protocol version>
What: /sys/bus/mei/devices/.../name
Date: May 2015

View File

@ -7,6 +7,13 @@ Description:
The name of devfreq object denoted as ... is same as the
name of device using devfreq.
What: /sys/class/devfreq/.../name
Date: November 2019
Contact: Chanwoo Choi <cw00.choi@samsung.com>
Description:
The /sys/class/devfreq/.../name shows the name of device
of the corresponding devfreq object.
What: /sys/class/devfreq/.../governor
Date: September 2011
Contact: MyungJoo Ham <myungjoo.ham@samsung.com>

View File

@ -478,6 +478,8 @@ What: /sys/devices/system/cpu/vulnerabilities
/sys/devices/system/cpu/vulnerabilities/spec_store_bypass
/sys/devices/system/cpu/vulnerabilities/l1tf
/sys/devices/system/cpu/vulnerabilities/mds
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
Date: January 2018
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Information about CPU vulnerabilities

View File

@ -12,3 +12,5 @@ are configurable at compile, boot or run time.
spectre
l1tf
mds
tsx_async_abort
multihit.rst

View File

@ -265,8 +265,11 @@ time with the option "mds=". The valid arguments for this option are:
============ =============================================================
Not specifying this option is equivalent to "mds=full".
Not specifying this option is equivalent to "mds=full". For processors
that are affected by both TAA (TSX Asynchronous Abort) and MDS,
specifying just "mds=off" without an accompanying "tsx_async_abort=off"
will have no effect as the same mitigation is used for both
vulnerabilities.
Mitigation selection guide
--------------------------

View File

@ -0,0 +1,163 @@
iTLB multihit
=============
iTLB multihit is an erratum where some processors may incur a machine check
error, possibly resulting in an unrecoverable CPU lockup, when an
instruction fetch hits multiple entries in the instruction TLB. This can
occur when the page size is changed along with either the physical address
or cache type. A malicious guest running on a virtualized system can
exploit this erratum to perform a denial of service attack.
Affected processors
-------------------
Variations of this erratum are present on most Intel Core and Xeon processor
models. The erratum is not present on:
- non-Intel processors
- Some Atoms (Airmont, Bonnell, Goldmont, GoldmontPlus, Saltwell, Silvermont)
- Intel processors that have the PSCHANGE_MC_NO bit set in the
IA32_ARCH_CAPABILITIES MSR.
Related CVEs
------------
The following CVE entry is related to this issue:
============== =================================================
CVE-2018-12207 Machine Check Error Avoidance on Page Size Change
============== =================================================
Problem
-------
Privileged software, including OS and virtual machine managers (VMM), are in
charge of memory management. A key component in memory management is the control
of the page tables. Modern processors use virtual memory, a technique that creates
the illusion of a very large memory for processors. This virtual space is split
into pages of a given size. Page tables translate virtual addresses to physical
addresses.
To reduce latency when performing a virtual to physical address translation,
processors include a structure, called TLB, that caches recent translations.
There are separate TLBs for instruction (iTLB) and data (dTLB).
Under this errata, instructions are fetched from a linear address translated
using a 4 KB translation cached in the iTLB. Privileged software modifies the
paging structure so that the same linear address using large page size (2 MB, 4
MB, 1 GB) with a different physical address or memory type. After the page
structure modification but before the software invalidates any iTLB entries for
the linear address, a code fetch that happens on the same linear address may
cause a machine-check error which can result in a system hang or shutdown.
Attack scenarios
----------------
Attacks against the iTLB multihit erratum can be mounted from malicious
guests in a virtualized system.
iTLB multihit system information
--------------------------------
The Linux kernel provides a sysfs interface to enumerate the current iTLB
multihit status of the system:whether the system is vulnerable and which
mitigations are active. The relevant sysfs file is:
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
The possible values in this file are:
.. list-table::
* - Not affected
- The processor is not vulnerable.
* - KVM: Mitigation: Split huge pages
- Software changes mitigate this issue.
* - KVM: Vulnerable
- The processor is vulnerable, but no mitigation enabled
Enumeration of the erratum
--------------------------------
A new bit has been allocated in the IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) msr
and will be set on CPU's which are mitigated against this issue.
======================================= =========== ===============================
IA32_ARCH_CAPABILITIES MSR Not present Possibly vulnerable,check model
IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO] '0' Likely vulnerable,check model
IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO] '1' Not vulnerable
======================================= =========== ===============================
Mitigation mechanism
-------------------------
This erratum can be mitigated by restricting the use of large page sizes to
non-executable pages. This forces all iTLB entries to be 4K, and removes
the possibility of multiple hits.
In order to mitigate the vulnerability, KVM initially marks all huge pages
as non-executable. If the guest attempts to execute in one of those pages,
the page is broken down into 4K pages, which are then marked executable.
If EPT is disabled or not available on the host, KVM is in control of TLB
flushes and the problematic situation cannot happen. However, the shadow
EPT paging mechanism used by nested virtualization is vulnerable, because
the nested guest can trigger multiple iTLB hits by modifying its own
(non-nested) page tables. For simplicity, KVM will make large pages
non-executable in all shadow paging modes.
Mitigation control on the kernel command line and KVM - module parameter
------------------------------------------------------------------------
The KVM hypervisor mitigation mechanism for marking huge pages as
non-executable can be controlled with a module parameter "nx_huge_pages=".
The kernel command line allows to control the iTLB multihit mitigations at
boot time with the option "kvm.nx_huge_pages=".
The valid arguments for these options are:
========== ================================================================
force Mitigation is enabled. In this case, the mitigation implements
non-executable huge pages in Linux kernel KVM module. All huge
pages in the EPT are marked as non-executable.
If a guest attempts to execute in one of those pages, the page is
broken down into 4K pages, which are then marked executable.
off Mitigation is disabled.
auto Enable mitigation only if the platform is affected and the kernel
was not booted with the "mitigations=off" command line parameter.
This is the default option.
========== ================================================================
Mitigation selection guide
--------------------------
1. No virtualization in use
^^^^^^^^^^^^^^^^^^^^^^^^^^^
The system is protected by the kernel unconditionally and no further
action is required.
2. Virtualization with trusted guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the guest comes from a trusted source, you may assume that the guest will
not attempt to maliciously exploit these errata and no further action is
required.
3. Virtualization with untrusted guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the guest comes from an untrusted source, the guest host kernel will need
to apply iTLB multihit mitigation via the kernel command line or kvm
module parameter.

View File

@ -0,0 +1,279 @@
.. SPDX-License-Identifier: GPL-2.0
TAA - TSX Asynchronous Abort
======================================
TAA is a hardware vulnerability that allows unprivileged speculative access to
data which is available in various CPU internal buffers by using asynchronous
aborts within an Intel TSX transactional region.
Affected processors
-------------------
This vulnerability only affects Intel processors that support Intel
Transactional Synchronization Extensions (TSX) when the TAA_NO bit (bit 8)
is 0 in the IA32_ARCH_CAPABILITIES MSR. On processors where the MDS_NO bit
(bit 5) is 0 in the IA32_ARCH_CAPABILITIES MSR, the existing MDS mitigations
also mitigate against TAA.
Whether a processor is affected or not can be read out from the TAA
vulnerability file in sysfs. See :ref:`tsx_async_abort_sys_info`.
Related CVEs
------------
The following CVE entry is related to this TAA issue:
============== ===== ===================================================
CVE-2019-11135 TAA TSX Asynchronous Abort (TAA) condition on some
microprocessors utilizing speculative execution may
allow an authenticated user to potentially enable
information disclosure via a side channel with
local access.
============== ===== ===================================================
Problem
-------
When performing store, load or L1 refill operations, processors write
data into temporary microarchitectural structures (buffers). The data in
those buffers can be forwarded to load operations as an optimization.
Intel TSX is an extension to the x86 instruction set architecture that adds
hardware transactional memory support to improve performance of multi-threaded
software. TSX lets the processor expose and exploit concurrency hidden in an
application due to dynamically avoiding unnecessary synchronization.
TSX supports atomic memory transactions that are either committed (success) or
aborted. During an abort, operations that happened within the transactional region
are rolled back. An asynchronous abort takes place, among other options, when a
different thread accesses a cache line that is also used within the transactional
region when that access might lead to a data race.
Immediately after an uncompleted asynchronous abort, certain speculatively
executed loads may read data from those internal buffers and pass it to dependent
operations. This can be then used to infer the value via a cache side channel
attack.
Because the buffers are potentially shared between Hyper-Threads cross
Hyper-Thread attacks are possible.
The victim of a malicious actor does not need to make use of TSX. Only the
attacker needs to begin a TSX transaction and raise an asynchronous abort
which in turn potenitally leaks data stored in the buffers.
More detailed technical information is available in the TAA specific x86
architecture section: :ref:`Documentation/x86/tsx_async_abort.rst <tsx_async_abort>`.
Attack scenarios
----------------
Attacks against the TAA vulnerability can be implemented from unprivileged
applications running on hosts or guests.
As for MDS, the attacker has no control over the memory addresses that can
be leaked. Only the victim is responsible for bringing data to the CPU. As
a result, the malicious actor has to sample as much data as possible and
then postprocess it to try to infer any useful information from it.
A potential attacker only has read access to the data. Also, there is no direct
privilege escalation by using this technique.
.. _tsx_async_abort_sys_info:
TAA system information
-----------------------
The Linux kernel provides a sysfs interface to enumerate the current TAA status
of mitigated systems. The relevant sysfs file is:
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
The possible values in this file are:
.. list-table::
* - 'Vulnerable'
- The CPU is affected by this vulnerability and the microcode and kernel mitigation are not applied.
* - 'Vulnerable: Clear CPU buffers attempted, no microcode'
- The system tries to clear the buffers but the microcode might not support the operation.
* - 'Mitigation: Clear CPU buffers'
- The microcode has been updated to clear the buffers. TSX is still enabled.
* - 'Mitigation: TSX disabled'
- TSX is disabled.
* - 'Not affected'
- The CPU is not affected by this issue.
.. _ucode_needed:
Best effort mitigation mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the processor is vulnerable, but the availability of the microcode-based
mitigation mechanism is not advertised via CPUID the kernel selects a best
effort mitigation mode. This mode invokes the mitigation instructions
without a guarantee that they clear the CPU buffers.
This is done to address virtualization scenarios where the host has the
microcode update applied, but the hypervisor is not yet updated to expose the
CPUID to the guest. If the host has updated microcode the protection takes
effect; otherwise a few CPU cycles are wasted pointlessly.
The state in the tsx_async_abort sysfs file reflects this situation
accordingly.
Mitigation mechanism
--------------------
The kernel detects the affected CPUs and the presence of the microcode which is
required. If a CPU is affected and the microcode is available, then the kernel
enables the mitigation by default.
The mitigation can be controlled at boot time via a kernel command line option.
See :ref:`taa_mitigation_control_command_line`.
.. _virt_mechanism:
Virtualization mitigation
^^^^^^^^^^^^^^^^^^^^^^^^^
Affected systems where the host has TAA microcode and TAA is mitigated by
having disabled TSX previously, are not vulnerable regardless of the status
of the VMs.
In all other cases, if the host either does not have the TAA microcode or
the kernel is not mitigated, the system might be vulnerable.
.. _taa_mitigation_control_command_line:
Mitigation control on the kernel command line
---------------------------------------------
The kernel command line allows to control the TAA mitigations at boot time with
the option "tsx_async_abort=". The valid arguments for this option are:
============ =============================================================
off This option disables the TAA mitigation on affected platforms.
If the system has TSX enabled (see next parameter) and the CPU
is affected, the system is vulnerable.
full TAA mitigation is enabled. If TSX is enabled, on an affected
system it will clear CPU buffers on ring transitions. On
systems which are MDS-affected and deploy MDS mitigation,
TAA is also mitigated. Specifying this option on those
systems will have no effect.
full,nosmt The same as tsx_async_abort=full, with SMT disabled on
vulnerable CPUs that have TSX enabled. This is the complete
mitigation. When TSX is disabled, SMT is not disabled because
CPU is not vulnerable to cross-thread TAA attacks.
============ =============================================================
Not specifying this option is equivalent to "tsx_async_abort=full". For
processors that are affected by both TAA and MDS, specifying just
"tsx_async_abort=off" without an accompanying "mds=off" will have no
effect as the same mitigation is used for both vulnerabilities.
The kernel command line also allows to control the TSX feature using the
parameter "tsx=" on CPUs which support TSX control. MSR_IA32_TSX_CTRL is used
to control the TSX feature and the enumeration of the TSX feature bits (RTM
and HLE) in CPUID.
The valid options are:
============ =============================================================
off Disables TSX on the system.
Note that this option takes effect only on newer CPUs which are
not vulnerable to MDS, i.e., have MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1
and which get the new IA32_TSX_CTRL MSR through a microcode
update. This new MSR allows for the reliable deactivation of
the TSX functionality.
on Enables TSX.
Although there are mitigations for all known security
vulnerabilities, TSX has been known to be an accelerator for
several previous speculation-related CVEs, and so there may be
unknown security risks associated with leaving it enabled.
auto Disables TSX if X86_BUG_TAA is present, otherwise enables TSX
on the system.
============ =============================================================
Not specifying this option is equivalent to "tsx=off".
The following combinations of the "tsx_async_abort" and "tsx" are possible. For
affected platforms tsx=auto is equivalent to tsx=off and the result will be:
========= ========================== =========================================
tsx=on tsx_async_abort=full The system will use VERW to clear CPU
buffers. Cross-thread attacks are still
possible on SMT machines.
tsx=on tsx_async_abort=full,nosmt As above, cross-thread attacks on SMT
mitigated.
tsx=on tsx_async_abort=off The system is vulnerable.
tsx=off tsx_async_abort=full TSX might be disabled if microcode
provides a TSX control MSR. If so,
system is not vulnerable.
tsx=off tsx_async_abort=full,nosmt Ditto
tsx=off tsx_async_abort=off ditto
========= ========================== =========================================
For unaffected platforms "tsx=on" and "tsx_async_abort=full" does not clear CPU
buffers. For platforms without TSX control (MSR_IA32_ARCH_CAPABILITIES.MDS_NO=0)
"tsx" command line argument has no effect.
For the affected platforms below table indicates the mitigation status for the
combinations of CPUID bit MD_CLEAR and IA32_ARCH_CAPABILITIES MSR bits MDS_NO
and TSX_CTRL_MSR.
======= ========= ============= ========================================
MDS_NO MD_CLEAR TSX_CTRL_MSR Status
======= ========= ============= ========================================
0 0 0 Vulnerable (needs microcode)
0 1 0 MDS and TAA mitigated via VERW
1 1 0 MDS fixed, TAA vulnerable if TSX enabled
because MD_CLEAR has no meaning and
VERW is not guaranteed to clear buffers
1 X 1 MDS fixed, TAA can be mitigated by
VERW or TSX_CTRL_MSR
======= ========= ============= ========================================
Mitigation selection guide
--------------------------
1. Trusted userspace and guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If all user space applications are from a trusted source and do not execute
untrusted code which is supplied externally, then the mitigation can be
disabled. The same applies to virtualized environments with trusted guests.
2. Untrusted userspace and guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If there are untrusted applications or guests on the system, enabling TSX
might allow a malicious actor to leak data from the host or from other
processes running on the same physical core.
If the microcode is available and the TSX is disabled on the host, attacks
are prevented in a virtualized environment as well, even if the VMs do not
explicitly enable the mitigation.
.. _taa_default_mitigations:
Default mitigations
-------------------
The kernel's default action for vulnerable processors is:
- Deploy TSX disable mitigation (tsx_async_abort=full tsx=off).

View File

@ -113,7 +113,7 @@
the GPE dispatcher.
This facility can be used to prevent such uncontrolled
GPE floodings.
Format: <int>
Format: <byte>
acpi_no_auto_serialize [HW,ACPI]
Disable auto-serialization of AML methods
@ -1946,6 +1946,12 @@
Built with CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF=y,
the default is off.
kpti= [ARM64] Control page table isolation of user
and kernel address spaces.
Default: enabled on cores which need mitigation.
0: force disabled
1: force enabled
kvm.ignore_msrs=[KVM] Ignore guest accesses to unhandled MSRs.
Default is 0 (don't ignore, but inject #GP)
@ -1956,6 +1962,25 @@
KVM MMU at runtime.
Default is 0 (off)
kvm.nx_huge_pages=
[KVM] Controls the software workaround for the
X86_BUG_ITLB_MULTIHIT bug.
force : Always deploy workaround.
off : Never deploy workaround.
auto : Deploy workaround based on the presence of
X86_BUG_ITLB_MULTIHIT.
Default is 'auto'.
If the software workaround is enabled for the host,
guests do need not to enable it for nested guests.
kvm.nx_huge_pages_recovery_ratio=
[KVM] Controls how many 4KiB pages are periodically zapped
back to huge pages. 0 disables the recovery, otherwise if
the value is N KVM will zap 1/Nth of the 4KiB pages every
minute. The default is 60.
kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM.
Default is 1 (enabled)
@ -2340,6 +2365,12 @@
SMT on vulnerable CPUs
off - Unconditionally disable MDS mitigation
On TAA-affected machines, mds=off can be prevented by
an active TAA mitigation as both vulnerabilities are
mitigated with the same mechanism so in order to disable
this mitigation, you need to specify tsx_async_abort=off
too.
Not specifying this option is equivalent to
mds=full.
@ -2503,8 +2534,8 @@
http://repo.or.cz/w/linux-2.6/mini2440.git
mitigations=
[X86,PPC,S390] Control optional mitigations for CPU
vulnerabilities. This is a set of curated,
[X86,PPC,S390,ARM64] Control optional mitigations for
CPU vulnerabilities. This is a set of curated,
arch-independent options, each of which is an
aggregation of existing arch-specific options.
@ -2513,14 +2544,23 @@
improves system performance, but it may also
expose users to several CPU vulnerabilities.
Equivalent to: nopti [X86,PPC]
kpti=0 [ARM64]
nospectre_v1 [PPC]
nobp=0 [S390]
nospectre_v1 [X86]
nospectre_v2 [X86,PPC,S390]
nospectre_v2 [X86,PPC,S390,ARM64]
spectre_v2_user=off [X86]
spec_store_bypass_disable=off [X86,PPC]
ssbd=force-off [ARM64]
l1tf=off [X86]
mds=off [X86]
tsx_async_abort=off [X86]
kvm.nx_huge_pages=off [X86]
Exceptions:
This does not have any effect on
kvm.nx_huge_pages when
kvm.nx_huge_pages=force.
auto (default)
Mitigate all CPU vulnerabilities, but leave SMT
@ -2536,6 +2576,7 @@
be fully mitigated, even if it means losing SMT.
Equivalent to: l1tf=flush,nosmt [X86]
mds=full,nosmt [X86]
tsx_async_abort=full,nosmt [X86]
mminit_loglevel=
[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
@ -2866,10 +2907,10 @@
(bounds check bypass). With this option data leaks
are possible in the system.
nospectre_v2 [X86,PPC_FSL_BOOK3E] Disable all mitigations for the Spectre variant 2
(indirect branch prediction) vulnerability. System may
allow data leaks with this option, which is equivalent
to spectre_v2=off.
nospectre_v2 [X86,PPC_FSL_BOOK3E,ARM64] Disable all mitigations for
the Spectre variant 2 (indirect branch prediction)
vulnerability. System may allow data leaks with this
option.
nospec_store_bypass_disable
[HW] Disable all mitigations for the Speculative Store Bypass vulnerability
@ -4688,6 +4729,76 @@
marks the TSC unconditionally unstable at bootup and
avoids any further wobbles once the TSC watchdog notices.
tsx= [X86] Control Transactional Synchronization
Extensions (TSX) feature in Intel processors that
support TSX control.
This parameter controls the TSX feature. The options are:
on - Enable TSX on the system. Although there are
mitigations for all known security vulnerabilities,
TSX has been known to be an accelerator for
several previous speculation-related CVEs, and
so there may be unknown security risks associated
with leaving it enabled.
off - Disable TSX on the system. (Note that this
option takes effect only on newer CPUs which are
not vulnerable to MDS, i.e., have
MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1 and which get
the new IA32_TSX_CTRL MSR through a microcode
update. This new MSR allows for the reliable
deactivation of the TSX functionality.)
auto - Disable TSX if X86_BUG_TAA is present,
otherwise enable TSX on the system.
Not specifying this option is equivalent to tsx=off.
See Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
for more details.
tsx_async_abort= [X86,INTEL] Control mitigation for the TSX Async
Abort (TAA) vulnerability.
Similar to Micro-architectural Data Sampling (MDS)
certain CPUs that support Transactional
Synchronization Extensions (TSX) are vulnerable to an
exploit against CPU internal buffers which can forward
information to a disclosure gadget under certain
conditions.
In vulnerable processors, the speculatively forwarded
data can be used in a cache side channel attack, to
access data to which the attacker does not have direct
access.
This parameter controls the TAA mitigation. The
options are:
full - Enable TAA mitigation on vulnerable CPUs
if TSX is enabled.
full,nosmt - Enable TAA mitigation and disable SMT on
vulnerable CPUs. If TSX is disabled, SMT
is not disabled because CPU is not
vulnerable to cross-thread TAA attacks.
off - Unconditionally disable TAA mitigation
On MDS-affected machines, tsx_async_abort=off can be
prevented by an active MDS mitigation as both vulnerabilities
are mitigated with the same mechanism so in order to disable
this mitigation, you need to specify mds=off too.
Not specifying this option is equivalent to
tsx_async_abort=full. On CPUs which are MDS affected
and deploy MDS mitigation, TAA mitigation is not
required and doesn't provide any additional
mitigation.
For details see:
Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
turbografx.map[2|3]= [HW,JOY]
TurboGraFX parallel port interface
Format:
@ -4836,13 +4947,13 @@
Flags is a set of characters, each corresponding
to a common usb-storage quirk flag as follows:
a = SANE_SENSE (collect more than 18 bytes
of sense data);
of sense data, not on uas);
b = BAD_SENSE (don't collect more than 18
bytes of sense data);
bytes of sense data, not on uas);
c = FIX_CAPACITY (decrease the reported
device capacity by one sector);
d = NO_READ_DISC_INFO (don't use
READ_DISC_INFO command);
READ_DISC_INFO command, not on uas);
e = NO_READ_CAPACITY_16 (don't use
READ_CAPACITY_16 command);
f = NO_REPORT_OPCODES (don't use report opcodes
@ -4857,17 +4968,18 @@
j = NO_REPORT_LUNS (don't use report luns
command, uas only);
l = NOT_LOCKABLE (don't try to lock and
unlock ejectable media);
unlock ejectable media, not on uas);
m = MAX_SECTORS_64 (don't transfer more
than 64 sectors = 32 KB at a time);
than 64 sectors = 32 KB at a time,
not on uas);
n = INITIAL_READ10 (force a retry of the
initial READ(10) command);
initial READ(10) command, not on uas);
o = CAPACITY_OK (accept the capacity
reported by the device);
reported by the device, not on uas);
p = WRITE_CACHE (the device cache is ON
by default);
by default, not on uas);
r = IGNORE_RESIDUE (the device reports
bogus residue values);
bogus residue values, not on uas);
s = SINGLE_LUN (the device has only one
Logical Unit);
t = NO_ATA_1X (don't allow ATA(12) and ATA(16)
@ -4876,7 +4988,8 @@
w = NO_WP_DETECT (don't test whether the
medium is write-protected).
y = ALWAYS_SYNC (issue a SYNCHRONIZE_CACHE
even if the device claims no cache)
even if the device claims no cache,
not on uas)
Example: quirks=0419:aaf5:rl,0421:0433:rc
user_debug= [KNL,ARM]
@ -5115,6 +5228,10 @@
the unplug protocol
never -- do not unplug even if version check succeeds
xen_legacy_crash [X86,XEN]
Crash from Xen panic notifier, without executing late
panic() code such as dumping handler.
xen_nopvspin [X86,XEN]
Disables the ticketlock slowpath using Xen PV
optimizations.

View File

@ -178,3 +178,7 @@ HWCAP_ILRCPC
HWCAP_FLAGM
Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0001.
HWCAP_SSBS
Functionality implied by ID_AA64PFR1_EL1.SSBS == 0b0010.

View File

@ -35,6 +35,7 @@ Required standard properties:
"ti,sysc-omap3-sham"
"ti,sysc-omap-aes"
"ti,sysc-mcasp"
"ti,sysc-dra7-mcasp"
"ti,sysc-usb-host-fs"
"ti,sysc-dra7-mcan"

View File

@ -46,7 +46,7 @@ Required properties:
Example (R-Car H3):
usb2_clksel: clock-controller@e6590630 {
compatible = "renesas,r8a77950-rcar-usb2-clock-sel",
compatible = "renesas,r8a7795-rcar-usb2-clock-sel",
"renesas,rcar-gen3-usb2-clock-sel";
reg = <0 0xe6590630 0 0x02>;
clocks = <&cpg CPG_MOD 703>, <&usb_extal>, <&usb_xtal>;

View File

@ -73,7 +73,7 @@ Example:
};
};
port@10 {
port@a {
reg = <10>;
adv7482_txa: endpoint {
@ -83,7 +83,7 @@ Example:
};
};
port@11 {
port@b {
reg = <11>;
adv7482_txb: endpoint {

View File

@ -19,6 +19,9 @@ Optional properties:
- interrupt-names: must be "mdio_done_error" when there is a share interrupt fed
to this hardware block, or must be "mdio_done" for the first interrupt and
"mdio_error" for the second when there are separate interrupts
- clocks: A reference to the clock supplying the MDIO bus controller
- clock-frequency: the MDIO bus clock that must be output by the MDIO bus
hardware, if absent, the default hardware values are used
Child nodes of this MDIO bus controller node are standard Ethernet PHY device
nodes as described in Documentation/devicetree/bindings/net/phy.txt

View File

@ -0,0 +1,27 @@
OMAP ROM RNG driver binding
Secure SoCs may provide RNG via secure ROM calls like Nokia N900 does. The
implementation can depend on the SoC secure ROM used.
- compatible:
Usage: required
Value type: <string>
Definition: must be "nokia,n900-rom-rng"
- clocks:
Usage: required
Value type: <prop-encoded-array>
Definition: reference to the the RNG interface clock
- clock-names:
Usage: required
Value type: <stringlist>
Definition: must be "ick"
Example:
rom_rng: rng {
compatible = "nokia,n900-rom-rng";
clocks = <&rng_ick>;
clock-names = "ick";
};

View File

@ -27,4 +27,4 @@ and valid to enable charging:
- "abracon,tc-diode": should be "standard" (0.6V) or "schottky" (0.3V)
- "abracon,tc-resistor": should be <0>, <3>, <6> or <11>. 0 disables the output
resistor, the other values are in ohm.
resistor, the other values are in kOhm.

View File

@ -5,18 +5,20 @@ UniPhier SoCs have SCSSI which supports SPI single channel.
Required properties:
- compatible: should be "socionext,uniphier-scssi"
- reg: address and length of the spi master registers
- #address-cells: must be <1>, see spi-bus.txt
- #size-cells: must be <0>, see spi-bus.txt
- clocks: A phandle to the clock for the device.
- resets: A phandle to the reset control for the device.
- interrupts: a single interrupt specifier
- pinctrl-names: should be "default"
- pinctrl-0: pin control state for the default mode
- clocks: a phandle to the clock for the device
- resets: a phandle to the reset control for the device
Example:
spi0: spi@54006000 {
compatible = "socionext,uniphier-scssi";
reg = <0x54006000 0x100>;
#address-cells = <1>;
#size-cells = <0>;
interrupts = <0 39 4>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_spi0>;
clocks = <&peri_clk 11>;
resets = <&peri_rst 11>;
};

View File

@ -425,6 +425,7 @@ SwapPss: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
THPeligible: 0
VmFlags: rd ex mr mw me dw
the first of these lines shows the same information as is displayed for the
@ -462,6 +463,8 @@ replaced by copy-on-write) part of the underlying shmem object out on swap.
"SwapPss" shows proportional swap share of this mapping. Unlike "Swap", this
does not take into account swapped out page of underlying shmem objects.
"Locked" indicates whether the mapping is locked in memory or not.
"THPeligible" indicates whether the mapping is eligible for THP pages - 1 if
true, 0 otherwise.
"VmFlags" field deserves a separate description. This member represents the kernel
flags associated with the particular virtual memory area in two letter encoded

View File

@ -160,7 +160,7 @@ them but you should handle them according to your needs.
UHID_OUTPUT:
This is sent if the HID device driver wants to send raw data to the I/O
device on the interrupt channel. You should read the payload and forward it to
the device. The payload is of type "struct uhid_data_req".
the device. The payload is of type "struct uhid_output_req".
This may be received even though you haven't received UHID_OPEN, yet.
UHID_GET_REPORT:

View File

@ -90,6 +90,51 @@ There are two ways in which a group may become throttled:
In case b) above, even though the child may have runtime remaining it will not
be allowed to until the parent's runtime is refreshed.
CFS Bandwidth Quota Caveats
---------------------------
Once a slice is assigned to a cpu it does not expire. However all but 1ms of
the slice may be returned to the global pool if all threads on that cpu become
unrunnable. This is configured at compile time by the min_cfs_rq_runtime
variable. This is a performance tweak that helps prevent added contention on
the global lock.
The fact that cpu-local slices do not expire results in some interesting corner
cases that should be understood.
For cgroup cpu constrained applications that are cpu limited this is a
relatively moot point because they will naturally consume the entirety of their
quota as well as the entirety of each cpu-local slice in each period. As a
result it is expected that nr_periods roughly equal nr_throttled, and that
cpuacct.usage will increase roughly equal to cfs_quota_us in each period.
For highly-threaded, non-cpu bound applications this non-expiration nuance
allows applications to briefly burst past their quota limits by the amount of
unused slice on each cpu that the task group is running on (typically at most
1ms per cpu or as defined by min_cfs_rq_runtime). This slight burst only
applies if quota had been assigned to a cpu and then not fully used or returned
in previous periods. This burst amount will not be transferred between cores.
As a result, this mechanism still strictly limits the task group to quota
average usage, albeit over a longer time window than a single period. This
also limits the burst ability to no more than 1ms per cpu. This provides
better more predictable user experience for highly threaded applications with
small quota limits on high core count machines. It also eliminates the
propensity to throttle these applications while simultanously using less than
quota amounts of cpu. Another way to say this, is that by allowing the unused
portion of a slice to remain valid across periods we have decreased the
possibility of wastefully expiring quota on cpu-local silos that don't need a
full slice's amount of cpu time.
The interaction between cpu-bound and non-cpu-bound-interactive applications
should also be considered, especially when single core usage hits 100%. If you
gave each of these applications half of a cpu-core and they both got scheduled
on the same CPU it is theoretically possible that the non-cpu bound application
will use up to 1ms additional quota in some periods, thereby preventing the
cpu-bound application from fully using its quota by that same amount. In these
instances it will be up to the CFS algorithm (see sched-design-CFS.rst) to
decide which application is chosen to run, as they will both be runnable and
have remaining quota. This runtime discrepancy will be made up in the following
periods when the interactive application idles.
Examples
--------
1. Limit a group to 1 CPU worth of runtime.

View File

@ -1,138 +0,0 @@
Copyright (C) 1999, 2000 Bruce Tenison
Portions Copyright (C) 1999, 2000 David Nelson
Thanks to David Nelson for guidance and the usage of the scanner.txt
and scanner.c files to model our driver and this informative file.
Mar. 2, 2000
CHANGES
- Initial Revision
OVERVIEW
This README will address issues regarding how to configure the kernel
to access a RIO 500 mp3 player.
Before I explain how to use this to access the Rio500 please be warned:
W A R N I N G:
--------------
Please note that this software is still under development. The authors
are in no way responsible for any damage that may occur, no matter how
inconsequential.
It seems that the Rio has a problem when sending .mp3 with low batteries.
I suggest when the batteries are low and you want to transfer stuff that you
replace it with a fresh one. In my case, what happened is I lost two 16kb
blocks (they are no longer usable to store information to it). But I don't
know if that's normal or not; it could simply be a problem with the flash
memory.
In an extreme case, I left my Rio playing overnight and the batteries wore
down to nothing and appear to have corrupted the flash memory. My RIO
needed to be replaced as a result. Diamond tech support is aware of the
problem. Do NOT allow your batteries to wear down to nothing before
changing them. It appears RIO 500 firmware does not handle low battery
power well at all.
On systems with OHCI controllers, the kernel OHCI code appears to have
power on problems with some chipsets. If you are having problems
connecting to your RIO 500, try turning it on first and then plugging it
into the USB cable.
Contact information:
--------------------
The main page for the project is hosted at sourceforge.net in the following
URL: <http://rio500.sourceforge.net>. You can also go to the project's
sourceforge home page at: <http://sourceforge.net/projects/rio500/>.
There is also a mailing list: rio500-users@lists.sourceforge.net
Authors:
-------
Most of the code was written by Cesar Miquel <miquel@df.uba.ar>. Keith
Clayton <kclayton@jps.net> is incharge of the PPC port and making sure
things work there. Bruce Tenison <btenison@dibbs.net> is adding support
for .fon files and also does testing. The program will mostly sure be
re-written and Pete Ikusz along with the rest will re-design it. I would
also like to thank Tri Nguyen <tmn_3022000@hotmail.com> who provided use
with some important information regarding the communication with the Rio.
ADDITIONAL INFORMATION and Userspace tools
http://rio500.sourceforge.net/
REQUIREMENTS
A host with a USB port. Ideally, either a UHCI (Intel) or OHCI
(Compaq and others) hardware port should work.
A Linux development kernel (2.3.x) with USB support enabled or a
backported version to linux-2.2.x. See http://www.linux-usb.org for
more information on accomplishing this.
A Linux kernel with RIO 500 support enabled.
'lspci' which is only needed to determine the type of USB hardware
available in your machine.
CONFIGURATION
Using `lspci -v`, determine the type of USB hardware available.
If you see something like:
USB Controller: ......
Flags: .....
I/O ports at ....
Then you have a UHCI based controller.
If you see something like:
USB Controller: .....
Flags: ....
Memory at .....
Then you have a OHCI based controller.
Using `make menuconfig` or your preferred method for configuring the
kernel, select 'Support for USB', 'OHCI/UHCI' depending on your
hardware (determined from the steps above), 'USB Diamond Rio500 support', and
'Preliminary USB device filesystem'. Compile and install the modules
(you may need to execute `depmod -a` to update the module
dependencies).
Add a device for the USB rio500:
`mknod /dev/usb/rio500 c 180 64`
Set appropriate permissions for /dev/usb/rio500 (don't forget about
group and world permissions). Both read and write permissions are
required for proper operation.
Load the appropriate modules (if compiled as modules):
OHCI:
modprobe usbcore
modprobe usb-ohci
modprobe rio500
UHCI:
modprobe usbcore
modprobe usb-uhci (or uhci)
modprobe rio500
That's it. The Rio500 Utils at: http://rio500.sourceforge.net should
be able to access the rio500.
BUGS
If you encounter any problems feel free to drop me an email.
Bruce Tenison
btenison@dibbs.net

View File

@ -15,8 +15,6 @@ The acquisition orders for mutexes are as follows:
On x86, vcpu->mutex is taken outside kvm->arch.hyperv.hv_lock.
For spinlocks, kvm_lock is taken outside kvm->mmu_lock.
Everything else is a leaf: no other lock is taken inside the critical
sections.
@ -169,7 +167,7 @@ which time it will be set using the Dirty tracking mechanism described above.
------------
Name: kvm_lock
Type: spinlock_t
Type: mutex
Arch: any
Protects: - vm_list

View File

@ -6,3 +6,4 @@ x86 architecture specifics
:maxdepth: 1
mds
tsx_async_abort

View File

@ -0,0 +1,117 @@
.. SPDX-License-Identifier: GPL-2.0
TSX Async Abort (TAA) mitigation
================================
.. _tsx_async_abort:
Overview
--------
TSX Async Abort (TAA) is a side channel attack on internal buffers in some
Intel processors similar to Microachitectural Data Sampling (MDS). In this
case certain loads may speculatively pass invalid data to dependent operations
when an asynchronous abort condition is pending in a Transactional
Synchronization Extensions (TSX) transaction. This includes loads with no
fault or assist condition. Such loads may speculatively expose stale data from
the same uarch data structures as in MDS, with same scope of exposure i.e.
same-thread and cross-thread. This issue affects all current processors that
support TSX.
Mitigation strategy
-------------------
a) TSX disable - one of the mitigations is to disable TSX. A new MSR
IA32_TSX_CTRL will be available in future and current processors after
microcode update which can be used to disable TSX. In addition, it
controls the enumeration of the TSX feature bits (RTM and HLE) in CPUID.
b) Clear CPU buffers - similar to MDS, clearing the CPU buffers mitigates this
vulnerability. More details on this approach can be found in
:ref:`Documentation/admin-guide/hw-vuln/mds.rst <mds>`.
Kernel internal mitigation modes
--------------------------------
============= ============================================================
off Mitigation is disabled. Either the CPU is not affected or
tsx_async_abort=off is supplied on the kernel command line.
tsx disabled Mitigation is enabled. TSX feature is disabled by default at
bootup on processors that support TSX control.
verw Mitigation is enabled. CPU is affected and MD_CLEAR is
advertised in CPUID.
ucode needed Mitigation is enabled. CPU is affected and MD_CLEAR is not
advertised in CPUID. That is mainly for virtualization
scenarios where the host has the updated microcode but the
hypervisor does not expose MD_CLEAR in CPUID. It's a best
effort approach without guarantee.
============= ============================================================
If the CPU is affected and the "tsx_async_abort" kernel command line parameter is
not provided then the kernel selects an appropriate mitigation depending on the
status of RTM and MD_CLEAR CPUID bits.
Below tables indicate the impact of tsx=on|off|auto cmdline options on state of
TAA mitigation, VERW behavior and TSX feature for various combinations of
MSR_IA32_ARCH_CAPABILITIES bits.
1. "tsx=off"
========= ========= ============ ============ ============== =================== ======================
MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=off
---------------------------------- -------------------------------------------------------------------------
TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
========= ========= ============ ============ ============== =================== ======================
0 0 0 HW default Yes Same as MDS Same as MDS
0 0 1 Invalid case Invalid case Invalid case Invalid case
0 1 0 HW default No Need ucode update Need ucode update
0 1 1 Disabled Yes TSX disabled TSX disabled
1 X 1 Disabled X None needed None needed
========= ========= ============ ============ ============== =================== ======================
2. "tsx=on"
========= ========= ============ ============ ============== =================== ======================
MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=on
---------------------------------- -------------------------------------------------------------------------
TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
========= ========= ============ ============ ============== =================== ======================
0 0 0 HW default Yes Same as MDS Same as MDS
0 0 1 Invalid case Invalid case Invalid case Invalid case
0 1 0 HW default No Need ucode update Need ucode update
0 1 1 Enabled Yes None Same as MDS
1 X 1 Enabled X None needed None needed
========= ========= ============ ============ ============== =================== ======================
3. "tsx=auto"
========= ========= ============ ============ ============== =================== ======================
MSR_IA32_ARCH_CAPABILITIES bits Result with cmdline tsx=auto
---------------------------------- -------------------------------------------------------------------------
TAA_NO MDS_NO TSX_CTRL_MSR TSX state VERW can clear TAA mitigation TAA mitigation
after bootup CPU buffers tsx_async_abort=off tsx_async_abort=full
========= ========= ============ ============ ============== =================== ======================
0 0 0 HW default Yes Same as MDS Same as MDS
0 0 1 Invalid case Invalid case Invalid case Invalid case
0 1 0 HW default No Need ucode update Need ucode update
0 1 1 Disabled Yes TSX disabled TSX disabled
1 X 1 Enabled X None needed None needed
========= ========= ============ ============ ============== =================== ======================
In the tables, TSX_CTRL_MSR is a new bit in MSR_IA32_ARCH_CAPABILITIES that
indicates whether MSR_IA32_TSX_CTRL is supported.
There are two control bits in IA32_TSX_CTRL MSR:
Bit 0: When set it disables the Restricted Transactional Memory (RTM)
sub-feature of TSX (will force all transactions to abort on the
XBEGIN instruction).
Bit 1: When set it disables the enumeration of the RTM and HLE feature
(i.e. it will make CPUID(EAX=7).EBX{bit4} and
CPUID(EAX=7).EBX{bit11} read as 0).

View File

@ -7340,7 +7340,7 @@ M: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
M: Rodrigo Vivi <rodrigo.vivi@intel.com>
L: intel-gfx@lists.freedesktop.org
W: https://01.org/linuxgraphics/
B: https://01.org/linuxgraphics/documentation/how-report-bugs
B: https://gitlab.freedesktop.org/drm/intel/-/wikis/How-to-file-i915-bugs
C: irc://chat.freenode.net/intel-gfx
Q: http://patchwork.freedesktop.org/project/intel-gfx/
T: git git://anongit.freedesktop.org/drm-intel
@ -15117,13 +15117,6 @@ W: http://www.linux-usb.org/usbnet
S: Maintained
F: drivers/net/usb/dm9601.c
USB DIAMOND RIO500 DRIVER
M: Cesar Miquel <miquel@df.uba.ar>
L: rio500-users@lists.sourceforge.net
W: http://rio500.sourceforge.net
S: Maintained
F: drivers/usb/misc/rio500*
USB EHCI DRIVER
M: Alan Stern <stern@rowland.harvard.edu>
L: linux-usb@vger.kernel.org

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0
VERSION = 4
PATCHLEVEL = 19
SUBLEVEL = 78
SUBLEVEL = 107
EXTRAVERSION =
NAME = "People's Front"
@ -835,6 +835,12 @@ KBUILD_CFLAGS += $(call cc-option,-Werror=designated-init)
# change __FILE__ to the relative path from the srctree
KBUILD_CFLAGS += $(call cc-option,-fmacro-prefix-map=$(srctree)/=)
# ensure -fcf-protection is disabled when using retpoline as it is
# incompatible with -mindirect-branch=thunk-extern
ifdef CONFIG_RETPOLINE
KBUILD_CFLAGS += $(call cc-option,-fcf-protection=none)
endif
# use the deterministic mode of AR if available
KBUILD_ARFLAGS := $(call ar-option,D)
@ -958,6 +964,7 @@ ifdef CONFIG_STACK_VALIDATION
endif
endif
PHONY += prepare0
ifeq ($(KBUILD_EXTMOD),)
core-y += kernel/ certs/ mm/ fs/ ipc/ security/ crypto/ block/
@ -1066,8 +1073,7 @@ scripts: scripts_basic asm-generic gcc-plugins $(autoksyms_h)
# archprepare is used in arch Makefiles and when processed asm symlink,
# version.h and scripts_basic is processed / created.
# Listed in dependency order
PHONY += prepare archprepare prepare0 prepare1 prepare2 prepare3
PHONY += prepare archprepare prepare1 prepare2 prepare3
# prepare3 is used to check if we are building in a separate output directory,
# and if so do:
@ -1501,9 +1507,6 @@ else # KBUILD_EXTMOD
# We are always building modules
KBUILD_MODULES := 1
PHONY += crmodverdir
crmodverdir:
$(cmd_crmodverdir)
PHONY += $(objtree)/Module.symvers
$(objtree)/Module.symvers:
@ -1515,7 +1518,7 @@ $(objtree)/Module.symvers:
module-dirs := $(addprefix _module_,$(KBUILD_EXTMOD))
PHONY += $(module-dirs) modules
$(module-dirs): crmodverdir $(objtree)/Module.symvers
$(module-dirs): prepare $(objtree)/Module.symvers
$(Q)$(MAKE) $(build)=$(patsubst _module_%,%,$@)
modules: $(module-dirs)
@ -1556,7 +1559,8 @@ help:
# Dummies...
PHONY += prepare scripts
prepare: ;
prepare:
$(cmd_crmodverdir)
scripts: ;
endif # KBUILD_EXTMOD
@ -1683,17 +1687,14 @@ endif
# Modules
/: prepare scripts FORCE
$(cmd_crmodverdir)
$(Q)$(MAKE) KBUILD_MODULES=$(if $(CONFIG_MODULES),1) \
$(build)=$(build-dir)
# Make sure the latest headers are built for Documentation
Documentation/ samples/: headers_install
%/: prepare scripts FORCE
$(cmd_crmodverdir)
$(Q)$(MAKE) KBUILD_MODULES=$(if $(CONFIG_MODULES),1) \
$(build)=$(build-dir)
%.ko: prepare scripts FORCE
$(cmd_crmodverdir)
$(Q)$(MAKE) KBUILD_MODULES=$(if $(CONFIG_MODULES),1) \
$(build)=$(build-dir) $(@:.ko=.o)
$(Q)$(MAKE) -f $(srctree)/scripts/Makefile.modpost

View File

@ -80,6 +80,7 @@
interrupt-names = "macirq";
phy-mode = "rgmii";
snps,pbl = < 32 >;
snps,multicast-filter-bins = <256>;
clocks = <&apbclk>;
clock-names = "stmmaceth";
max-speed = <100>;

View File

@ -124,7 +124,9 @@ extern unsigned long perip_base, perip_end;
/* IO coherency related Auxiliary registers */
#define ARC_REG_IO_COH_ENABLE 0x500
#define ARC_IO_COH_ENABLE_BIT BIT(0)
#define ARC_REG_IO_COH_PARTIAL 0x501
#define ARC_IO_COH_PARTIAL_BIT BIT(0)
#define ARC_REG_IO_COH_AP0_BASE 0x508
#define ARC_REG_IO_COH_AP0_SIZE 0x509

View File

@ -490,8 +490,8 @@ static int arc_pmu_device_probe(struct platform_device *pdev)
/* loop thru all available h/w condition indexes */
for (j = 0; j < cc_bcr.c; j++) {
write_aux_reg(ARC_REG_CC_INDEX, j);
cc_name.indiv.word0 = read_aux_reg(ARC_REG_CC_NAME0);
cc_name.indiv.word1 = read_aux_reg(ARC_REG_CC_NAME1);
cc_name.indiv.word0 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME0));
cc_name.indiv.word1 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME1));
/* See if it has been mapped to a perf event_id */
for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) {

View File

@ -1144,6 +1144,20 @@ noinline void __init arc_ioc_setup(void)
{
unsigned int ioc_base, mem_sz;
/*
* If IOC was already enabled (due to bootloader) it technically needs to
* be reconfigured with aperture base,size corresponding to Linux memory map
* which will certainly be different than uboot's. But disabling and
* reenabling IOC when DMA might be potentially active is tricky business.
* To avoid random memory issues later, just panic here and ask user to
* upgrade bootloader to one which doesn't enable IOC
*/
if (read_aux_reg(ARC_REG_IO_COH_ENABLE) & ARC_IO_COH_ENABLE_BIT)
panic("IOC already enabled, please upgrade bootloader!\n");
if (!ioc_enable)
return;
/*
* As for today we don't support both IOC and ZONE_HIGHMEM enabled
* simultaneously. This happens because as of today IOC aperture covers
@ -1187,8 +1201,8 @@ noinline void __init arc_ioc_setup(void)
panic("IOC Aperture start must be aligned to the size of the aperture");
write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12);
write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
write_aux_reg(ARC_REG_IO_COH_PARTIAL, ARC_IO_COH_PARTIAL_BIT);
write_aux_reg(ARC_REG_IO_COH_ENABLE, ARC_IO_COH_ENABLE_BIT);
/* Re-enable L1 dcache */
__dc_enable();
@ -1265,7 +1279,7 @@ void __init arc_cache_init_master(void)
if (is_isa_arcv2() && l2_line_sz && !slc_enable)
arc_slc_disable();
if (is_isa_arcv2() && ioc_enable)
if (is_isa_arcv2() && ioc_exists)
arc_ioc_setup();
if (is_isa_arcv2() && l2_line_sz && slc_enable) {

View File

@ -7,7 +7,7 @@
menuconfig ARC_PLAT_EZNPS
bool "\"EZchip\" ARC dev platform"
select CPU_BIG_ENDIAN
select CLKSRC_NPS
select CLKSRC_NPS if !PHYS_ADDR_T_64BIT
select EZNPS_GIC
select EZCHIP_NPS_MANAGEMENT_ENET if ETHERNET
help

View File

@ -61,7 +61,7 @@ config ARM
select HAVE_EBPF_JIT if !CPU_ENDIAN_BE32
select HAVE_CONTEXT_TRACKING
select HAVE_C_RECORDMCOUNT
select HAVE_DEBUG_KMEMLEAK
select HAVE_DEBUG_KMEMLEAK if !XIP_KERNEL
select HAVE_DMA_CONTIGUOUS if MMU
select HAVE_DYNAMIC_FTRACE if (!XIP_KERNEL) && !CPU_ENDIAN_BE32 && MMU
select HAVE_DYNAMIC_FTRACE_WITH_REGS if HAVE_DYNAMIC_FTRACE
@ -2008,7 +2008,7 @@ config XIP_DEFLATED_DATA
config KEXEC
bool "Kexec system call (EXPERIMENTAL)"
depends on (!SMP || PM_SLEEP_SMP)
depends on !CPU_V7M
depends on MMU
select KEXEC_CORE
help
kexec is a system call that implements the ability to shutdown your

View File

@ -1079,14 +1079,21 @@ choice
Say Y here if you want kernel low-level debugging support
on SOCFPGA(Cyclone 5 and Arria 5) based platforms.
config DEBUG_SOCFPGA_UART1
config DEBUG_SOCFPGA_ARRIA10_UART1
depends on ARCH_SOCFPGA
bool "Use SOCFPGA UART1 for low-level debug"
bool "Use SOCFPGA Arria10 UART1 for low-level debug"
select DEBUG_UART_8250
help
Say Y here if you want kernel low-level debugging support
on SOCFPGA(Arria 10) based platforms.
config DEBUG_SOCFPGA_CYCLONE5_UART1
depends on ARCH_SOCFPGA
bool "Use SOCFPGA Cyclone 5 UART1 for low-level debug"
select DEBUG_UART_8250
help
Say Y here if you want kernel low-level debugging support
on SOCFPGA(Cyclone 5 and Arria 5) based platforms.
config DEBUG_SUN9I_UART0
bool "Kernel low-level debugging messages via sun9i UART0"
@ -1432,21 +1439,21 @@ config DEBUG_OMAP2PLUS_UART
depends on ARCH_OMAP2PLUS
config DEBUG_IMX_UART_PORT
int "i.MX Debug UART Port Selection" if DEBUG_IMX1_UART || \
DEBUG_IMX25_UART || \
DEBUG_IMX21_IMX27_UART || \
DEBUG_IMX31_UART || \
DEBUG_IMX35_UART || \
DEBUG_IMX50_UART || \
DEBUG_IMX51_UART || \
DEBUG_IMX53_UART || \
DEBUG_IMX6Q_UART || \
DEBUG_IMX6SL_UART || \
DEBUG_IMX6SX_UART || \
DEBUG_IMX6UL_UART || \
DEBUG_IMX7D_UART
int "i.MX Debug UART Port Selection"
depends on DEBUG_IMX1_UART || \
DEBUG_IMX25_UART || \
DEBUG_IMX21_IMX27_UART || \
DEBUG_IMX31_UART || \
DEBUG_IMX35_UART || \
DEBUG_IMX50_UART || \
DEBUG_IMX51_UART || \
DEBUG_IMX53_UART || \
DEBUG_IMX6Q_UART || \
DEBUG_IMX6SL_UART || \
DEBUG_IMX6SX_UART || \
DEBUG_IMX6UL_UART || \
DEBUG_IMX7D_UART
default 1
depends on ARCH_MXC
help
Choose UART port on which kernel low-level debug messages
should be output.
@ -1647,7 +1654,8 @@ config DEBUG_UART_PHYS
default 0xfe800000 if ARCH_IOP32X
default 0xff690000 if DEBUG_RK32_UART2
default 0xffc02000 if DEBUG_SOCFPGA_UART0
default 0xffc02100 if DEBUG_SOCFPGA_UART1
default 0xffc02100 if DEBUG_SOCFPGA_ARRIA10_UART1
default 0xffc03000 if DEBUG_SOCFPGA_CYCLONE5_UART1
default 0xffd82340 if ARCH_IOP13XX
default 0xffe40000 if DEBUG_RCAR_GEN1_SCIF0
default 0xffe42000 if DEBUG_RCAR_GEN1_SCIF2
@ -1754,7 +1762,8 @@ config DEBUG_UART_VIRT
default 0xfeb30c00 if DEBUG_KEYSTONE_UART0
default 0xfeb31000 if DEBUG_KEYSTONE_UART1
default 0xfec02000 if DEBUG_SOCFPGA_UART0
default 0xfec02100 if DEBUG_SOCFPGA_UART1
default 0xfec02100 if DEBUG_SOCFPGA_ARRIA10_UART1
default 0xfec03000 if DEBUG_SOCFPGA_CYCLONE5_UART1
default 0xfec12000 if (DEBUG_MVEBU_UART0 || DEBUG_MVEBU_UART0_ALTERNATE) && ARCH_MVEBU
default 0xfec12100 if DEBUG_MVEBU_UART1_ALTERNATE
default 0xfec10000 if DEBUG_SIRFATLAS7_UART0
@ -1803,9 +1812,9 @@ config DEBUG_UART_8250_WORD
depends on DEBUG_LL_UART_8250 || DEBUG_UART_8250
depends on DEBUG_UART_8250_SHIFT >= 2
default y if DEBUG_PICOXCELL_UART || \
DEBUG_SOCFPGA_UART0 || DEBUG_SOCFPGA_UART1 || \
DEBUG_KEYSTONE_UART0 || DEBUG_KEYSTONE_UART1 || \
DEBUG_ALPINE_UART0 || \
DEBUG_SOCFPGA_UART0 || DEBUG_SOCFPGA_ARRIA10_UART1 || \
DEBUG_SOCFPGA_CYCLONE5_UART1 || DEBUG_KEYSTONE_UART0 || \
DEBUG_KEYSTONE_UART1 || DEBUG_ALPINE_UART0 || \
DEBUG_DAVINCI_DMx_UART0 || DEBUG_DAVINCI_DA8XX_UART1 || \
DEBUG_DAVINCI_DA8XX_UART2 || DEBUG_BCM_IPROC_UART3 || \
DEBUG_BCM_KONA_UART || DEBUG_RK32_UART2

View File

@ -2,10 +2,14 @@
#ifndef _ARM_LIBFDT_ENV_H
#define _ARM_LIBFDT_ENV_H
#include <linux/limits.h>
#include <linux/types.h>
#include <linux/string.h>
#include <asm/byteorder.h>
#define INT32_MAX S32_MAX
#define UINT32_MAX U32_MAX
typedef __be16 fdt16_t;
typedef __be32 fdt32_t;
typedef __be64 fdt64_t;

View File

@ -88,7 +88,7 @@
};
&i2c0 {
tda19988: tda19988 {
tda19988: tda19988@70 {
compatible = "nxp,tda998x";
reg = <0x70>;
@ -131,6 +131,11 @@
};
/ {
memory@80000000 {
device_type = "memory";
reg = <0x80000000 0x20000000>; /* 512 MB */
};
clk_mcasp0_fixed: clk_mcasp0_fixed {
#clock-cells = <0>;
compatible = "fixed-clock";

View File

@ -731,6 +731,7 @@
pinctrl-0 = <&cpsw_default>;
pinctrl-1 = <&cpsw_sleep>;
status = "okay";
slaves = <1>;
};
&davinci_mdio {
@ -738,15 +739,14 @@
pinctrl-0 = <&davinci_mdio_default>;
pinctrl-1 = <&davinci_mdio_sleep>;
status = "okay";
ethphy0: ethernet-phy@0 {
reg = <0>;
};
};
&cpsw_emac0 {
phy_id = <&davinci_mdio>, <0>;
phy-mode = "rgmii-txid";
};
&cpsw_emac1 {
phy_id = <&davinci_mdio>, <1>;
phy-handle = <&ethphy0>;
phy-mode = "rgmii-txid";
};

View File

@ -161,7 +161,7 @@
invensense,key = [4e cc 7e eb f6 1e 35 22 00 34 0d 65 32 e9 94 89];*/
};
bmp280: pressure@78 {
bmp280: pressure@76 {
compatible = "bosch,bmp280";
reg = <0x76>;
};

View File

@ -373,7 +373,7 @@
ti,pindir-d0-out-d1-in;
status = "okay";
cfaf240320a032t {
display-controller@0 {
compatible = "orisetech,otm3225a";
reg = <0>;
spi-max-frequency = <1000000>;
@ -577,7 +577,7 @@
bus-width = <4>;
pinctrl-names = "default";
pinctrl-0 = <&mmc2_pins>;
cd-gpios = <&gpio2 2 GPIO_ACTIVE_LOW>;
cd-gpios = <&gpio2 2 GPIO_ACTIVE_HIGH>;
};
&sham {

View File

@ -1101,7 +1101,7 @@
};
};
qspi: qspi@47900000 {
qspi: spi@47900000 {
compatible = "ti,am4372-qspi";
reg = <0x47900000 0x100>,
<0x30000000 0x4000000>;
@ -1142,6 +1142,8 @@
ti,hwmods = "dss_dispc";
clocks = <&disp_clk>;
clock-names = "fck";
max-memory-bandwidth = <230000000>;
};
rfbi: rfbi@4832a800 {

View File

@ -83,7 +83,7 @@
};
lcd0: display {
compatible = "osddisplays,osd057T0559-34ts", "panel-dpi";
compatible = "osddisplays,osd070t1718-19ts", "panel-dpi";
label = "lcd";
backlight = <&lcd_bl>;

View File

@ -45,7 +45,7 @@
};
lcd0: display {
compatible = "osddisplays,osd057T0559-34ts", "panel-dpi";
compatible = "osddisplays,osd070t1718-19ts", "panel-dpi";
label = "lcd";
backlight = <&lcd_bl>;
@ -839,6 +839,7 @@
pinctrl-names = "default", "sleep";
pinctrl-0 = <&spi0_pins_default>;
pinctrl-1 = <&spi0_pins_sleep>;
ti,pindir-d0-out-d1-in = <1>;
};
&spi1 {
@ -846,6 +847,7 @@
pinctrl-names = "default", "sleep";
pinctrl-0 = <&spi1_pins_default>;
pinctrl-1 = <&spi1_pins_sleep>;
ti,pindir-d0-out-d1-in = <1>;
};
&usb2_phy1 {

View File

@ -707,6 +707,60 @@
ti,bit-shift = <8>;
reg = <0x2a48>;
};
clkout1_osc_div_ck: clkout1-osc-div-ck {
#clock-cells = <0>;
compatible = "ti,divider-clock";
clocks = <&sys_clkin_ck>;
ti,bit-shift = <20>;
ti,max-div = <4>;
reg = <0x4100>;
};
clkout1_src2_mux_ck: clkout1-src2-mux-ck {
#clock-cells = <0>;
compatible = "ti,mux-clock";
clocks = <&clk_rc32k_ck>, <&sysclk_div>, <&dpll_ddr_m2_ck>,
<&dpll_per_m2_ck>, <&dpll_disp_m2_ck>,
<&dpll_mpu_m2_ck>;
reg = <0x4100>;
};
clkout1_src2_pre_div_ck: clkout1-src2-pre-div-ck {
#clock-cells = <0>;
compatible = "ti,divider-clock";
clocks = <&clkout1_src2_mux_ck>;
ti,bit-shift = <4>;
ti,max-div = <8>;
reg = <0x4100>;
};
clkout1_src2_post_div_ck: clkout1-src2-post-div-ck {
#clock-cells = <0>;
compatible = "ti,divider-clock";
clocks = <&clkout1_src2_pre_div_ck>;
ti,bit-shift = <8>;
ti,max-div = <32>;
ti,index-power-of-two;
reg = <0x4100>;
};
clkout1_mux_ck: clkout1-mux-ck {
#clock-cells = <0>;
compatible = "ti,mux-clock";
clocks = <&clkout1_osc_div_ck>, <&clk_rc32k_ck>,
<&clkout1_src2_post_div_ck>, <&dpll_extdev_m2_ck>;
ti,bit-shift = <16>;
reg = <0x4100>;
};
clkout1_ck: clkout1-ck {
#clock-cells = <0>;
compatible = "ti,gate-clock";
clocks = <&clkout1_mux_ck>;
ti,bit-shift = <23>;
reg = <0x4100>;
};
};
&prcm {

View File

@ -90,11 +90,7 @@
&pcie1_rc {
status = "okay";
gpios = <&gpio3 23 GPIO_ACTIVE_HIGH>;
};
&pcie1_ep {
gpios = <&gpio3 23 GPIO_ACTIVE_HIGH>;
gpios = <&gpio5 18 GPIO_ACTIVE_HIGH>;
};
&mmc1 {

View File

@ -71,10 +71,6 @@
gpios = <&gpio3 23 GPIO_ACTIVE_HIGH>;
};
&pcie1_ep {
gpios = <&gpio3 23 GPIO_ACTIVE_HIGH>;
};
&mailbox5 {
status = "okay";
mbox_ipu1_ipc3x: mbox_ipu1_ipc3x {

View File

@ -32,6 +32,27 @@
reg = <0x0 0x80000000 0x0 0x80000000>;
};
main_12v0: fixedregulator-main_12v0 {
/* main supply */
compatible = "regulator-fixed";
regulator-name = "main_12v0";
regulator-min-microvolt = <12000000>;
regulator-max-microvolt = <12000000>;
regulator-always-on;
regulator-boot-on;
};
evm_5v0: fixedregulator-evm_5v0 {
/* Output of TPS54531D */
compatible = "regulator-fixed";
regulator-name = "evm_5v0";
regulator-min-microvolt = <5000000>;
regulator-max-microvolt = <5000000>;
vin-supply = <&main_12v0>;
regulator-always-on;
regulator-boot-on;
};
vdd_3v3: fixedregulator-vdd_3v3 {
compatible = "regulator-fixed";
regulator-name = "vdd_3v3";
@ -550,10 +571,6 @@
gpios = <&gpio2 8 GPIO_ACTIVE_LOW>;
};
&pcie1_ep {
gpios = <&gpio2 8 GPIO_ACTIVE_LOW>;
};
&mcasp3 {
#sound-dai-cells = <0>;
assigned-clocks = <&l4per_clkctrl DRA7_MCASP3_CLKCTRL 24>;

View File

@ -518,7 +518,7 @@
};
/* touch controller */
ads7846@0 {
touchscreen@1 {
pinctrl-names = "default";
pinctrl-0 = <&ads7846_pins>;

View File

@ -371,7 +371,7 @@
clock-names = "uartclk", "apb_pclk";
};
ssp: ssp@1000d000 {
ssp: spi@1000d000 {
compatible = "arm,pl022", "arm,primecell";
reg = <0x1000d000 0x1000>;
clocks = <&sspclk>, <&pclk>;

View File

@ -45,7 +45,7 @@
};
/* The voltage to the MMC card is hardwired at 3.3V */
vmmc: fixedregulator@0 {
vmmc: regulator-vmmc {
compatible = "regulator-fixed";
regulator-name = "vmmc";
regulator-min-microvolt = <3300000>;
@ -53,7 +53,7 @@
regulator-boot-on;
};
veth: fixedregulator@0 {
veth: regulator-veth {
compatible = "regulator-fixed";
regulator-name = "veth";
regulator-min-microvolt = <3300000>;
@ -380,7 +380,7 @@
clock-names = "apb_pclk";
};
pb1176_ssp: ssp@1010b000 {
pb1176_ssp: spi@1010b000 {
compatible = "arm,pl022", "arm,primecell";
reg = <0x1010b000 0x1000>;
interrupt-parent = <&intc_dc1176>;

View File

@ -145,7 +145,7 @@
};
/* The voltage to the MMC card is hardwired at 3.3V */
vmmc: fixedregulator@0 {
vmmc: regulator-vmmc {
compatible = "regulator-fixed";
regulator-name = "vmmc";
regulator-min-microvolt = <3300000>;
@ -153,7 +153,7 @@
regulator-boot-on;
};
veth: fixedregulator@0 {
veth: regulator-veth {
compatible = "regulator-fixed";
regulator-name = "veth";
regulator-min-microvolt = <3300000>;
@ -523,7 +523,7 @@
clock-names = "uartclk", "apb_pclk";
};
ssp@1000d000 {
spi@1000d000 {
compatible = "arm,pl022", "arm,primecell";
reg = <0x1000d000 0x1000>;
interrupt-parent = <&intc_pb11mp>;

View File

@ -44,7 +44,7 @@
};
/* The voltage to the MMC card is hardwired at 3.3V */
vmmc: fixedregulator@0 {
vmmc: regulator-vmmc {
compatible = "regulator-fixed";
regulator-name = "vmmc";
regulator-min-microvolt = <3300000>;
@ -52,7 +52,7 @@
regulator-boot-on;
};
veth: fixedregulator@0 {
veth: regulator-veth {
compatible = "regulator-fixed";
regulator-name = "veth";
regulator-min-microvolt = <3300000>;
@ -362,7 +362,7 @@
clock-names = "uartclk", "apb_pclk";
};
ssp: ssp@1000d000 {
ssp: spi@1000d000 {
compatible = "arm,pl022", "arm,primecell";
reg = <0x1000d000 0x1000>;
clocks = <&sspclk>, <&pclk>;
@ -567,4 +567,3 @@
};
};
};

View File

@ -48,7 +48,7 @@
&clearfog_sdhci_cd_pins>;
pinctrl-names = "default";
status = "okay";
vmmc = <&reg_3p3v>;
vmmc-supply = <&reg_3p3v>;
wp-inverted;
};

View File

@ -350,7 +350,7 @@
status = "disabled";
};
i2c: i2c@1e78a000 {
i2c: bus@1e78a000 {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;

View File

@ -247,7 +247,7 @@
compatible = "aspeed,ast2500-gpio";
reg = <0x1e780000 0x1000>;
interrupts = <20>;
gpio-ranges = <&pinctrl 0 0 220>;
gpio-ranges = <&pinctrl 0 0 232>;
clocks = <&syscon ASPEED_CLK_APB>;
interrupt-controller;
};
@ -410,7 +410,7 @@
status = "disabled";
};
i2c: i2c@1e78a000 {
i2c: bus@1e78a000 {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;

View File

@ -70,9 +70,9 @@
&i2c1 {
status = "okay";
eeprom@87 {
eeprom@57 {
compatible = "giantec,gt24c32a", "atmel,24c32";
reg = <87>;
reg = <0x57>;
pagesize = <32>;
};
};

View File

@ -59,9 +59,9 @@
&i2c1 {
status = "okay";
ft5426@56 {
ft5426@38 {
compatible = "focaltech,ft5426", "edt,edt-ft5406";
reg = <56>;
reg = <0x38>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_lcd_ctp_int>;

View File

@ -38,14 +38,16 @@
atmel,pins =
<AT91_PIOA 21
AT91_PERIPH_GPIO
AT91_PINCTRL_OUTPUT_VAL(0)>;
(AT91_PINCTRL_OUTPUT |
AT91_PINCTRL_OUTPUT_VAL(0))>;
};
pinctrl_lcd_hipow0: lcd_hipow0 {
atmel,pins =
<AT91_PIOA 23
AT91_PERIPH_GPIO
AT91_PINCTRL_OUTPUT_VAL(0)>;
(AT91_PINCTRL_OUTPUT |
AT91_PINCTRL_OUTPUT_VAL(0))>;
};
};
};
@ -219,6 +221,7 @@
reg = <0>;
bus-width = <4>;
cd-gpios = <&pioD 5 GPIO_ACTIVE_HIGH>;
cd-inverted;
};
};

View File

@ -92,13 +92,13 @@
reg = <0x40000 0xc0000>;
};
bootloaderenv@0x100000 {
label = "bootloader env";
bootloaderenvred@0x100000 {
label = "bootloader env redundant";
reg = <0x100000 0x40000>;
};
bootloaderenvred@0x140000 {
label = "bootloader env redundant";
bootloaderenv@0x140000 {
label = "bootloader env";
reg = <0x140000 0x40000>;
};

View File

@ -252,7 +252,7 @@
rootfs@800000 {
label = "rootfs";
reg = <0x800000 0x0f800000>;
reg = <0x800000 0x1f800000>;
};
};
};

View File

@ -128,7 +128,7 @@
i2c2: i2c@f8024000 {
status = "okay";
rtc1: rtc@64 {
rtc1: rtc@32 {
compatible = "epson,rx8900";
reg = <0x32>;
};

View File

@ -434,7 +434,7 @@
usart0 {
pinctrl_usart0: usart0-0 {
atmel,pins =
<AT91_PIOB 4 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOB 4 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOB 5 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -468,7 +468,7 @@
usart1 {
pinctrl_usart1: usart1-0 {
atmel,pins =
<AT91_PIOB 6 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOB 6 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOB 7 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -486,7 +486,7 @@
usart2 {
pinctrl_usart2: usart2-0 {
atmel,pins =
<AT91_PIOB 8 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOB 8 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOB 9 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -504,7 +504,7 @@
usart3 {
pinctrl_usart3: usart3-0 {
atmel,pins =
<AT91_PIOB 10 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOB 10 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOB 11 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -522,7 +522,7 @@
uart0 {
pinctrl_uart0: uart0-0 {
atmel,pins =
<AT91_PIOA 31 AT91_PERIPH_B AT91_PINCTRL_NONE
<AT91_PIOA 31 AT91_PERIPH_B AT91_PINCTRL_PULL_UP
AT91_PIOA 30 AT91_PERIPH_B AT91_PINCTRL_PULL_UP>;
};
};
@ -530,7 +530,7 @@
uart1 {
pinctrl_uart1: uart1-0 {
atmel,pins =
<AT91_PIOB 12 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOB 12 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOB 13 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
};

View File

@ -127,7 +127,7 @@
spi0: spi@fffc8000 {
cs-gpios = <0>, <&pioC 11 0>, <0>, <0>;
mtd_dataflash@0 {
mtd_dataflash@1 {
compatible = "atmel,at45", "atmel,dataflash";
spi-max-frequency = <50000000>;
reg = <1>;

View File

@ -328,7 +328,7 @@
usart0 {
pinctrl_usart0: usart0-0 {
atmel,pins =
<AT91_PIOC 8 AT91_PERIPH_A AT91_PINCTRL_NONE>,
<AT91_PIOC 8 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>,
<AT91_PIOC 9 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -346,7 +346,7 @@
usart1 {
pinctrl_usart1: usart1-0 {
atmel,pins =
<AT91_PIOC 12 AT91_PERIPH_A AT91_PINCTRL_NONE>,
<AT91_PIOC 12 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>,
<AT91_PIOC 13 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -364,7 +364,7 @@
usart2 {
pinctrl_usart2: usart2-0 {
atmel,pins =
<AT91_PIOC 14 AT91_PERIPH_A AT91_PINCTRL_NONE>,
<AT91_PIOC 14 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>,
<AT91_PIOC 15 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};

View File

@ -160,7 +160,7 @@
spi-max-frequency = <15000000>;
};
tsc2046@0 {
tsc2046@2 {
reg = <2>;
compatible = "ti,ads7843";
interrupts-extended = <&pioC 2 IRQ_TYPE_EDGE_BOTH>;

View File

@ -437,7 +437,7 @@
usart0 {
pinctrl_usart0: usart0-0 {
atmel,pins =
<AT91_PIOA 26 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOA 26 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOA 27 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -455,7 +455,7 @@
usart1 {
pinctrl_usart1: usart1-0 {
atmel,pins =
<AT91_PIOD 0 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOD 0 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOD 1 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -473,7 +473,7 @@
usart2 {
pinctrl_usart2: usart2-0 {
atmel,pins =
<AT91_PIOD 2 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOD 2 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOD 3 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};

View File

@ -109,7 +109,7 @@
spi0: spi@fffc8000 {
cs-gpios = <0>, <&pioC 11 0>, <0>, <0>;
mtd_dataflash@0 {
mtd_dataflash@1 {
compatible = "atmel,at45", "atmel,dataflash";
spi-max-frequency = <50000000>;
reg = <1>;

View File

@ -555,7 +555,7 @@
usart0 {
pinctrl_usart0: usart0-0 {
atmel,pins =
<AT91_PIOB 19 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOB 19 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOB 18 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -570,10 +570,10 @@
};
};
uart1 {
usart1 {
pinctrl_usart1: usart1-0 {
atmel,pins =
<AT91_PIOB 4 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOB 4 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOB 5 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -591,7 +591,7 @@
usart2 {
pinctrl_usart2: usart2-0 {
atmel,pins =
<AT91_PIOB 6 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOB 6 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOB 7 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -609,7 +609,7 @@
usart3 {
pinctrl_usart3: usart3-0 {
atmel,pins =
<AT91_PIOB 8 AT91_PERIPH_A AT91_PINCTRL_NONE
<AT91_PIOB 8 AT91_PERIPH_A AT91_PINCTRL_PULL_UP
AT91_PIOB 9 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};

View File

@ -681,7 +681,7 @@
usart0 {
pinctrl_usart0: usart0-0 {
atmel,pins =
<AT91_PIOA 6 AT91_PERIPH_A AT91_PINCTRL_NONE>,
<AT91_PIOA 6 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>,
<AT91_PIOA 7 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -720,7 +720,7 @@
usart1 {
pinctrl_usart1: usart1-0 {
atmel,pins =
<AT91_PIOA 11 AT91_PERIPH_A AT91_PINCTRL_NONE>,
<AT91_PIOA 11 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>,
<AT91_PIOA 12 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -743,7 +743,7 @@
usart2 {
pinctrl_usart2: usart2-0 {
atmel,pins =
<AT91_PIOA 13 AT91_PERIPH_A AT91_PINCTRL_NONE>,
<AT91_PIOA 13 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>,
<AT91_PIOA 14 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};
@ -766,7 +766,7 @@
usart3 {
pinctrl_usart3: usart3-0 {
atmel,pins =
<AT91_PIOB 0 AT91_PERIPH_A AT91_PINCTRL_NONE>,
<AT91_PIOB 0 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>,
<AT91_PIOB 1 AT91_PERIPH_A AT91_PINCTRL_PULL_UP>;
};

View File

@ -100,7 +100,7 @@
rootfs@800000 {
label = "rootfs";
reg = <0x800000 0x1f800000>;
reg = <0x800000 0x0f800000>;
};
};
};

View File

@ -169,8 +169,8 @@
mdio: mdio@18002000 {
compatible = "brcm,iproc-mdio";
reg = <0x18002000 0x8>;
#size-cells = <1>;
#address-cells = <0>;
#size-cells = <0>;
#address-cells = <1>;
status = "disabled";
gphy0: ethernet-phy@0 {

View File

@ -216,7 +216,7 @@
reg = <0x33000 0x14>;
};
qspi: qspi@27200 {
qspi: spi@27200 {
compatible = "brcm,spi-bcm-qspi", "brcm,spi-nsp-qspi";
reg = <0x027200 0x184>,
<0x027000 0x124>,

View File

@ -273,7 +273,7 @@
brcm,nand-has-wp;
};
qspi: qspi@27200 {
qspi: spi@27200 {
compatible = "brcm,spi-bcm-qspi", "brcm,spi-nsp-qspi";
reg = <0x027200 0x184>,
<0x027000 0x124>,

View File

@ -32,7 +32,7 @@
mailbox@7e00b840 {
compatible = "brcm,bcm2835-vchiq";
reg = <0x7e00b840 0xf>;
reg = <0x7e00b840 0x3c>;
interrupts = <0 2>;
};
};

View File

@ -39,7 +39,7 @@
trips {
cpu-crit {
temperature = <80000>;
temperature = <90000>;
hysteresis = <0>;
type = "critical";
};

View File

@ -350,8 +350,8 @@
mdio: mdio@18003000 {
compatible = "brcm,iproc-mdio";
reg = <0x18003000 0x8>;
#size-cells = <1>;
#address-cells = <0>;
#size-cells = <0>;
#address-cells = <1>;
};
mdio-bus-mux {

View File

@ -87,7 +87,7 @@
status = "okay";
clock-frequency = <100000>;
si5351: clock-generator {
si5351: clock-generator@60 {
compatible = "silabs,si5351a-msop";
reg = <0x60>;
#address-cells = <1>;

View File

@ -155,7 +155,7 @@
0xffffe000 MBUS_ID(0x03, 0x01) 0 0x0000800 /* CESA SRAM 2k */
0xfffff000 MBUS_ID(0x0d, 0x00) 0 0x0000800>; /* PMU SRAM 2k */
spi0: spi-ctrl@10600 {
spi0: spi@10600 {
compatible = "marvell,orion-spi";
#address-cells = <1>;
#size-cells = <0>;
@ -168,7 +168,7 @@
status = "disabled";
};
i2c: i2c-ctrl@11000 {
i2c: i2c@11000 {
compatible = "marvell,mv64xxx-i2c";
reg = <0x11000 0x20>;
#address-cells = <1>;
@ -218,7 +218,7 @@
status = "disabled";
};
spi1: spi-ctrl@14600 {
spi1: spi@14600 {
compatible = "marvell,orion-spi";
#address-cells = <1>;
#size-cells = <0>;

View File

@ -336,6 +336,7 @@
<0 0 0 2 &pcie1_intc 2>,
<0 0 0 3 &pcie1_intc 3>,
<0 0 0 4 &pcie1_intc 4>;
ti,syscon-unaligned-access = <&scm_conf1 0x14 1>;
status = "disabled";
pcie1_intc: interrupt-controller {
interrupt-controller;
@ -387,6 +388,7 @@
<0 0 0 2 &pcie2_intc 2>,
<0 0 0 3 &pcie2_intc 3>,
<0 0 0 4 &pcie2_intc 4>;
ti,syscon-unaligned-access = <&scm_conf1 0x14 2>;
pcie2_intc: interrupt-controller {
interrupt-controller;
#address-cells = <0>;
@ -1369,7 +1371,7 @@
status = "disabled";
};
qspi: qspi@4b300000 {
qspi: spi@4b300000 {
compatible = "ti,dra7xxx-qspi";
reg = <0x4b300000 0x100>,
<0x5c000000 0x4000000>;

View File

@ -69,6 +69,8 @@
compatible = "samsung,s2mps14-pmic";
interrupt-parent = <&gpx3>;
interrupts = <5 IRQ_TYPE_NONE>;
pinctrl-names = "default";
pinctrl-0 = <&s2mps14_irq>;
reg = <0x66>;
s2mps14_osc: clocks {
@ -350,6 +352,11 @@
samsung,pin-drv = <EXYNOS4_PIN_DRV_LV3>;
samsung,pin-val = <1>;
};
s2mps14_irq: s2mps14-irq {
samsung,pins = "gpx3-5";
samsung,pin-pud = <EXYNOS_PIN_PULL_NONE>;
};
};
&rtc {

View File

@ -360,7 +360,7 @@
};
hsotg: hsotg@12480000 {
compatible = "snps,dwc2";
compatible = "samsung,s3c6400-hsotg", "snps,dwc2";
reg = <0x12480000 0x20000>;
interrupts = <GIC_SPI 141 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&cmu CLK_USBOTG>;

View File

@ -149,9 +149,11 @@
};
&hdmi {
pinctrl-names = "default";
pinctrl-0 = <&hdmi_hpd>;
status = "okay";
ddc = <&i2c_2>;
hpd-gpios = <&gpx3 7 GPIO_ACTIVE_LOW>;
ddc = <&i2c_ddc>;
hpd-gpios = <&gpx3 7 GPIO_ACTIVE_HIGH>;
vdd_osc-supply = <&ldo10_reg>;
vdd_pll-supply = <&ldo8_reg>;
vdd-supply = <&ldo8_reg>;
@ -168,6 +170,8 @@
reg = <0x66>;
interrupt-parent = <&gpx3>;
interrupts = <2 IRQ_TYPE_LEVEL_LOW>;
pinctrl-names = "default";
pinctrl-0 = <&s5m8767_irq>;
vinb1-supply = <&main_dc_reg>;
vinb2-supply = <&main_dc_reg>;
@ -452,13 +456,6 @@
};
};
&i2c_2 {
status = "okay";
/* used by HDMI DDC */
samsung,i2c-sda-delay = <100>;
samsung,i2c-max-bus-freq = <66000>;
};
&i2c_3 {
status = "okay";
@ -535,6 +532,13 @@
cap-sd-highspeed;
};
&pinctrl_0 {
s5m8767_irq: s5m8767-irq {
samsung,pins = "gpx3-2";
samsung,pin-pud = <EXYNOS_PIN_PULL_NONE>;
};
};
&rtc {
status = "okay";
};
@ -547,3 +551,22 @@
status = "okay";
samsung,exynos-sataphy-i2c-phandle = <&sata_phy_i2c>;
};
&soc {
/*
* For unknown reasons HDMI-DDC does not work with Exynos I2C
* controllers. Lets use software I2C over GPIO pins as a workaround.
*/
i2c_ddc: i2c-gpio {
pinctrl-names = "default";
pinctrl-0 = <&i2c2_gpio_bus>;
status = "okay";
compatible = "i2c-gpio";
gpios = <&gpa0 6 0 /* sda */
&gpa0 7 0 /* scl */
>;
i2c-gpio,delay-us = <2>;
#address-cells = <1>;
#size-cells = <0>;
};
};

View File

@ -225,6 +225,12 @@
samsung,pin-drv = <EXYNOS4_PIN_DRV_LV1>;
};
i2c2_gpio_bus: i2c2-gpio-bus {
samsung,pins = "gpa0-6", "gpa0-7";
samsung,pin-pud = <EXYNOS_PIN_PULL_NONE>;
samsung,pin-drv = <EXYNOS4_PIN_DRV_LV1>;
};
uart2_data: uart2-data {
samsung,pins = "gpa1-0", "gpa1-1";
samsung,pin-function = <EXYNOS_PIN_FUNC_2>;
@ -593,6 +599,11 @@
samsung,pin-pud = <EXYNOS_PIN_PULL_NONE>;
samsung,pin-drv = <EXYNOS4_PIN_DRV_LV1>;
};
hdmi_hpd: hdmi-hpd {
samsung,pins = "gpx3-7";
samsung,pin-pud = <EXYNOS_PIN_PULL_NONE>;
};
};
&pinctrl_1 {

View File

@ -20,6 +20,14 @@
samsung,model = "Snow-I2S-MAX98090";
samsung,audio-codec = <&max98090>;
cpu {
sound-dai = <&i2s0 0>;
};
codec {
sound-dai = <&max98090 0>, <&hdmi>;
};
};
};
@ -31,6 +39,9 @@
interrupt-parent = <&gpx0>;
pinctrl-names = "default";
pinctrl-0 = <&max98090_irq>;
clocks = <&pmu_system_controller 0>;
clock-names = "mclk";
#sound-dai-cells = <1>;
};
};

View File

@ -153,7 +153,7 @@
&clock_audss {
assigned-clocks = <&clock_audss EXYNOS_MOUT_AUDSS>;
assigned-clock-parents = <&clock CLK_FOUT_EPLL>;
assigned-clock-parents = <&clock CLK_MAU_EPLL>;
};
&cpu0 {
@ -312,6 +312,7 @@
regulator-name = "vdd_1v35";
regulator-min-microvolt = <1350000>;
regulator-max-microvolt = <1350000>;
regulator-always-on;
regulator-boot-on;
regulator-state-mem {
regulator-on-in-suspend;
@ -333,6 +334,7 @@
regulator-name = "vdd_2v";
regulator-min-microvolt = <2000000>;
regulator-max-microvolt = <2000000>;
regulator-always-on;
regulator-boot-on;
regulator-state-mem {
regulator-on-in-suspend;
@ -343,6 +345,7 @@
regulator-name = "vdd_1v8";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;
regulator-always-on;
regulator-boot-on;
regulator-state-mem {
regulator-on-in-suspend;

View File

@ -224,7 +224,7 @@
ldo13_reg: LDO13 {
regulator-name = "vddq_mmc2";
regulator-min-microvolt = <2800000>;
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <2800000>;
};

View File

@ -153,7 +153,7 @@
&clock_audss {
assigned-clocks = <&clock_audss EXYNOS_MOUT_AUDSS>;
assigned-clock-parents = <&clock CLK_FOUT_EPLL>;
assigned-clock-parents = <&clock CLK_MAU_EPLL>;
};
&cpu0 {
@ -312,6 +312,7 @@
regulator-name = "vdd_1v35";
regulator-min-microvolt = <1350000>;
regulator-max-microvolt = <1350000>;
regulator-always-on;
regulator-boot-on;
regulator-state-mem {
regulator-on-in-suspend;
@ -333,6 +334,7 @@
regulator-name = "vdd_2v";
regulator-min-microvolt = <2000000>;
regulator-max-microvolt = <2000000>;
regulator-always-on;
regulator-boot-on;
regulator-state-mem {
regulator-on-in-suspend;
@ -343,6 +345,7 @@
regulator-name = "vdd_1v8";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;
regulator-always-on;
regulator-boot-on;
regulator-state-mem {
regulator-on-in-suspend;

View File

@ -20,7 +20,7 @@
};
chosen {
bootargs = "console=ttyS0,115200n8";
bootargs = "console=ttyS0,115200n8 root=/dev/mtdblock2 rw rootfstype=squashfs,jffs2 rootwait";
stdout-path = &uart0;
};
@ -138,37 +138,10 @@
/* 16MB of flash */
reg = <0x30000000 0x01000000>;
partition@0 {
label = "RedBoot";
reg = <0x00000000 0x00120000>;
read-only;
};
partition@120000 {
label = "Kernel";
reg = <0x00120000 0x00200000>;
};
partition@320000 {
label = "Ramdisk";
reg = <0x00320000 0x00600000>;
};
partition@920000 {
label = "Application";
reg = <0x00920000 0x00600000>;
};
partition@f20000 {
label = "VCTL";
reg = <0x00f20000 0x00020000>;
read-only;
};
partition@f40000 {
label = "CurConf";
reg = <0x00f40000 0x000a0000>;
read-only;
};
partition@fe0000 {
label = "FIS directory";
reg = <0x00fe0000 0x00020000>;
read-only;
partitions {
compatible = "redboot-fis";
/* Eraseblock at 0xfe0000 */
fis-index-block = <0x1fc>;
};
};

View File

@ -21,6 +21,7 @@
};
memory@8000000 {
device_type = "memory";
reg = <0x08000000 0x04000000>;
};
};

View File

@ -21,6 +21,7 @@
};
memory@8000000 {
device_type = "memory";
reg = <0x08000000 0x00800000>;
};
};

View File

@ -15,10 +15,8 @@
* The decompressor and also some bootloaders rely on a
* pre-existing /chosen node to be available to insert the
* command line and merge other ATAGS info.
* Also for U-Boot there must be a pre-existing /memory node.
*/
chosen {};
memory { device_type = "memory"; };
aliases {
gpio0 = &gpio1;

View File

@ -10,6 +10,7 @@
compatible = "fsl,imx23-evk", "fsl,imx23";
memory@40000000 {
device_type = "memory";
reg = <0x40000000 0x08000000>;
};

View File

@ -20,6 +20,7 @@
compatible = "olimex,imx23-olinuxino", "fsl,imx23";
memory@40000000 {
device_type = "memory";
reg = <0x40000000 0x04000000>;
};

View File

@ -50,6 +50,7 @@
compatible = "sandisk,sansa_fuze_plus", "fsl,imx23";
memory@40000000 {
device_type = "memory";
reg = <0x40000000 0x04000000>;
};

View File

@ -17,6 +17,7 @@
compatible = "fsl,stmp378x-devb", "fsl,imx23";
memory@40000000 {
device_type = "memory";
reg = <0x40000000 0x04000000>;
};

View File

@ -49,6 +49,7 @@
compatible = "creative,x-fi3", "fsl,imx23";
memory@40000000 {
device_type = "memory";
reg = <0x40000000 0x04000000>;
};

View File

@ -13,10 +13,8 @@
* The decompressor and also some bootloaders rely on a
* pre-existing /chosen node to be available to insert the
* command line and merge other ATAGS info.
* Also for U-Boot there must be a pre-existing /memory node.
*/
chosen {};
memory { device_type = "memory"; };
aliases {
gpio0 = &gpio0;

View File

@ -18,6 +18,7 @@
compatible = "eukrea,cpuimx25", "fsl,imx25";
memory@80000000 {
device_type = "memory";
reg = <0x80000000 0x4000000>; /* 64M */
};
};

View File

@ -37,6 +37,7 @@
};
memory@80000000 {
device_type = "memory";
reg = <0x80000000 0x02000000 0x90000000 0x02000000>;
};
};

View File

@ -12,6 +12,7 @@
compatible = "fsl,imx25-pdk", "fsl,imx25";
memory@80000000 {
device_type = "memory";
reg = <0x80000000 0x4000000>;
};

View File

@ -12,10 +12,8 @@
* The decompressor and also some bootloaders rely on a
* pre-existing /chosen node to be available to insert the
* command line and merge other ATAGS info.
* Also for U-Boot there must be a pre-existing /memory node.
*/
chosen {};
memory { device_type = "memory"; };
aliases {
ethernet0 = &fec;

View File

@ -20,6 +20,7 @@
compatible = "armadeus,imx27-apf27", "fsl,imx27";
memory@a0000000 {
device_type = "memory";
reg = <0xa0000000 0x04000000>;
};
};

Some files were not shown because too many files have changed in this diff Show More