net/phy: Inphi IN112525_s03 retimer support

Software controller for IN112525_s03 retimer

Signed-off-by: Florin Chiculita <florinlaurentiu.chiculita@nxp.com>
This commit is contained in:
Florin Chiculita 2018-11-09 06:20:36 +02:00 committed by Dong Aisheng
parent 4005d43ba8
commit 46bb3930ed
3 changed files with 584 additions and 0 deletions

View File

@ -389,6 +389,11 @@ config ICPLUS_PHY
---help---
Currently supports the IP175C and IP1001 PHYs.
config INPHI_PHY
tristate "Inphi CDR 10G/25G Ethernet PHY"
---help---
Currently supports the IN112525_S03 part @ 25G
config INTEL_XWAY_PHY
tristate "Intel XWAY PHYs"
---help---

View File

@ -72,6 +72,7 @@ obj-$(CONFIG_DP83848_PHY) += dp83848.o
obj-$(CONFIG_DP83867_PHY) += dp83867.o
obj-$(CONFIG_FIXED_PHY) += fixed_phy.o
obj-$(CONFIG_ICPLUS_PHY) += icplus.o
obj-$(CONFIG_INPHI_PHY) += inphi.o
obj-$(CONFIG_INTEL_XWAY_PHY) += intel-xway.o
obj-$(CONFIG_LSI_ET1011C_PHY) += et1011c.o
obj-$(CONFIG_LXT_PHY) += lxt.o

578
drivers/net/phy/inphi.c Normal file
View File

@ -0,0 +1,578 @@
/*
* Copyright 2018 NXP
* Copyright 2018 INPHI
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Inphi is a registered trademark of Inphi Corporation
*
*/
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/mdio.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/of_irq.h>
#include <linux/workqueue.h>
#include <linux/i2c.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#define PHY_ID_IN112525 0x02107440
#define INPHI_S03_DEVICE_ID_MSB 0x2
#define INPHI_S03_DEVICE_ID_LSB 0x3
#define ALL_LANES 4
#define INPHI_POLL_DELAY 2500
#define PHYCTRL_REG1 0x0012
#define PHYCTRL_REG2 0x0014
#define PHYCTRL_REG3 0x0120
#define PHYCTRL_REG4 0x0121
#define PHYCTRL_REG5 0x0180
#define PHYCTRL_REG6 0x0580
#define PHYCTRL_REG7 0x05C4
#define PHYCTRL_REG8 0x01C8
#define PHYCTRL_REG9 0x0521
#define PHYSTAT_REG1 0x0021
#define PHYSTAT_REG2 0x0022
#define PHYSTAT_REG3 0x0123
#define PHYMISC_REG1 0x0025
#define PHYMISC_REG2 0x002c
#define PHYMISC_REG3 0x00b3
#define PHYMISC_REG4 0x0181
#define PHYMISC_REG5 0x019D
#define PHYMISC_REG6 0x0198
#define PHYMISC_REG7 0x0199
#define PHYMISC_REG8 0x0581
#define PHYMISC_REG9 0x0598
#define PHYMISC_REG10 0x059c
#define PHYMISC_REG20 0x01B0
#define PHYMISC_REG21 0x01BC
#define PHYMISC_REG22 0x01C0
#define RX_VCO_CODE_OFFSET 5
#define mdio_wr(a, b) phy_write_mmd(inphi_phydev, MDIO_MMD_VEND1, (a), (b))
#define mdio_rd(a) phy_read_mmd(inphi_phydev, MDIO_MMD_VEND1, (a))
#define VCO_CODE 390
int vco_codes[ALL_LANES] = {
VCO_CODE,
VCO_CODE,
VCO_CODE,
VCO_CODE
};
static void mykmod_work_handler(struct work_struct *w);
static struct workqueue_struct *wq;
static DECLARE_DELAYED_WORK(mykmod_work, mykmod_work_handler);
static unsigned long onesec;
struct phy_device *inphi_phydev;
int bit_test(int value, int bit_field)
{
int result;
int bit_mask = (1 << bit_field);
result = ((value & bit_mask) == bit_mask);
return result;
}
int tx_pll_lock_test(int lane)
{
int i, val, locked = 1;
if (lane == ALL_LANES) {
for (i = 0; i < ALL_LANES; i++) {
val = mdio_rd(i * 0x100 + PHYSTAT_REG3);
locked = locked & bit_test(val, 15);
}
} else {
val = mdio_rd(lane * 0x100 + PHYSTAT_REG3);
locked = locked & bit_test(val, 15);
}
return locked;
}
void rx_reset_assert(int lane)
{
int mask, val;
if (lane == ALL_LANES) {
val = mdio_rd(PHYMISC_REG2);
mask = (1 << 15);
mdio_wr(PHYMISC_REG2, val + mask);
} else {
val = mdio_rd(lane * 0x100 + PHYCTRL_REG8);
mask = (1 << 6);
mdio_wr(lane * 0x100 + PHYCTRL_REG8, val + mask);
}
}
void rx_reset_de_assert(int lane)
{
int mask, val;
if (lane == ALL_LANES) {
val = mdio_rd(PHYMISC_REG2);
mask = 0xffff - (1 << 15);
mdio_wr(PHYMISC_REG2, val & mask);
} else {
val = mdio_rd(lane * 0x100 + PHYCTRL_REG8);
mask = 0xffff - (1 << 6);
mdio_wr(lane * 0x100 + PHYCTRL_REG8, val & mask);
}
}
void rx_powerdown_assert(int lane)
{
int mask, val;
val = mdio_rd(lane * 0x100 + PHYCTRL_REG8);
mask = (1 << 5);
mdio_wr(lane * 0x100 + PHYCTRL_REG8, val + mask);
}
void rx_powerdown_de_assert(int lane)
{
int mask, val;
val = mdio_rd(lane * 0x100 + PHYCTRL_REG8);
mask = 0xffff - (1 << 5);
mdio_wr(lane * 0x100 + PHYCTRL_REG8, val & mask);
}
void tx_pll_assert(int lane)
{
int val, recal;
if (lane == ALL_LANES) {
val = mdio_rd(PHYMISC_REG2);
recal = (1 << 12);
mdio_wr(PHYMISC_REG2, val | recal);
} else {
val = mdio_rd(lane * 0x100 + PHYCTRL_REG4);
recal = (1 << 15);
mdio_wr(lane * 0x100 + PHYCTRL_REG4, val | recal);
}
}
void tx_pll_de_assert(int lane)
{
int recal, val;
if (lane == ALL_LANES) {
val = mdio_rd(PHYMISC_REG2);
recal = 0xefff;
mdio_wr(PHYMISC_REG2, val & recal);
} else {
val = mdio_rd(lane * 0x100 + PHYCTRL_REG4);
recal = 0x7fff;
mdio_wr(lane * 0x100 + PHYCTRL_REG4, val & recal);
}
}
void tx_core_assert(int lane)
{
int recal, val, val2, core_reset;
if (lane == 4) {
val = mdio_rd(PHYMISC_REG2);
recal = 1 << 10;
mdio_wr(PHYMISC_REG2, val | recal);
} else {
val2 = mdio_rd(PHYMISC_REG3);
core_reset = (1 << (lane + 8));
mdio_wr(PHYMISC_REG3, val2 | core_reset);
}
}
void lol_disable(int lane)
{
int val, mask;
val = mdio_rd(PHYMISC_REG3);
mask = 1 << (lane + 4);
mdio_wr(PHYMISC_REG3, val | mask);
}
void tx_core_de_assert(int lane)
{
int val, recal, val2, core_reset;
if (lane == ALL_LANES) {
val = mdio_rd(PHYMISC_REG2);
recal = 0xffff - (1 << 10);
mdio_wr(PHYMISC_REG2, val & recal);
} else {
val2 = mdio_rd(PHYMISC_REG3);
core_reset = 0xffff - (1 << (lane + 8));
mdio_wr(PHYMISC_REG3, val2 & core_reset);
}
}
void tx_restart(int lane)
{
tx_core_assert(lane);
tx_pll_assert(lane);
tx_pll_de_assert(lane);
usleep_range(1500, 1600);
tx_core_de_assert(lane);
}
void disable_lane(int lane)
{
rx_reset_assert(lane);
rx_powerdown_assert(lane);
tx_core_assert(lane);
lol_disable(lane);
}
void toggle_reset(int lane)
{
int reg, val, orig;
if (lane == ALL_LANES) {
mdio_wr(PHYMISC_REG2, 0x8000);
udelay(100);
mdio_wr(PHYMISC_REG2, 0x0000);
} else {
reg = lane * 0x100 + PHYCTRL_REG8;
val = (1 << 6);
orig = mdio_rd(reg);
mdio_wr(reg, orig + val);
udelay(100);
mdio_wr(reg, orig);
}
}
int az_complete_test(int lane)
{
int success = 1, value;
if (lane == 0 || lane == ALL_LANES) {
value = mdio_rd(PHYCTRL_REG5);
success = success & bit_test(value, 2);
}
if (lane == 1 || lane == ALL_LANES) {
value = mdio_rd(PHYCTRL_REG5 + 0x100);
success = success & bit_test(value, 2);
}
if (lane == 2 || lane == ALL_LANES) {
value = mdio_rd(PHYCTRL_REG5 + 0x200);
success = success & bit_test(value, 2);
}
if (lane == 3 || lane == ALL_LANES) {
value = mdio_rd(PHYCTRL_REG5 + 0x300);
success = success & bit_test(value, 2);
}
return success;
}
void save_az_offsets(int lane)
{
int i;
#define AZ_OFFSET_LANE_UPDATE(reg, lane) \
mdio_wr((reg) + (lane) * 0x100, \
(mdio_rd((reg) + (lane) * 0x100) >> 8))
if (lane == ALL_LANES) {
for (i = 0; i < ALL_LANES; i++) {
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG20, i);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG20 + 1, i);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG20 + 2, i);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG20 + 3, i);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG21, i);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG21 + 1, i);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG21 + 2, i);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG21 + 3, i);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG22, i);
}
} else {
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG20, lane);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG20 + 1, lane);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG20 + 2, lane);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG20 + 3, lane);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG21, lane);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG21 + 1, lane);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG21 + 2, lane);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG21 + 3, lane);
AZ_OFFSET_LANE_UPDATE(PHYMISC_REG22, lane);
}
mdio_wr(PHYCTRL_REG7, 0x0001);
}
void save_vco_codes(int lane)
{
int i;
if (lane == ALL_LANES) {
for (i = 0; i < ALL_LANES; i++) {
vco_codes[i] = mdio_rd(PHYMISC_REG5 + i * 0x100);
mdio_wr(PHYMISC_REG5 + i * 0x100,
vco_codes[i] + RX_VCO_CODE_OFFSET);
}
} else {
vco_codes[lane] = mdio_rd(PHYMISC_REG5 + lane * 0x100);
mdio_wr(PHYMISC_REG5 + lane * 0x100,
vco_codes[lane] + RX_VCO_CODE_OFFSET);
}
}
int inphi_lane_recovery(int lane)
{
int i, value, az_pass;
switch (lane) {
case 0:
case 1:
case 2:
case 3:
rx_reset_assert(lane);
mdelay(20);
break;
case ALL_LANES:
mdio_wr(PHYMISC_REG2, 0x9C00);
mdelay(20);
do {
value = mdio_rd(PHYMISC_REG2);
udelay(10);
} while (!bit_test(value, 4));
break;
default:
dev_err(&inphi_phydev->mdio.dev,
"Incorrect usage of APIs in %s driver\n",
inphi_phydev->drv->name);
break;
}
if (lane == ALL_LANES) {
for (i = 0; i < ALL_LANES; i++)
mdio_wr(PHYMISC_REG7 + i * 0x100, VCO_CODE);
} else {
mdio_wr(PHYMISC_REG7 + lane * 0x100, VCO_CODE);
}
if (lane == ALL_LANES)
for (i = 0; i < ALL_LANES; i++)
mdio_wr(PHYCTRL_REG5 + i * 0x100, 0x0418);
else
mdio_wr(PHYCTRL_REG5 + lane * 0x100, 0x0418);
mdio_wr(PHYCTRL_REG7, 0x0000);
rx_reset_de_assert(lane);
if (lane == ALL_LANES) {
for (i = 0; i < ALL_LANES; i++) {
mdio_wr(PHYCTRL_REG5 + i * 0x100, 0x0410);
mdio_wr(PHYCTRL_REG5 + i * 0x100, 0x0412);
}
} else {
mdio_wr(PHYCTRL_REG5 + lane * 0x100, 0x0410);
mdio_wr(PHYCTRL_REG5 + lane * 0x100, 0x0412);
}
for (i = 0; i < 64; i++) {
mdelay(100);
az_pass = az_complete_test(lane);
if (az_pass) {
save_az_offsets(lane);
break;
}
}
if (!az_pass) {
pr_info("in112525: AZ calibration fail @ lane=%d\n", lane);
return -1;
}
if (lane == ALL_LANES) {
mdio_wr(PHYMISC_REG8, 0x0002);
mdio_wr(PHYMISC_REG9, 0x2028);
mdio_wr(PHYCTRL_REG6, 0x0010);
usleep_range(1000, 1200);
mdio_wr(PHYCTRL_REG6, 0x0110);
mdelay(30);
mdio_wr(PHYMISC_REG9, 0x3020);
} else {
mdio_wr(PHYMISC_REG4 + lane * 0x100, 0x0002);
mdio_wr(PHYMISC_REG6 + lane * 0x100, 0x2028);
mdio_wr(PHYCTRL_REG5 + lane * 0x100, 0x0010);
usleep_range(1000, 1200);
mdio_wr(PHYCTRL_REG5 + lane * 0x100, 0x0110);
mdelay(30);
mdio_wr(PHYMISC_REG6 + lane * 0x100, 0x3020);
}
if (lane == ALL_LANES) {
mdio_wr(PHYMISC_REG2, 0x1C00);
mdio_wr(PHYMISC_REG2, 0x0C00);
} else {
tx_restart(lane);
mdelay(11);
}
if (lane == ALL_LANES) {
if (bit_test(mdio_rd(PHYMISC_REG2), 6) == 0)
return -1;
} else {
if (tx_pll_lock_test(lane) == 0)
return -1;
}
save_vco_codes(lane);
if (lane == ALL_LANES) {
mdio_wr(PHYMISC_REG2, 0x0400);
mdio_wr(PHYMISC_REG2, 0x0000);
value = mdio_rd(PHYCTRL_REG1);
value = value & 0xffbf;
mdio_wr(PHYCTRL_REG2, value);
} else {
tx_core_de_assert(lane);
}
if (lane == ALL_LANES) {
mdio_wr(PHYMISC_REG1, 0x8000);
mdio_wr(PHYMISC_REG1, 0x0000);
}
mdio_rd(PHYMISC_REG1);
mdio_rd(PHYMISC_REG1);
usleep_range(1000, 1200);
mdio_rd(PHYSTAT_REG1);
mdio_rd(PHYSTAT_REG2);
return 0;
}
static void mykmod_work_handler(struct work_struct *w)
{
int all_lanes_lock, lane0_lock, lane1_lock, lane2_lock, lane3_lock;
lane0_lock = bit_test(mdio_rd(0x123), 15);
lane1_lock = bit_test(mdio_rd(0x223), 15);
lane2_lock = bit_test(mdio_rd(0x323), 15);
lane3_lock = bit_test(mdio_rd(0x423), 15);
/* check if the chip had any successful lane lock from the previous
* stage (e.g. u-boot)
*/
all_lanes_lock = lane0_lock | lane1_lock | lane2_lock | lane3_lock;
if (!all_lanes_lock) {
/* start fresh */
inphi_lane_recovery(ALL_LANES);
} else {
if (!lane0_lock)
inphi_lane_recovery(0);
if (!lane1_lock)
inphi_lane_recovery(1);
if (!lane2_lock)
inphi_lane_recovery(2);
if (!lane3_lock)
inphi_lane_recovery(3);
}
queue_delayed_work(wq, &mykmod_work, onesec);
}
int inphi_probe(struct phy_device *phydev)
{
int phy_id = 0, id_lsb = 0, id_msb = 0;
/* Read device id from phy registers */
id_lsb = phy_read_mmd(phydev, MDIO_MMD_VEND1, INPHI_S03_DEVICE_ID_MSB);
if (id_lsb < 0)
return -ENXIO;
phy_id = id_lsb << 16;
id_msb = phy_read_mmd(phydev, MDIO_MMD_VEND1, INPHI_S03_DEVICE_ID_LSB);
if (id_msb < 0)
return -ENXIO;
phy_id |= id_msb;
/* Make sure the device tree binding matched the driver with the
* right device.
*/
if (phy_id != phydev->drv->phy_id) {
dev_err(&phydev->mdio.dev,
"Error matching phy with %s driver\n",
phydev->drv->name);
return -ENODEV;
}
/* update the local phydev pointer, used inside all APIs */
inphi_phydev = phydev;
onesec = msecs_to_jiffies(INPHI_POLL_DELAY);
wq = create_singlethread_workqueue("inphi_kmod");
if (wq) {
queue_delayed_work(wq, &mykmod_work, onesec);
} else {
dev_err(&phydev->mdio.dev,
"Error creating kernel workqueue for %s driver\n",
phydev->drv->name);
return -ENOMEM;
}
return 0;
}
static struct phy_driver inphi_driver[] = {
{
.phy_id = PHY_ID_IN112525,
.phy_id_mask = 0x0ff0fff0,
.name = "Inphi 112525_S03",
.features = PHY_GBIT_FEATURES,
.probe = &inphi_probe,
},
};
module_phy_driver(inphi_driver);
static struct mdio_device_id __maybe_unused inphi_tbl[] = {
{ PHY_ID_IN112525, 0x0ff0fff0},
{},
};
MODULE_DEVICE_TABLE(mdio, inphi_tbl);