Documentation: x86: convert protection-keys.txt to reST

This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.

Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:
Changbin Du 2019-05-08 23:21:26 +08:00 committed by Jonathan Corbet
parent 2f6eae4730
commit 28e21eac94
2 changed files with 22 additions and 12 deletions

View File

@ -18,3 +18,4 @@ x86-specific Documentation
tlb
mtrr
pat
protection-keys

View File

@ -1,3 +1,9 @@
.. SPDX-License-Identifier: GPL-2.0
======================
Memory Protection Keys
======================
Memory Protection Keys for Userspace (PKU aka PKEYs) is a feature
which is found on Intel's Skylake "Scalable Processor" Server CPUs.
It will be avalable in future non-server parts.
@ -23,9 +29,10 @@ even though there is theoretically space in the PAE PTEs. These
permissions are enforced on data access only and have no effect on
instruction fetches.
=========================== Syscalls ===========================
Syscalls
========
There are 3 system calls which directly interact with pkeys:
There are 3 system calls which directly interact with pkeys::
int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
int pkey_free(int pkey);
@ -37,6 +44,7 @@ pkey_alloc(). An application calls the WRPKRU instruction
directly in order to change access permissions to memory covered
with a key. In this example WRPKRU is wrapped by a C function
called pkey_set().
::
int real_prot = PROT_READ|PROT_WRITE;
pkey = pkey_alloc(0, PKEY_DISABLE_WRITE);
@ -45,43 +53,44 @@ called pkey_set().
... application runs here
Now, if the application needs to update the data at 'ptr', it can
gain access, do the update, then remove its write access:
gain access, do the update, then remove its write access::
pkey_set(pkey, 0); // clear PKEY_DISABLE_WRITE
*ptr = foo; // assign something
pkey_set(pkey, PKEY_DISABLE_WRITE); // set PKEY_DISABLE_WRITE again
Now when it frees the memory, it will also free the pkey since it
is no longer in use:
is no longer in use::
munmap(ptr, PAGE_SIZE);
pkey_free(pkey);
(Note: pkey_set() is a wrapper for the RDPKRU and WRPKRU instructions.
An example implementation can be found in
tools/testing/selftests/x86/protection_keys.c)
.. note:: pkey_set() is a wrapper for the RDPKRU and WRPKRU instructions.
An example implementation can be found in
tools/testing/selftests/x86/protection_keys.c.
=========================== Behavior ===========================
Behavior
========
The kernel attempts to make protection keys consistent with the
behavior of a plain mprotect(). For instance if you do this:
behavior of a plain mprotect(). For instance if you do this::
mprotect(ptr, size, PROT_NONE);
something(ptr);
you can expect the same effects with protection keys when doing this:
you can expect the same effects with protection keys when doing this::
pkey = pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ);
pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE, pkey);
something(ptr);
That should be true whether something() is a direct access to 'ptr'
like:
like::
*ptr = foo;
or when the kernel does the access on the application's behalf like
with a read():
with a read()::
read(fd, ptr, 1);