diff --git a/Documentation/filesystems/seq_file.txt b/Documentation/filesystems/seq_file.txt index 9de4303201e1..d412b236a9d6 100644 --- a/Documentation/filesystems/seq_file.txt +++ b/Documentation/filesystems/seq_file.txt @@ -66,23 +66,39 @@ kernel 3.10. Current versions require the following update The iterator interface -Modules implementing a virtual file with seq_file must implement a simple -iterator object that allows stepping through the data of interest. -Iterators must be able to move to a specific position - like the file they -implement - but the interpretation of that position is up to the iterator -itself. A seq_file implementation that is formatting firewall rules, for -example, could interpret position N as the Nth rule in the chain. -Positioning can thus be done in whatever way makes the most sense for the -generator of the data, which need not be aware of how a position translates -to an offset in the virtual file. The one obvious exception is that a -position of zero should indicate the beginning of the file. +Modules implementing a virtual file with seq_file must implement an +iterator object that allows stepping through the data of interest +during a "session" (roughly one read() system call). If the iterator +is able to move to a specific position - like the file they implement, +though with freedom to map the position number to a sequence location +in whatever way is convenient - the iterator need only exist +transiently during a session. If the iterator cannot easily find a +numerical position but works well with a first/next interface, the +iterator can be stored in the private data area and continue from one +session to the next. + +A seq_file implementation that is formatting firewall rules from a +table, for example, could provide a simple iterator that interprets +position N as the Nth rule in the chain. A seq_file implementation +that presents the content of a, potentially volatile, linked list +might record a pointer into that list, providing that can be done +without risk of the current location being removed. + +Positioning can thus be done in whatever way makes the most sense for +the generator of the data, which need not be aware of how a position +translates to an offset in the virtual file. The one obvious exception +is that a position of zero should indicate the beginning of the file. The /proc/sequence iterator just uses the count of the next number it will output as its position. -Four functions must be implemented to make the iterator work. The first, -called start() takes a position as an argument and returns an iterator -which will start reading at that position. For our simple sequence example, +Four functions must be implemented to make the iterator work. The +first, called start(), starts a session and takes a position as an +argument, returning an iterator which will start reading at that +position. The pos passed to start() will always be either zero, or +the most recent pos used in the previous session. + +For our simple sequence example, the start() function looks like: static void *ct_seq_start(struct seq_file *s, loff_t *pos) @@ -101,11 +117,12 @@ implementations; in most cases the start() function should check for a "past end of file" condition and return NULL if need be. For more complicated applications, the private field of the seq_file -structure can be used. There is also a special value which can be returned -by the start() function called SEQ_START_TOKEN; it can be used if you wish -to instruct your show() function (described below) to print a header at the -top of the output. SEQ_START_TOKEN should only be used if the offset is -zero, however. +structure can be used to hold state from session to session. There is +also a special value which can be returned by the start() function +called SEQ_START_TOKEN; it can be used if you wish to instruct your +show() function (described below) to print a header at the top of the +output. SEQ_START_TOKEN should only be used if the offset is zero, +however. The next function to implement is called, amazingly, next(); its job is to move the iterator forward to the next position in the sequence. The @@ -121,9 +138,13 @@ complete. Here's the example version: return spos; } -The stop() function is called when iteration is complete; its job, of -course, is to clean up. If dynamic memory is allocated for the iterator, -stop() is the place to free it. +The stop() function closes a session; its job, of course, is to clean +up. If dynamic memory is allocated for the iterator, stop() is the +place to free it; if a lock was taken by start(), stop() must release +that lock. The value that *pos was set to by the last next() call +before stop() is remembered, and used for the first start() call of +the next session unless lseek() has been called on the file; in that +case next start() will be asked to start at position zero. static void ct_seq_stop(struct seq_file *s, void *v) { diff --git a/fs/seq_file.c b/fs/seq_file.c index 4cc090b50cc5..1dea7a8a5255 100644 --- a/fs/seq_file.c +++ b/fs/seq_file.c @@ -90,23 +90,22 @@ EXPORT_SYMBOL(seq_open); static int traverse(struct seq_file *m, loff_t offset) { - loff_t pos = 0, index; + loff_t pos = 0; int error = 0; void *p; m->version = 0; - index = 0; + m->index = 0; m->count = m->from = 0; - if (!offset) { - m->index = index; + if (!offset) return 0; - } + if (!m->buf) { m->buf = seq_buf_alloc(m->size = PAGE_SIZE); if (!m->buf) return -ENOMEM; } - p = m->op->start(m, &index); + p = m->op->start(m, &m->index); while (p) { error = PTR_ERR(p); if (IS_ERR(p)) @@ -123,20 +122,15 @@ static int traverse(struct seq_file *m, loff_t offset) if (pos + m->count > offset) { m->from = offset - pos; m->count -= m->from; - m->index = index; break; } pos += m->count; m->count = 0; - if (pos == offset) { - index++; - m->index = index; + p = m->op->next(m, p, &m->index); + if (pos == offset) break; - } - p = m->op->next(m, p, &index); } m->op->stop(m, p); - m->index = index; return error; Eoverflow: @@ -160,7 +154,6 @@ ssize_t seq_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) { struct seq_file *m = file->private_data; size_t copied = 0; - loff_t pos; size_t n; void *p; int err = 0; @@ -223,16 +216,12 @@ ssize_t seq_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) size -= n; buf += n; copied += n; - if (!m->count) { - m->from = 0; - m->index++; - } if (!size) goto Done; } /* we need at least one record in buffer */ - pos = m->index; - p = m->op->start(m, &pos); + m->from = 0; + p = m->op->start(m, &m->index); while (1) { err = PTR_ERR(p); if (!p || IS_ERR(p)) @@ -243,8 +232,7 @@ ssize_t seq_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) if (unlikely(err)) m->count = 0; if (unlikely(!m->count)) { - p = m->op->next(m, p, &pos); - m->index = pos; + p = m->op->next(m, p, &m->index); continue; } if (m->count < m->size) @@ -256,29 +244,33 @@ ssize_t seq_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) if (!m->buf) goto Enomem; m->version = 0; - pos = m->index; - p = m->op->start(m, &pos); + p = m->op->start(m, &m->index); } m->op->stop(m, p); m->count = 0; goto Done; Fill: /* they want more? let's try to get some more */ - while (m->count < size) { + while (1) { size_t offs = m->count; - loff_t next = pos; - p = m->op->next(m, p, &next); + loff_t pos = m->index; + + p = m->op->next(m, p, &m->index); + if (pos == m->index) + /* Buggy ->next function */ + m->index++; if (!p || IS_ERR(p)) { err = PTR_ERR(p); break; } + if (m->count >= size) + break; err = m->op->show(m, p); if (seq_has_overflowed(m) || err) { m->count = offs; if (likely(err <= 0)) break; } - pos = next; } m->op->stop(m, p); n = min(m->count, size); @@ -287,11 +279,7 @@ ssize_t seq_read(struct file *file, char __user *buf, size_t size, loff_t *ppos) goto Efault; copied += n; m->count -= n; - if (m->count) - m->from = n; - else - pos++; - m->index = pos; + m->from = n; Done: if (!copied) copied = err;