linux-brain/drivers/crypto/cavium/nitrox/nitrox_isr.c

470 lines
11 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 23:07:57 +09:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/pci.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include "nitrox_dev.h"
#include "nitrox_csr.h"
#include "nitrox_common.h"
#include "nitrox_hal.h"
#define NR_RING_VECTORS 3
#define NPS_CORE_INT_ACTIVE_ENTRY 192
/**
* nps_pkt_slc_isr - IRQ handler for NPS solicit port
* @irq: irq number
* @data: argument
*/
static irqreturn_t nps_pkt_slc_isr(int irq, void *data)
{
struct bh_data *slc = data;
union nps_pkt_slc_cnts pkt_slc_cnts;
pkt_slc_cnts.value = readq(slc->completion_cnt_csr_addr);
/* New packet on SLC output port */
if (pkt_slc_cnts.s.slc_int)
tasklet_hi_schedule(&slc->resp_handler);
return IRQ_HANDLED;
}
static void clear_nps_core_err_intr(struct nitrox_device *ndev)
{
u64 value;
/* Write 1 to clear */
value = nitrox_read_csr(ndev, NPS_CORE_INT);
nitrox_write_csr(ndev, NPS_CORE_INT, value);
dev_err_ratelimited(DEV(ndev), "NSP_CORE_INT 0x%016llx\n", value);
}
static void clear_nps_pkt_err_intr(struct nitrox_device *ndev)
{
union nps_pkt_int pkt_int;
unsigned long value, offset;
int i;
pkt_int.value = nitrox_read_csr(ndev, NPS_PKT_INT);
dev_err_ratelimited(DEV(ndev), "NPS_PKT_INT 0x%016llx\n",
pkt_int.value);
if (pkt_int.s.slc_err) {
offset = NPS_PKT_SLC_ERR_TYPE;
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
dev_err_ratelimited(DEV(ndev),
"NPS_PKT_SLC_ERR_TYPE 0x%016lx\n", value);
offset = NPS_PKT_SLC_RERR_LO;
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
/* enable the solicit ports */
for_each_set_bit(i, &value, BITS_PER_LONG)
enable_pkt_solicit_port(ndev, i);
dev_err_ratelimited(DEV(ndev),
"NPS_PKT_SLC_RERR_LO 0x%016lx\n", value);
offset = NPS_PKT_SLC_RERR_HI;
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
dev_err_ratelimited(DEV(ndev),
"NPS_PKT_SLC_RERR_HI 0x%016lx\n", value);
}
if (pkt_int.s.in_err) {
offset = NPS_PKT_IN_ERR_TYPE;
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
dev_err_ratelimited(DEV(ndev),
"NPS_PKT_IN_ERR_TYPE 0x%016lx\n", value);
offset = NPS_PKT_IN_RERR_LO;
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
/* enable the input ring */
for_each_set_bit(i, &value, BITS_PER_LONG)
enable_pkt_input_ring(ndev, i);
dev_err_ratelimited(DEV(ndev),
"NPS_PKT_IN_RERR_LO 0x%016lx\n", value);
offset = NPS_PKT_IN_RERR_HI;
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
dev_err_ratelimited(DEV(ndev),
"NPS_PKT_IN_RERR_HI 0x%016lx\n", value);
}
}
static void clear_pom_err_intr(struct nitrox_device *ndev)
{
u64 value;
value = nitrox_read_csr(ndev, POM_INT);
nitrox_write_csr(ndev, POM_INT, value);
dev_err_ratelimited(DEV(ndev), "POM_INT 0x%016llx\n", value);
}
static void clear_pem_err_intr(struct nitrox_device *ndev)
{
u64 value;
value = nitrox_read_csr(ndev, PEM0_INT);
nitrox_write_csr(ndev, PEM0_INT, value);
dev_err_ratelimited(DEV(ndev), "PEM(0)_INT 0x%016llx\n", value);
}
static void clear_lbc_err_intr(struct nitrox_device *ndev)
{
union lbc_int lbc_int;
u64 value, offset;
int i;
lbc_int.value = nitrox_read_csr(ndev, LBC_INT);
dev_err_ratelimited(DEV(ndev), "LBC_INT 0x%016llx\n", lbc_int.value);
if (lbc_int.s.dma_rd_err) {
for (i = 0; i < NR_CLUSTERS; i++) {
offset = EFL_CORE_VF_ERR_INT0X(i);
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
offset = EFL_CORE_VF_ERR_INT1X(i);
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
}
}
if (lbc_int.s.cam_soft_err) {
dev_err_ratelimited(DEV(ndev), "CAM_SOFT_ERR, invalidating LBC\n");
invalidate_lbc(ndev);
}
if (lbc_int.s.pref_dat_len_mismatch_err) {
offset = LBC_PLM_VF1_64_INT;
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
offset = LBC_PLM_VF65_128_INT;
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
}
if (lbc_int.s.rd_dat_len_mismatch_err) {
offset = LBC_ELM_VF1_64_INT;
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
offset = LBC_ELM_VF65_128_INT;
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
}
nitrox_write_csr(ndev, LBC_INT, lbc_int.value);
}
static void clear_efl_err_intr(struct nitrox_device *ndev)
{
int i;
for (i = 0; i < NR_CLUSTERS; i++) {
union efl_core_int core_int;
u64 value, offset;
offset = EFL_CORE_INTX(i);
core_int.value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, core_int.value);
dev_err_ratelimited(DEV(ndev), "ELF_CORE(%d)_INT 0x%016llx\n",
i, core_int.value);
if (core_int.s.se_err) {
offset = EFL_CORE_SE_ERR_INTX(i);
value = nitrox_read_csr(ndev, offset);
nitrox_write_csr(ndev, offset, value);
}
}
}
static void clear_bmi_err_intr(struct nitrox_device *ndev)
{
u64 value;
value = nitrox_read_csr(ndev, BMI_INT);
nitrox_write_csr(ndev, BMI_INT, value);
dev_err_ratelimited(DEV(ndev), "BMI_INT 0x%016llx\n", value);
}
/**
* clear_nps_core_int_active - clear NPS_CORE_INT_ACTIVE interrupts
* @ndev: NITROX device
*/
static void clear_nps_core_int_active(struct nitrox_device *ndev)
{
union nps_core_int_active core_int_active;
core_int_active.value = nitrox_read_csr(ndev, NPS_CORE_INT_ACTIVE);
if (core_int_active.s.nps_core)
clear_nps_core_err_intr(ndev);
if (core_int_active.s.nps_pkt)
clear_nps_pkt_err_intr(ndev);
if (core_int_active.s.pom)
clear_pom_err_intr(ndev);
if (core_int_active.s.pem)
clear_pem_err_intr(ndev);
if (core_int_active.s.lbc)
clear_lbc_err_intr(ndev);
if (core_int_active.s.efl)
clear_efl_err_intr(ndev);
if (core_int_active.s.bmi)
clear_bmi_err_intr(ndev);
/* If more work callback the ISR, set resend */
core_int_active.s.resend = 1;
nitrox_write_csr(ndev, NPS_CORE_INT_ACTIVE, core_int_active.value);
}
static irqreturn_t nps_core_int_isr(int irq, void *data)
{
struct nitrox_device *ndev = data;
clear_nps_core_int_active(ndev);
return IRQ_HANDLED;
}
static int nitrox_enable_msix(struct nitrox_device *ndev)
{
struct msix_entry *entries;
char **names;
int i, nr_entries, ret;
/*
* PF MSI-X vectors
*
* Entry 0: NPS PKT ring 0
* Entry 1: AQMQ ring 0
* Entry 2: ZQM ring 0
* Entry 3: NPS PKT ring 1
* Entry 4: AQMQ ring 1
* Entry 5: ZQM ring 1
* ....
* Entry 192: NPS_CORE_INT_ACTIVE
*/
nr_entries = (ndev->nr_queues * NR_RING_VECTORS) + 1;
treewide: kzalloc_node() -> kcalloc_node() The kzalloc_node() function has a 2-factor argument form, kcalloc_node(). This patch replaces cases of: kzalloc_node(a * b, gfp, node) with: kcalloc_node(a * b, gfp, node) as well as handling cases of: kzalloc_node(a * b * c, gfp, node) with: kzalloc_node(array3_size(a, b, c), gfp, node) as it's slightly less ugly than: kcalloc_node(array_size(a, b), c, gfp, node) This does, however, attempt to ignore constant size factors like: kzalloc_node(4 * 1024, gfp, node) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc_node( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc_node( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc_node( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc_node( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc_node( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc_node( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc_node( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc_node( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc_node( - sizeof(char) * COUNT + COUNT , ...) | kzalloc_node( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc_node + kcalloc_node ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc_node( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc_node( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc_node( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc_node( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc_node( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc_node( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc_node( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc_node( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc_node( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc_node( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc_node( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc_node( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc_node( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc_node( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc_node( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc_node( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc_node(C1 * C2 * C3, ...) | kzalloc_node( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc_node( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc_node( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc_node( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc_node(sizeof(THING) * C2, ...) | kzalloc_node(sizeof(TYPE) * C2, ...) | kzalloc_node(C1 * C2 * C3, ...) | kzalloc_node(C1 * C2, ...) | - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc_node + kcalloc_node ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc_node + kcalloc_node ( - (E1) * E2 + E1, E2 , ...) | - kzalloc_node + kcalloc_node ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc_node + kcalloc_node ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 06:04:20 +09:00
entries = kcalloc_node(nr_entries, sizeof(struct msix_entry),
GFP_KERNEL, ndev->node);
if (!entries)
return -ENOMEM;
names = kcalloc(nr_entries, sizeof(char *), GFP_KERNEL);
if (!names) {
kfree(entries);
return -ENOMEM;
}
/* fill entires */
for (i = 0; i < (nr_entries - 1); i++)
entries[i].entry = i;
entries[i].entry = NPS_CORE_INT_ACTIVE_ENTRY;
for (i = 0; i < nr_entries; i++) {
*(names + i) = kzalloc(MAX_MSIX_VECTOR_NAME, GFP_KERNEL);
if (!(*(names + i))) {
ret = -ENOMEM;
goto msix_fail;
}
}
ndev->msix.entries = entries;
ndev->msix.names = names;
ndev->msix.nr_entries = nr_entries;
ret = pci_enable_msix_exact(ndev->pdev, ndev->msix.entries,
ndev->msix.nr_entries);
if (ret) {
dev_err(&ndev->pdev->dev, "Failed to enable MSI-X IRQ(s) %d\n",
ret);
goto msix_fail;
}
return 0;
msix_fail:
for (i = 0; i < nr_entries; i++)
kfree(*(names + i));
kfree(entries);
kfree(names);
return ret;
}
static void nitrox_cleanup_pkt_slc_bh(struct nitrox_device *ndev)
{
int i;
if (!ndev->bh.slc)
return;
for (i = 0; i < ndev->nr_queues; i++) {
struct bh_data *bh = &ndev->bh.slc[i];
tasklet_disable(&bh->resp_handler);
tasklet_kill(&bh->resp_handler);
}
kfree(ndev->bh.slc);
ndev->bh.slc = NULL;
}
static int nitrox_setup_pkt_slc_bh(struct nitrox_device *ndev)
{
u32 size;
int i;
size = ndev->nr_queues * sizeof(struct bh_data);
ndev->bh.slc = kzalloc(size, GFP_KERNEL);
if (!ndev->bh.slc)
return -ENOMEM;
for (i = 0; i < ndev->nr_queues; i++) {
struct bh_data *bh = &ndev->bh.slc[i];
u64 offset;
offset = NPS_PKT_SLC_CNTSX(i);
/* pre calculate completion count address */
bh->completion_cnt_csr_addr = NITROX_CSR_ADDR(ndev, offset);
bh->cmdq = &ndev->pkt_inq[i];
tasklet_init(&bh->resp_handler, pkt_slc_resp_handler,
(unsigned long)bh);
}
return 0;
}
static int nitrox_request_irqs(struct nitrox_device *ndev)
{
struct pci_dev *pdev = ndev->pdev;
struct msix_entry *msix_ent = ndev->msix.entries;
int nr_ring_vectors, i = 0, ring, cpu, ret;
char *name;
/*
* PF MSI-X vectors
*
* Entry 0: NPS PKT ring 0
* Entry 1: AQMQ ring 0
* Entry 2: ZQM ring 0
* Entry 3: NPS PKT ring 1
* ....
* Entry 192: NPS_CORE_INT_ACTIVE
*/
nr_ring_vectors = ndev->nr_queues * NR_RING_VECTORS;
/* request irq for pkt ring/ports only */
while (i < nr_ring_vectors) {
name = *(ndev->msix.names + i);
ring = (i / NR_RING_VECTORS);
snprintf(name, MAX_MSIX_VECTOR_NAME, "n5(%d)-slc-ring%d",
ndev->idx, ring);
ret = request_irq(msix_ent[i].vector, nps_pkt_slc_isr, 0,
name, &ndev->bh.slc[ring]);
if (ret) {
dev_err(&pdev->dev, "failed to get irq %d for %s\n",
msix_ent[i].vector, name);
return ret;
}
cpu = ring % num_online_cpus();
irq_set_affinity_hint(msix_ent[i].vector, get_cpu_mask(cpu));
set_bit(i, ndev->msix.irqs);
i += NR_RING_VECTORS;
}
/* Request IRQ for NPS_CORE_INT_ACTIVE */
name = *(ndev->msix.names + i);
snprintf(name, MAX_MSIX_VECTOR_NAME, "n5(%d)-nps-core-int", ndev->idx);
ret = request_irq(msix_ent[i].vector, nps_core_int_isr, 0, name, ndev);
if (ret) {
dev_err(&pdev->dev, "failed to get irq %d for %s\n",
msix_ent[i].vector, name);
return ret;
}
set_bit(i, ndev->msix.irqs);
return 0;
}
static void nitrox_disable_msix(struct nitrox_device *ndev)
{
struct msix_entry *msix_ent = ndev->msix.entries;
char **names = ndev->msix.names;
int i = 0, ring, nr_ring_vectors;
nr_ring_vectors = ndev->msix.nr_entries - 1;
/* clear pkt ring irqs */
while (i < nr_ring_vectors) {
if (test_and_clear_bit(i, ndev->msix.irqs)) {
ring = (i / NR_RING_VECTORS);
irq_set_affinity_hint(msix_ent[i].vector, NULL);
free_irq(msix_ent[i].vector, &ndev->bh.slc[ring]);
}
i += NR_RING_VECTORS;
}
irq_set_affinity_hint(msix_ent[i].vector, NULL);
free_irq(msix_ent[i].vector, ndev);
clear_bit(i, ndev->msix.irqs);
kfree(ndev->msix.entries);
for (i = 0; i < ndev->msix.nr_entries; i++)
kfree(*(names + i));
kfree(names);
pci_disable_msix(ndev->pdev);
}
/**
* nitrox_pf_cleanup_isr: Cleanup PF MSI-X and IRQ
* @ndev: NITROX device
*/
void nitrox_pf_cleanup_isr(struct nitrox_device *ndev)
{
nitrox_disable_msix(ndev);
nitrox_cleanup_pkt_slc_bh(ndev);
}
/**
* nitrox_init_isr - Initialize PF MSI-X vectors and IRQ
* @ndev: NITROX device
*
* Return: 0 on success, a negative value on failure.
*/
int nitrox_pf_init_isr(struct nitrox_device *ndev)
{
int err;
err = nitrox_setup_pkt_slc_bh(ndev);
if (err)
return err;
err = nitrox_enable_msix(ndev);
if (err)
goto msix_fail;
err = nitrox_request_irqs(ndev);
if (err)
goto irq_fail;
return 0;
irq_fail:
nitrox_disable_msix(ndev);
msix_fail:
nitrox_cleanup_pkt_slc_bh(ndev);
return err;
}