linux-brain/drivers/gpu/drm/vc4/vc4_plane.c

1280 lines
38 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
*/
/**
* DOC: VC4 plane module
*
* Each DRM plane is a layer of pixels being scanned out by the HVS.
*
* At atomic modeset check time, we compute the HVS display element
* state that would be necessary for displaying the plane (giving us a
* chance to figure out if a plane configuration is invalid), then at
* atomic flush time the CRTC will ask us to write our element state
* into the region of the HVS that it has allocated for us.
*/
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_plane_helper.h>
#include "uapi/drm/vc4_drm.h"
#include "vc4_drv.h"
#include "vc4_regs.h"
static const struct hvs_format {
u32 drm; /* DRM_FORMAT_* */
u32 hvs; /* HVS_FORMAT_* */
u32 pixel_order;
} hvs_formats[] = {
{
.drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
.pixel_order = HVS_PIXEL_ORDER_ABGR,
},
{
.drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
.pixel_order = HVS_PIXEL_ORDER_ABGR,
},
{
.drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
.pixel_order = HVS_PIXEL_ORDER_ARGB,
},
{
.drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
.pixel_order = HVS_PIXEL_ORDER_ARGB,
},
{
.drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
.pixel_order = HVS_PIXEL_ORDER_XRGB,
},
{
.drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
.pixel_order = HVS_PIXEL_ORDER_XBGR,
},
{
.drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
.pixel_order = HVS_PIXEL_ORDER_ABGR,
},
{
.drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
.pixel_order = HVS_PIXEL_ORDER_ABGR,
},
{
.drm = DRM_FORMAT_RGB888, .hvs = HVS_PIXEL_FORMAT_RGB888,
.pixel_order = HVS_PIXEL_ORDER_XRGB,
},
{
.drm = DRM_FORMAT_BGR888, .hvs = HVS_PIXEL_FORMAT_RGB888,
.pixel_order = HVS_PIXEL_ORDER_XBGR,
},
{
.drm = DRM_FORMAT_YUV422,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
},
{
.drm = DRM_FORMAT_YVU422,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
},
{
.drm = DRM_FORMAT_YUV420,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
},
{
.drm = DRM_FORMAT_YVU420,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
},
{
.drm = DRM_FORMAT_NV12,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
},
{
.drm = DRM_FORMAT_NV21,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
},
{
.drm = DRM_FORMAT_NV16,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
},
{
.drm = DRM_FORMAT_NV61,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
},
};
static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
if (hvs_formats[i].drm == drm_format)
return &hvs_formats[i];
}
return NULL;
}
static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
{
if (dst == src)
return VC4_SCALING_NONE;
if (3 * dst >= 2 * src)
return VC4_SCALING_PPF;
else
return VC4_SCALING_TPZ;
}
static bool plane_enabled(struct drm_plane_state *state)
{
return state->fb && state->crtc;
}
static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
{
struct vc4_plane_state *vc4_state;
if (WARN_ON(!plane->state))
return NULL;
vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
if (!vc4_state)
return NULL;
memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
vc4_state->dlist_initialized = 0;
__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
if (vc4_state->dlist) {
vc4_state->dlist = kmemdup(vc4_state->dlist,
vc4_state->dlist_count * 4,
GFP_KERNEL);
if (!vc4_state->dlist) {
kfree(vc4_state);
return NULL;
}
vc4_state->dlist_size = vc4_state->dlist_count;
}
return &vc4_state->base;
}
static void vc4_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
if (vc4_state->lbm.allocated) {
unsigned long irqflags;
spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
drm_mm_remove_node(&vc4_state->lbm);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
}
kfree(vc4_state->dlist);
__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
kfree(state);
}
/* Called during init to allocate the plane's atomic state. */
static void vc4_plane_reset(struct drm_plane *plane)
{
struct vc4_plane_state *vc4_state;
WARN_ON(plane->state);
vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
if (!vc4_state)
return;
__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
}
static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
{
if (vc4_state->dlist_count == vc4_state->dlist_size) {
u32 new_size = max(4u, vc4_state->dlist_count * 2);
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:55:00 +09:00
u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
if (!new_dlist)
return;
memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
kfree(vc4_state->dlist);
vc4_state->dlist = new_dlist;
vc4_state->dlist_size = new_size;
}
vc4_state->dlist_count++;
}
static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
{
unsigned int idx = vc4_state->dlist_count;
vc4_dlist_counter_increment(vc4_state);
vc4_state->dlist[idx] = val;
}
/* Returns the scl0/scl1 field based on whether the dimensions need to
* be up/down/non-scaled.
*
* This is a replication of a table from the spec.
*/
static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
return SCALER_CTL0_SCL_H_PPF_V_PPF;
case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
return SCALER_CTL0_SCL_H_TPZ_V_PPF;
case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
return SCALER_CTL0_SCL_H_PPF_V_TPZ;
case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
return SCALER_CTL0_SCL_H_PPF_V_NONE;
case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
return SCALER_CTL0_SCL_H_NONE_V_PPF;
case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
return SCALER_CTL0_SCL_H_NONE_V_TPZ;
case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
return SCALER_CTL0_SCL_H_TPZ_V_NONE;
default:
case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
/* The unity case is independently handled by
* SCALER_CTL0_UNITY.
*/
return 0;
}
}
static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
{
struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
struct drm_crtc_state *crtc_state;
crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
pstate->crtc);
vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
if (!left && !right && !top && !bottom)
return 0;
if (left + right >= crtc_state->mode.hdisplay ||
top + bottom >= crtc_state->mode.vdisplay)
return -EINVAL;
adjhdisplay = crtc_state->mode.hdisplay - (left + right);
vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
adjhdisplay,
crtc_state->mode.hdisplay);
vc4_pstate->crtc_x += left;
if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;
adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
adjvdisplay,
crtc_state->mode.vdisplay);
vc4_pstate->crtc_y += top;
if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;
vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
adjhdisplay,
crtc_state->mode.hdisplay);
vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
adjvdisplay,
crtc_state->mode.vdisplay);
if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
return -EINVAL;
return 0;
}
static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
struct drm_framebuffer *fb = state->fb;
struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
u32 subpixel_src_mask = (1 << 16) - 1;
int num_planes = fb->format->num_planes;
struct drm_crtc_state *crtc_state;
u32 h_subsample = fb->format->hsub;
u32 v_subsample = fb->format->vsub;
int i, ret;
crtc_state = drm_atomic_get_existing_crtc_state(state->state,
state->crtc);
if (!crtc_state) {
DRM_DEBUG_KMS("Invalid crtc state\n");
return -EINVAL;
}
ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
INT_MAX, true, true);
if (ret)
return ret;
for (i = 0; i < num_planes; i++)
vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
/* We don't support subpixel source positioning for scaling. */
if ((state->src.x1 & subpixel_src_mask) ||
(state->src.x2 & subpixel_src_mask) ||
(state->src.y1 & subpixel_src_mask) ||
(state->src.y2 & subpixel_src_mask)) {
return -EINVAL;
}
vc4_state->src_x = state->src.x1 >> 16;
vc4_state->src_y = state->src.y1 >> 16;
vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
vc4_state->crtc_x = state->dst.x1;
vc4_state->crtc_y = state->dst.y1;
vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
ret = vc4_plane_margins_adj(state);
if (ret)
return ret;
vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
vc4_state->crtc_w);
vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
vc4_state->crtc_h);
vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
vc4_state->y_scaling[0] == VC4_SCALING_NONE);
if (num_planes > 1) {
vc4_state->is_yuv = true;
vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
vc4_state->x_scaling[1] =
vc4_get_scaling_mode(vc4_state->src_w[1],
vc4_state->crtc_w);
vc4_state->y_scaling[1] =
vc4_get_scaling_mode(vc4_state->src_h[1],
vc4_state->crtc_h);
/* YUV conversion requires that horizontal scaling be enabled
* on the UV plane even if vc4_get_scaling_mode() returned
* VC4_SCALING_NONE (which can happen when the down-scaling
* ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
* case.
*/
if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
vc4_state->x_scaling[1] = VC4_SCALING_PPF;
} else {
vc4_state->is_yuv = false;
vc4_state->x_scaling[1] = VC4_SCALING_NONE;
vc4_state->y_scaling[1] = VC4_SCALING_NONE;
}
return 0;
}
static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
u32 scale, recip;
scale = (1 << 16) * src / dst;
/* The specs note that while the reciprocal would be defined
* as (1<<32)/scale, ~0 is close enough.
*/
recip = ~0 / scale;
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
}
static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
u32 scale = (1 << 16) * src / dst;
vc4_dlist_write(vc4_state,
SCALER_PPF_AGC |
VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
}
static u32 vc4_lbm_size(struct drm_plane_state *state)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
/* This is the worst case number. One of the two sizes will
* be used depending on the scaling configuration.
*/
u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
u32 lbm;
/* LBM is not needed when there's no vertical scaling. */
if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
vc4_state->y_scaling[1] == VC4_SCALING_NONE)
return 0;
if (!vc4_state->is_yuv) {
if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
lbm = pix_per_line * 8;
else {
/* In special cases, this multiplier might be 12. */
lbm = pix_per_line * 16;
}
} else {
/* There are cases for this going down to a multiplier
* of 2, but according to the firmware source, the
* table in the docs is somewhat wrong.
*/
lbm = pix_per_line * 16;
}
lbm = roundup(lbm, 32);
return lbm;
}
static void vc4_write_scaling_parameters(struct drm_plane_state *state,
int channel)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
/* Ch0 H-PPF Word 0: Scaling Parameters */
if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
vc4_write_ppf(vc4_state,
vc4_state->src_w[channel], vc4_state->crtc_w);
}
/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
vc4_write_ppf(vc4_state,
vc4_state->src_h[channel], vc4_state->crtc_h);
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
}
/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
vc4_write_tpz(vc4_state,
vc4_state->src_w[channel], vc4_state->crtc_w);
}
/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
vc4_write_tpz(vc4_state,
vc4_state->src_h[channel], vc4_state->crtc_h);
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
}
}
static void vc4_plane_calc_load(struct drm_plane_state *state)
{
unsigned int hvs_load_shift, vrefresh, i;
struct drm_framebuffer *fb = state->fb;
struct vc4_plane_state *vc4_state;
struct drm_crtc_state *crtc_state;
unsigned int vscale_factor;
vc4_state = to_vc4_plane_state(state);
crtc_state = drm_atomic_get_existing_crtc_state(state->state,
state->crtc);
vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
/* The HVS is able to process 2 pixels/cycle when scaling the source,
* 4 pixels/cycle otherwise.
* Alpha blending step seems to be pipelined and it's always operating
* at 4 pixels/cycle, so the limiting aspect here seems to be the
* scaler block.
* HVS load is expressed in clk-cycles/sec (AKA Hz).
*/
if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
vc4_state->y_scaling[1] != VC4_SCALING_NONE)
hvs_load_shift = 1;
else
hvs_load_shift = 2;
vc4_state->membus_load = 0;
vc4_state->hvs_load = 0;
for (i = 0; i < fb->format->num_planes; i++) {
/* Even if the bandwidth/plane required for a single frame is
*
* vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
*
* when downscaling, we have to read more pixels per line in
* the time frame reserved for a single line, so the bandwidth
* demand can be punctually higher. To account for that, we
* calculate the down-scaling factor and multiply the plane
* load by this number. We're likely over-estimating the read
* demand, but that's better than under-estimating it.
*/
vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
vc4_state->crtc_h);
vc4_state->membus_load += vc4_state->src_w[i] *
vc4_state->src_h[i] * vscale_factor *
fb->format->cpp[i];
vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
}
vc4_state->hvs_load *= vrefresh;
vc4_state->hvs_load >>= hvs_load_shift;
vc4_state->membus_load *= vrefresh;
}
static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
unsigned long irqflags;
u32 lbm_size;
lbm_size = vc4_lbm_size(state);
if (!lbm_size)
return 0;
if (WARN_ON(!vc4_state->lbm_offset))
return -EINVAL;
/* Allocate the LBM memory that the HVS will use for temporary
* storage due to our scaling/format conversion.
*/
if (!vc4_state->lbm.allocated) {
int ret;
spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
&vc4_state->lbm,
lbm_size, 32, 0, 0);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
if (ret)
return ret;
} else {
WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
}
vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
return 0;
}
/* Writes out a full display list for an active plane to the plane's
* private dlist state.
*/
static int vc4_plane_mode_set(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
struct drm_framebuffer *fb = state->fb;
u32 ctl0_offset = vc4_state->dlist_count;
drm: Nuke fb->pixel_format Replace uses of fb->pixel_format with fb->format->format. Less duplicated information is a good thing. Note that coccinelle failed to eliminate the "/* fourcc format */" comment from drm_framebuffer.h, so I had to do that part manually. @@ struct drm_framebuffer *FB; expression E; @@ drm_helper_mode_fill_fb_struct(...) { ... - FB->pixel_format = E; ... } @@ struct drm_framebuffer *FB; expression E; @@ i9xx_get_initial_plane_config(...) { ... - FB->pixel_format = E; ... } @@ struct drm_framebuffer *FB; expression E; @@ ironlake_get_initial_plane_config(...) { ... - FB->pixel_format = E; ... } @@ struct drm_framebuffer *FB; expression E; @@ skylake_get_initial_plane_config(...) { ... - FB->pixel_format = E; ... } @@ struct drm_framebuffer *a; struct drm_framebuffer b; @@ ( - a->pixel_format + a->format->format | - b.pixel_format + b.format->format ) @@ struct drm_plane_state *a; struct drm_plane_state b; @@ ( - a->fb->pixel_format + a->fb->format->format | - b.fb->pixel_format + b.fb->format->format ) @@ struct drm_crtc *CRTC; @@ ( - CRTC->primary->fb->pixel_format + CRTC->primary->fb->format->format | - CRTC->primary->state->fb->pixel_format + CRTC->primary->state->fb->format->format ) @@ struct drm_mode_set *set; @@ ( - set->fb->pixel_format + set->fb->format->format | - set->crtc->primary->fb->pixel_format + set->crtc->primary->fb->format->format ) @@ @@ struct drm_framebuffer { ... - uint32_t pixel_format; ... }; v2: Fix commit message (Laurent) Rebase due to earlier removal of many fb->pixel_format uses, including the 'fb->format = drm_format_info(fb->format->format);' snafu v3: Adjusted the semantic patch a bit and regenerated due to code changes Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Alex Deucher <alexander.deucher@amd.com> (v1) Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Link: http://patchwork.freedesktop.org/patch/msgid/1481751175-18463-1-git-send-email-ville.syrjala@linux.intel.com
2016-12-15 06:32:55 +09:00
const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
int num_planes = fb->format->num_planes;
u32 h_subsample = fb->format->hsub;
u32 v_subsample = fb->format->vsub;
bool mix_plane_alpha;
bool covers_screen;
drm/vc4: Add T-format scanout support. The T tiling format is what V3D uses for textures, with no raster support at all until later revisions of the hardware (and always at a large 3D performance penalty). If we can't scan out V3D's format, then we often need to do a relayout at some stage of the pipeline, either right before texturing from the scanout buffer (common in X11 without a compositor) or between a tiled screen buffer right before scanout (an option I've considered in trying to resolve this inconsistency, but which means needing to use the dirty fb ioctl and having some update policy). T-format scanout lets us avoid either of those shadow copies, for a massive, obvious performance improvement to X11 window dragging without a compositor. Unfortunately, enabling a compositor to work around the discrepancy has turned out to be too costly in memory consumption for the Raspbian distribution. Because the HVS operates a scanline at a time, compositing from T does increase the memory bandwidth cost of scanout. On my 1920x1080@32bpp display on a RPi3, we go from about 15% of system memory bandwidth with linear to about 20% with tiled. However, for X11 this still ends up being a huge performance win in active usage. This patch doesn't yet handle src_x/src_y offsetting within the tiled buffer. However, we fail to do so for untiled buffers already. Signed-off-by: Eric Anholt <eric@anholt.net> Link: http://patchwork.freedesktop.org/patch/msgid/20170608001336.12842-1-eric@anholt.net Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-08 09:13:35 +09:00
u32 scl0, scl1, pitch0;
u32 tiling, src_y;
u32 hvs_format = format->hvs;
unsigned int rotation;
int ret, i;
if (vc4_state->dlist_initialized)
return 0;
ret = vc4_plane_setup_clipping_and_scaling(state);
if (ret)
return ret;
/* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
* and 4:4:4, scl1 should be set to scl0 so both channels of
* the scaler do the same thing. For YUV, the Y plane needs
* to be put in channel 1 and Cb/Cr in channel 0, so we swap
* the scl fields here.
*/
if (num_planes == 1) {
scl0 = vc4_get_scl_field(state, 0);
scl1 = scl0;
} else {
scl0 = vc4_get_scl_field(state, 1);
scl1 = vc4_get_scl_field(state, 0);
}
rotation = drm_rotation_simplify(state->rotation,
DRM_MODE_ROTATE_0 |
DRM_MODE_REFLECT_X |
DRM_MODE_REFLECT_Y);
/* We must point to the last line when Y reflection is enabled. */
src_y = vc4_state->src_y;
if (rotation & DRM_MODE_REFLECT_Y)
src_y += vc4_state->src_h[0] - 1;
switch (base_format_mod) {
drm/vc4: Add T-format scanout support. The T tiling format is what V3D uses for textures, with no raster support at all until later revisions of the hardware (and always at a large 3D performance penalty). If we can't scan out V3D's format, then we often need to do a relayout at some stage of the pipeline, either right before texturing from the scanout buffer (common in X11 without a compositor) or between a tiled screen buffer right before scanout (an option I've considered in trying to resolve this inconsistency, but which means needing to use the dirty fb ioctl and having some update policy). T-format scanout lets us avoid either of those shadow copies, for a massive, obvious performance improvement to X11 window dragging without a compositor. Unfortunately, enabling a compositor to work around the discrepancy has turned out to be too costly in memory consumption for the Raspbian distribution. Because the HVS operates a scanline at a time, compositing from T does increase the memory bandwidth cost of scanout. On my 1920x1080@32bpp display on a RPi3, we go from about 15% of system memory bandwidth with linear to about 20% with tiled. However, for X11 this still ends up being a huge performance win in active usage. This patch doesn't yet handle src_x/src_y offsetting within the tiled buffer. However, we fail to do so for untiled buffers already. Signed-off-by: Eric Anholt <eric@anholt.net> Link: http://patchwork.freedesktop.org/patch/msgid/20170608001336.12842-1-eric@anholt.net Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-08 09:13:35 +09:00
case DRM_FORMAT_MOD_LINEAR:
tiling = SCALER_CTL0_TILING_LINEAR;
pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
/* Adjust the base pointer to the first pixel to be scanned
* out.
*/
for (i = 0; i < num_planes; i++) {
vc4_state->offsets[i] += src_y /
(i ? v_subsample : 1) *
fb->pitches[i];
vc4_state->offsets[i] += vc4_state->src_x /
(i ? h_subsample : 1) *
fb->format->cpp[i];
}
drm/vc4: Add T-format scanout support. The T tiling format is what V3D uses for textures, with no raster support at all until later revisions of the hardware (and always at a large 3D performance penalty). If we can't scan out V3D's format, then we often need to do a relayout at some stage of the pipeline, either right before texturing from the scanout buffer (common in X11 without a compositor) or between a tiled screen buffer right before scanout (an option I've considered in trying to resolve this inconsistency, but which means needing to use the dirty fb ioctl and having some update policy). T-format scanout lets us avoid either of those shadow copies, for a massive, obvious performance improvement to X11 window dragging without a compositor. Unfortunately, enabling a compositor to work around the discrepancy has turned out to be too costly in memory consumption for the Raspbian distribution. Because the HVS operates a scanline at a time, compositing from T does increase the memory bandwidth cost of scanout. On my 1920x1080@32bpp display on a RPi3, we go from about 15% of system memory bandwidth with linear to about 20% with tiled. However, for X11 this still ends up being a huge performance win in active usage. This patch doesn't yet handle src_x/src_y offsetting within the tiled buffer. However, we fail to do so for untiled buffers already. Signed-off-by: Eric Anholt <eric@anholt.net> Link: http://patchwork.freedesktop.org/patch/msgid/20170608001336.12842-1-eric@anholt.net Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-08 09:13:35 +09:00
break;
case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
u32 tile_size_shift = 12; /* T tiles are 4kb */
/* Whole-tile offsets, mostly for setting the pitch. */
u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
u32 tile_w_mask = (1 << tile_w_shift) - 1;
/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
* the height (in pixels) of a 4k tile.
*/
u32 tile_h_mask = (2 << tile_h_shift) - 1;
/* For T-tiled, the FB pitch is "how many bytes from one row to
* the next, such that
*
* pitch * tile_h == tile_size * tiles_per_row
*/
u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
u32 tiles_l = vc4_state->src_x >> tile_w_shift;
u32 tiles_r = tiles_w - tiles_l;
u32 tiles_t = src_y >> tile_h_shift;
/* Intra-tile offsets, which modify the base address (the
* SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
* base address).
*/
u32 tile_y = (src_y >> 4) & 1;
u32 subtile_y = (src_y >> 2) & 3;
u32 utile_y = src_y & 3;
u32 x_off = vc4_state->src_x & tile_w_mask;
u32 y_off = src_y & tile_h_mask;
/* When Y reflection is requested we must set the
* SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
* after the initial one should be fetched in descending order,
* which makes sense since we start from the last line and go
* backward.
* Don't know why we need y_off = max_y_off - y_off, but it's
* definitely required (I guess it's also related to the "going
* backward" situation).
*/
if (rotation & DRM_MODE_REFLECT_Y) {
y_off = tile_h_mask - y_off;
pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
} else {
pitch0 = 0;
}
drm/vc4: Add T-format scanout support. The T tiling format is what V3D uses for textures, with no raster support at all until later revisions of the hardware (and always at a large 3D performance penalty). If we can't scan out V3D's format, then we often need to do a relayout at some stage of the pipeline, either right before texturing from the scanout buffer (common in X11 without a compositor) or between a tiled screen buffer right before scanout (an option I've considered in trying to resolve this inconsistency, but which means needing to use the dirty fb ioctl and having some update policy). T-format scanout lets us avoid either of those shadow copies, for a massive, obvious performance improvement to X11 window dragging without a compositor. Unfortunately, enabling a compositor to work around the discrepancy has turned out to be too costly in memory consumption for the Raspbian distribution. Because the HVS operates a scanline at a time, compositing from T does increase the memory bandwidth cost of scanout. On my 1920x1080@32bpp display on a RPi3, we go from about 15% of system memory bandwidth with linear to about 20% with tiled. However, for X11 this still ends up being a huge performance win in active usage. This patch doesn't yet handle src_x/src_y offsetting within the tiled buffer. However, we fail to do so for untiled buffers already. Signed-off-by: Eric Anholt <eric@anholt.net> Link: http://patchwork.freedesktop.org/patch/msgid/20170608001336.12842-1-eric@anholt.net Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-08 09:13:35 +09:00
tiling = SCALER_CTL0_TILING_256B_OR_T;
pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
vc4_state->offsets[0] += subtile_y << 8;
vc4_state->offsets[0] += utile_y << 4;
/* Rows of tiles alternate left-to-right and right-to-left. */
if (tiles_t & 1) {
pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
vc4_state->offsets[0] += (tiles_w - tiles_l) <<
tile_size_shift;
vc4_state->offsets[0] -= (1 + !tile_y) << 10;
} else {
vc4_state->offsets[0] += tiles_l << tile_size_shift;
vc4_state->offsets[0] += tile_y << 10;
}
drm/vc4: Add T-format scanout support. The T tiling format is what V3D uses for textures, with no raster support at all until later revisions of the hardware (and always at a large 3D performance penalty). If we can't scan out V3D's format, then we often need to do a relayout at some stage of the pipeline, either right before texturing from the scanout buffer (common in X11 without a compositor) or between a tiled screen buffer right before scanout (an option I've considered in trying to resolve this inconsistency, but which means needing to use the dirty fb ioctl and having some update policy). T-format scanout lets us avoid either of those shadow copies, for a massive, obvious performance improvement to X11 window dragging without a compositor. Unfortunately, enabling a compositor to work around the discrepancy has turned out to be too costly in memory consumption for the Raspbian distribution. Because the HVS operates a scanline at a time, compositing from T does increase the memory bandwidth cost of scanout. On my 1920x1080@32bpp display on a RPi3, we go from about 15% of system memory bandwidth with linear to about 20% with tiled. However, for X11 this still ends up being a huge performance win in active usage. This patch doesn't yet handle src_x/src_y offsetting within the tiled buffer. However, we fail to do so for untiled buffers already. Signed-off-by: Eric Anholt <eric@anholt.net> Link: http://patchwork.freedesktop.org/patch/msgid/20170608001336.12842-1-eric@anholt.net Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-08 09:13:35 +09:00
break;
}
case DRM_FORMAT_MOD_BROADCOM_SAND64:
case DRM_FORMAT_MOD_BROADCOM_SAND128:
case DRM_FORMAT_MOD_BROADCOM_SAND256: {
uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
u32 tile_w, tile, x_off, pix_per_tile;
hvs_format = HVS_PIXEL_FORMAT_H264;
switch (base_format_mod) {
case DRM_FORMAT_MOD_BROADCOM_SAND64:
tiling = SCALER_CTL0_TILING_64B;
tile_w = 64;
break;
case DRM_FORMAT_MOD_BROADCOM_SAND128:
tiling = SCALER_CTL0_TILING_128B;
tile_w = 128;
break;
case DRM_FORMAT_MOD_BROADCOM_SAND256:
tiling = SCALER_CTL0_TILING_256B_OR_T;
tile_w = 256;
break;
default:
break;
}
if (param > SCALER_TILE_HEIGHT_MASK) {
DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
return -EINVAL;
}
pix_per_tile = tile_w / fb->format->cpp[0];
tile = vc4_state->src_x / pix_per_tile;
x_off = vc4_state->src_x % pix_per_tile;
/* Adjust the base pointer to the first pixel to be scanned
* out.
*/
for (i = 0; i < num_planes; i++) {
vc4_state->offsets[i] += param * tile_w * tile;
vc4_state->offsets[i] += src_y /
(i ? v_subsample : 1) *
tile_w;
vc4_state->offsets[i] += x_off /
(i ? h_subsample : 1) *
fb->format->cpp[i];
}
pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
break;
}
drm/vc4: Add T-format scanout support. The T tiling format is what V3D uses for textures, with no raster support at all until later revisions of the hardware (and always at a large 3D performance penalty). If we can't scan out V3D's format, then we often need to do a relayout at some stage of the pipeline, either right before texturing from the scanout buffer (common in X11 without a compositor) or between a tiled screen buffer right before scanout (an option I've considered in trying to resolve this inconsistency, but which means needing to use the dirty fb ioctl and having some update policy). T-format scanout lets us avoid either of those shadow copies, for a massive, obvious performance improvement to X11 window dragging without a compositor. Unfortunately, enabling a compositor to work around the discrepancy has turned out to be too costly in memory consumption for the Raspbian distribution. Because the HVS operates a scanline at a time, compositing from T does increase the memory bandwidth cost of scanout. On my 1920x1080@32bpp display on a RPi3, we go from about 15% of system memory bandwidth with linear to about 20% with tiled. However, for X11 this still ends up being a huge performance win in active usage. This patch doesn't yet handle src_x/src_y offsetting within the tiled buffer. However, we fail to do so for untiled buffers already. Signed-off-by: Eric Anholt <eric@anholt.net> Link: http://patchwork.freedesktop.org/patch/msgid/20170608001336.12842-1-eric@anholt.net Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-08 09:13:35 +09:00
default:
DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
(long long)fb->modifier);
return -EINVAL;
}
/* Control word */
vc4_dlist_write(vc4_state,
SCALER_CTL0_VALID |
(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
drm/vc4: Add T-format scanout support. The T tiling format is what V3D uses for textures, with no raster support at all until later revisions of the hardware (and always at a large 3D performance penalty). If we can't scan out V3D's format, then we often need to do a relayout at some stage of the pipeline, either right before texturing from the scanout buffer (common in X11 without a compositor) or between a tiled screen buffer right before scanout (an option I've considered in trying to resolve this inconsistency, but which means needing to use the dirty fb ioctl and having some update policy). T-format scanout lets us avoid either of those shadow copies, for a massive, obvious performance improvement to X11 window dragging without a compositor. Unfortunately, enabling a compositor to work around the discrepancy has turned out to be too costly in memory consumption for the Raspbian distribution. Because the HVS operates a scanline at a time, compositing from T does increase the memory bandwidth cost of scanout. On my 1920x1080@32bpp display on a RPi3, we go from about 15% of system memory bandwidth with linear to about 20% with tiled. However, for X11 this still ends up being a huge performance win in active usage. This patch doesn't yet handle src_x/src_y offsetting within the tiled buffer. However, we fail to do so for untiled buffers already. Signed-off-by: Eric Anholt <eric@anholt.net> Link: http://patchwork.freedesktop.org/patch/msgid/20170608001336.12842-1-eric@anholt.net Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-08 09:13:35 +09:00
VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
/* Position Word 0: Image Positions and Alpha Value */
vc4_state->pos0_offset = vc4_state->dlist_count;
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
/* Position Word 1: Scaled Image Dimensions. */
if (!vc4_state->is_unity) {
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(vc4_state->crtc_w,
SCALER_POS1_SCL_WIDTH) |
VC4_SET_FIELD(vc4_state->crtc_h,
SCALER_POS1_SCL_HEIGHT));
}
/* Don't waste cycles mixing with plane alpha if the set alpha
* is opaque or there is no per-pixel alpha information.
* In any case we use the alpha property value as the fixed alpha.
*/
mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
fb->format->has_alpha;
/* Position Word 2: Source Image Size, Alpha */
vc4_state->pos2_offset = vc4_state->dlist_count;
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(fb->format->has_alpha ?
SCALER_POS2_ALPHA_MODE_PIPELINE :
SCALER_POS2_ALPHA_MODE_FIXED,
SCALER_POS2_ALPHA_MODE) |
(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
(fb->format->has_alpha ? SCALER_POS2_ALPHA_PREMULT : 0) |
VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
/* Position Word 3: Context. Written by the HVS. */
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
*
* The pointers may be any byte address.
*/
vc4_state->ptr0_offset = vc4_state->dlist_count;
for (i = 0; i < num_planes; i++)
vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
/* Pointer Context Word 0/1/2: Written by the HVS */
for (i = 0; i < num_planes; i++)
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
drm/vc4: Add T-format scanout support. The T tiling format is what V3D uses for textures, with no raster support at all until later revisions of the hardware (and always at a large 3D performance penalty). If we can't scan out V3D's format, then we often need to do a relayout at some stage of the pipeline, either right before texturing from the scanout buffer (common in X11 without a compositor) or between a tiled screen buffer right before scanout (an option I've considered in trying to resolve this inconsistency, but which means needing to use the dirty fb ioctl and having some update policy). T-format scanout lets us avoid either of those shadow copies, for a massive, obvious performance improvement to X11 window dragging without a compositor. Unfortunately, enabling a compositor to work around the discrepancy has turned out to be too costly in memory consumption for the Raspbian distribution. Because the HVS operates a scanline at a time, compositing from T does increase the memory bandwidth cost of scanout. On my 1920x1080@32bpp display on a RPi3, we go from about 15% of system memory bandwidth with linear to about 20% with tiled. However, for X11 this still ends up being a huge performance win in active usage. This patch doesn't yet handle src_x/src_y offsetting within the tiled buffer. However, we fail to do so for untiled buffers already. Signed-off-by: Eric Anholt <eric@anholt.net> Link: http://patchwork.freedesktop.org/patch/msgid/20170608001336.12842-1-eric@anholt.net Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
2017-06-08 09:13:35 +09:00
/* Pitch word 0 */
vc4_dlist_write(vc4_state, pitch0);
/* Pitch word 1/2 */
for (i = 1; i < num_planes; i++) {
if (hvs_format != HVS_PIXEL_FORMAT_H264) {
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(fb->pitches[i],
SCALER_SRC_PITCH));
} else {
vc4_dlist_write(vc4_state, pitch0);
}
}
/* Colorspace conversion words */
if (vc4_state->is_yuv) {
vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
}
vc4_state->lbm_offset = 0;
if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
/* Reserve a slot for the LBM Base Address. The real value will
* be set when calling vc4_plane_allocate_lbm().
*/
if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
vc4_state->lbm_offset = vc4_state->dlist_count;
vc4_dlist_counter_increment(vc4_state);
}
if (num_planes > 1) {
/* Emit Cb/Cr as channel 0 and Y as channel
* 1. This matches how we set up scl0/scl1
* above.
*/
vc4_write_scaling_parameters(state, 1);
}
vc4_write_scaling_parameters(state, 0);
/* If any PPF setup was done, then all the kernel
* pointers get uploaded.
*/
if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
SCALER_PPF_KERNEL_OFFSET);
/* HPPF plane 0 */
vc4_dlist_write(vc4_state, kernel);
/* VPPF plane 0 */
vc4_dlist_write(vc4_state, kernel);
/* HPPF plane 1 */
vc4_dlist_write(vc4_state, kernel);
/* VPPF plane 1 */
vc4_dlist_write(vc4_state, kernel);
}
}
vc4_state->dlist[ctl0_offset] |=
VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
/* crtc_* are already clipped coordinates. */
covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
vc4_state->crtc_w == state->crtc->mode.hdisplay &&
vc4_state->crtc_h == state->crtc->mode.vdisplay;
/* Background fill might be necessary when the plane has per-pixel
* alpha content or a non-opaque plane alpha and could blend from the
* background or does not cover the entire screen.
*/
vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
state->alpha != DRM_BLEND_ALPHA_OPAQUE;
/* Flag the dlist as initialized to avoid checking it twice in case
* the async update check already called vc4_plane_mode_set() and
* decided to fallback to sync update because async update was not
* possible.
*/
vc4_state->dlist_initialized = 1;
vc4_plane_calc_load(state);
return 0;
}
/* If a modeset involves changing the setup of a plane, the atomic
* infrastructure will call this to validate a proposed plane setup.
* However, if a plane isn't getting updated, this (and the
* corresponding vc4_plane_atomic_update) won't get called. Thus, we
* compute the dlist here and have all active plane dlists get updated
* in the CRTC's flush.
*/
static int vc4_plane_atomic_check(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
int ret;
vc4_state->dlist_count = 0;
if (!plane_enabled(state))
return 0;
ret = vc4_plane_mode_set(plane, state);
if (ret)
return ret;
return vc4_plane_allocate_lbm(state);
}
static void vc4_plane_atomic_update(struct drm_plane *plane,
struct drm_plane_state *old_state)
{
/* No contents here. Since we don't know where in the CRTC's
* dlist we should be stored, our dlist is uploaded to the
* hardware with vc4_plane_write_dlist() at CRTC atomic_flush
* time.
*/
}
u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
int i;
vc4_state->hw_dlist = dlist;
/* Can't memcpy_toio() because it needs to be 32-bit writes. */
for (i = 0; i < vc4_state->dlist_count; i++)
writel(vc4_state->dlist[i], &dlist[i]);
return vc4_state->dlist_count;
}
u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
{
const struct vc4_plane_state *vc4_state =
container_of(state, typeof(*vc4_state), base);
return vc4_state->dlist_count;
}
/* Updates the plane to immediately (well, once the FIFO needs
* refilling) scan out from at a new framebuffer.
*/
void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
uint32_t addr;
/* We're skipping the address adjustment for negative origin,
* because this is only called on the primary plane.
*/
WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
addr = bo->paddr + fb->offsets[0];
/* Write the new address into the hardware immediately. The
* scanout will start from this address as soon as the FIFO
* needs to refill with pixels.
*/
writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
/* Also update the CPU-side dlist copy, so that any later
* atomic updates that don't do a new modeset on our plane
* also use our updated address.
*/
vc4_state->dlist[vc4_state->ptr0_offset] = addr;
}
static void vc4_plane_atomic_async_update(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_plane_state *vc4_state, *new_vc4_state;
swap(plane->state->fb, state->fb);
plane->state->crtc_x = state->crtc_x;
plane->state->crtc_y = state->crtc_y;
plane->state->crtc_w = state->crtc_w;
plane->state->crtc_h = state->crtc_h;
plane->state->src_x = state->src_x;
plane->state->src_y = state->src_y;
plane->state->src_w = state->src_w;
plane->state->src_h = state->src_h;
plane->state->src_h = state->src_h;
plane->state->alpha = state->alpha;
plane->state->pixel_blend_mode = state->pixel_blend_mode;
plane->state->rotation = state->rotation;
plane->state->zpos = state->zpos;
plane->state->normalized_zpos = state->normalized_zpos;
plane->state->color_encoding = state->color_encoding;
plane->state->color_range = state->color_range;
plane->state->src = state->src;
plane->state->dst = state->dst;
plane->state->visible = state->visible;
new_vc4_state = to_vc4_plane_state(state);
vc4_state = to_vc4_plane_state(plane->state);
vc4_state->crtc_x = new_vc4_state->crtc_x;
vc4_state->crtc_y = new_vc4_state->crtc_y;
vc4_state->crtc_h = new_vc4_state->crtc_h;
vc4_state->crtc_w = new_vc4_state->crtc_w;
vc4_state->src_x = new_vc4_state->src_x;
vc4_state->src_y = new_vc4_state->src_y;
memcpy(vc4_state->src_w, new_vc4_state->src_w,
sizeof(vc4_state->src_w));
memcpy(vc4_state->src_h, new_vc4_state->src_h,
sizeof(vc4_state->src_h));
memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
sizeof(vc4_state->x_scaling));
memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
sizeof(vc4_state->y_scaling));
vc4_state->is_unity = new_vc4_state->is_unity;
vc4_state->is_yuv = new_vc4_state->is_yuv;
memcpy(vc4_state->offsets, new_vc4_state->offsets,
sizeof(vc4_state->offsets));
vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
vc4_state->dlist[vc4_state->pos0_offset] =
new_vc4_state->dlist[vc4_state->pos0_offset];
vc4_state->dlist[vc4_state->pos2_offset] =
new_vc4_state->dlist[vc4_state->pos2_offset];
vc4_state->dlist[vc4_state->ptr0_offset] =
new_vc4_state->dlist[vc4_state->ptr0_offset];
/* Note that we can't just call vc4_plane_write_dlist()
* because that would smash the context data that the HVS is
* currently using.
*/
writel(vc4_state->dlist[vc4_state->pos0_offset],
&vc4_state->hw_dlist[vc4_state->pos0_offset]);
writel(vc4_state->dlist[vc4_state->pos2_offset],
&vc4_state->hw_dlist[vc4_state->pos2_offset]);
writel(vc4_state->dlist[vc4_state->ptr0_offset],
&vc4_state->hw_dlist[vc4_state->ptr0_offset]);
}
static int vc4_plane_atomic_async_check(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_plane_state *old_vc4_state, *new_vc4_state;
int ret;
u32 i;
ret = vc4_plane_mode_set(plane, state);
if (ret)
return ret;
old_vc4_state = to_vc4_plane_state(plane->state);
new_vc4_state = to_vc4_plane_state(state);
if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
vc4_lbm_size(plane->state) != vc4_lbm_size(state))
return -EINVAL;
/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
* if anything else has changed, fallback to a sync update.
*/
for (i = 0; i < new_vc4_state->dlist_count; i++) {
if (i == new_vc4_state->pos0_offset ||
i == new_vc4_state->pos2_offset ||
i == new_vc4_state->ptr0_offset ||
(new_vc4_state->lbm_offset &&
i == new_vc4_state->lbm_offset))
continue;
if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
return -EINVAL;
}
return 0;
}
static int vc4_prepare_fb(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_bo *bo;
int ret;
if (!state->fb)
return 0;
bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
drm_gem_fb_prepare_fb(plane, state);
if (plane->state->fb == state->fb)
return 0;
ret = vc4_bo_inc_usecnt(bo);
if (ret)
return ret;
return 0;
}
static void vc4_cleanup_fb(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_bo *bo;
if (plane->state->fb == state->fb || !state->fb)
return;
bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
vc4_bo_dec_usecnt(bo);
}
static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
.atomic_check = vc4_plane_atomic_check,
.atomic_update = vc4_plane_atomic_update,
.prepare_fb = vc4_prepare_fb,
.cleanup_fb = vc4_cleanup_fb,
.atomic_async_check = vc4_plane_atomic_async_check,
.atomic_async_update = vc4_plane_atomic_async_update,
};
static void vc4_plane_destroy(struct drm_plane *plane)
{
drm_plane_cleanup(plane);
}
static bool vc4_format_mod_supported(struct drm_plane *plane,
uint32_t format,
uint64_t modifier)
{
/* Support T_TILING for RGB formats only. */
switch (format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_XRGB1555:
switch (fourcc_mod_broadcom_mod(modifier)) {
case DRM_FORMAT_MOD_LINEAR:
case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
return true;
default:
return false;
}
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
switch (fourcc_mod_broadcom_mod(modifier)) {
case DRM_FORMAT_MOD_LINEAR:
case DRM_FORMAT_MOD_BROADCOM_SAND64:
case DRM_FORMAT_MOD_BROADCOM_SAND128:
case DRM_FORMAT_MOD_BROADCOM_SAND256:
return true;
default:
return false;
}
case DRM_FORMAT_YUV422:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV61:
default:
return (modifier == DRM_FORMAT_MOD_LINEAR);
}
}
static const struct drm_plane_funcs vc4_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = vc4_plane_destroy,
.set_property = NULL,
.reset = vc4_plane_reset,
.atomic_duplicate_state = vc4_plane_duplicate_state,
.atomic_destroy_state = vc4_plane_destroy_state,
.format_mod_supported = vc4_format_mod_supported,
};
struct drm_plane *vc4_plane_init(struct drm_device *dev,
enum drm_plane_type type)
{
struct drm_plane *plane = NULL;
struct vc4_plane *vc4_plane;
u32 formats[ARRAY_SIZE(hvs_formats)];
int ret = 0;
unsigned i;
static const uint64_t modifiers[] = {
DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
DRM_FORMAT_MOD_BROADCOM_SAND128,
DRM_FORMAT_MOD_BROADCOM_SAND64,
DRM_FORMAT_MOD_BROADCOM_SAND256,
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
};
vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
GFP_KERNEL);
if (!vc4_plane)
return ERR_PTR(-ENOMEM);
for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
formats[i] = hvs_formats[i].drm;
plane = &vc4_plane->base;
ret = drm_universal_plane_init(dev, plane, 0,
&vc4_plane_funcs,
formats, ARRAY_SIZE(formats),
modifiers, type, NULL);
drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
drm_plane_create_alpha_property(plane);
drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
DRM_MODE_ROTATE_0 |
DRM_MODE_ROTATE_180 |
DRM_MODE_REFLECT_X |
DRM_MODE_REFLECT_Y);
return plane;
}