linux-brain/arch/arm/boot/dts/meson8b-odroidc1.dts

366 lines
7.8 KiB
Plaintext
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2015 Endless Mobile, Inc.
* Author: Carlo Caione <carlo@endlessm.com>
*/
/dts-v1/;
#include "meson8b.dtsi"
#include <dt-bindings/gpio/gpio.h>
/ {
model = "Hardkernel ODROID-C1";
compatible = "hardkernel,odroid-c1", "amlogic,meson8b";
aliases {
serial0 = &uart_AO;
mmc0 = &sd_card_slot;
};
chosen {
stdout-path = "serial0:115200n8";
};
memory {
device_type = "memory";
reg = <0x40000000 0x40000000>;
};
leds {
compatible = "gpio-leds";
blue {
label = "c1:blue:alive";
gpios = <&gpio_ao GPIOAO_13 GPIO_ACTIVE_LOW>;
linux,default-trigger = "heartbeat";
default-state = "off";
};
};
p5v0: regulator-p5v0 {
compatible = "regulator-fixed";
regulator-name = "P5V0";
regulator-min-microvolt = <5000000>;
regulator-max-microvolt = <5000000>;
};
tflash_vdd: regulator-tflash_vdd {
/*
* signal name from schematics: TFLASH_VDD_EN
*/
compatible = "regulator-fixed";
regulator-name = "TFLASH_VDD";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
vin-supply = <&vcc_3v3>;
gpio = <&gpio GPIOY_12 GPIO_ACTIVE_HIGH>;
enable-active-high;
};
tf_io: gpio-regulator-tf_io {
compatible = "regulator-gpio";
regulator-name = "TF_IO";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <3300000>;
vin-supply = <&vcc_3v3>;
/*
* signal name from schematics: TF_3V3N_1V8_EN
*/
gpios = <&gpio_ao GPIOAO_3 GPIO_ACTIVE_HIGH>;
gpios-states = <0>;
states = <3300000 0
1800000 1>;
};
iio-hwmon {
compatible = "iio-hwmon";
io-channels = <&saradc 8>;
};
rtc32k_xtal: rtc32k-xtal-clk {
/* X3 in the schematics */
compatible = "fixed-clock";
clock-frequency = <32768>;
clock-output-names = "RTC32K";
#clock-cells = <0>;
};
vcc_1v8: regulator-vcc-1v8 {
/*
* RICHTEK RT9179 configured for a fixed output voltage of
* 1.8V. This supplies not only VCC1V8 but also IOREF_1V8 and
* VDD1V8 according to the schematics.
*/
compatible = "regulator-fixed";
regulator-name = "VCC1V8";
regulator-min-microvolt = <1800000>;
regulator-max-microvolt = <1800000>;
vin-supply = <&p5v0>;
};
vcc_3v3: regulator-vcc-3v3 {
/*
* Monolithic Power Systems MP2161 configured for a fixed
* output voltage of 3.3V. This supplies not only VCC3V3 but
* also VDD3V3 and VDDIO_AO3V3 according to the schematics.
*/
compatible = "regulator-fixed";
regulator-name = "VCC3V3";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
vin-supply = <&p5v0>;
};
vcck: regulator-vcck {
/* Monolithic Power Systems MP2161 */
compatible = "pwm-regulator";
regulator-name = "VCCK";
regulator-min-microvolt = <860000>;
regulator-max-microvolt = <1140000>;
ARM: dts: meson8b: odroidc1: Fix the pwm regulator supply properties [ Upstream commit 876228e9f935f19c7afc7ba394d17e2ec9143b65 ] After enabling CONFIG_REGULATOR_DEBUG=y we observe below debug logs. Changes help link VCCK and VDDEE pwm regulator to 5V regulator supply instead of dummy regulator. [ 7.117140] pwm-regulator regulator-vcck: Looking up pwm-supply from device tree [ 7.117153] pwm-regulator regulator-vcck: Looking up pwm-supply property in node /regulator-vcck failed [ 7.117184] VCCK: supplied by regulator-dummy [ 7.117194] regulator-dummy: could not add device link regulator.8: -ENOENT [ 7.117266] VCCK: 860 <--> 1140 mV at 986 mV, enabled [ 7.118498] VDDEE: will resolve supply early: pwm [ 7.118515] pwm-regulator regulator-vddee: Looking up pwm-supply from device tree [ 7.118526] pwm-regulator regulator-vddee: Looking up pwm-supply property in node /regulator-vddee failed [ 7.118553] VDDEE: supplied by regulator-dummy [ 7.118563] regulator-dummy: could not add device link regulator.9: -ENOENT Fixes: 524d96083b66 ("ARM: dts: meson8b: odroidc1: add the CPU voltage regulator") Fixes: 8bdf38be712d ("ARM: dts: meson8b: odroidc1: add the VDDEE regulator") Tested-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Cc: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: Anand Moon <linux.amoon@gmail.com> Reviewed-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> [narmstrong: fixed typo in commit s/observer/observe/] Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Link: https://lore.kernel.org/r/20210705112358.3554-2-linux.amoon@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-05 20:23:53 +09:00
pwm-supply = <&p5v0>;
pwms = <&pwm_cd 0 12218 0>;
pwm-dutycycle-range = <91 0>;
regulator-boot-on;
regulator-always-on;
};
vddc_ddr: regulator-vddc-ddr {
/*
* Monolithic Power Systems MP2161 configured for a fixed
* output voltage of 1.5V. This supplies not only DDR_VDDC but
* also DDR3_1V5 according to the schematics.
*/
compatible = "regulator-fixed";
regulator-name = "DDR_VDDC";
regulator-min-microvolt = <1500000>;
regulator-max-microvolt = <1500000>;
vin-supply = <&p5v0>;
};
vddee: regulator-vddee {
/* Monolithic Power Systems MP2161 */
compatible = "pwm-regulator";
regulator-name = "VDDEE";
regulator-min-microvolt = <860000>;
regulator-max-microvolt = <1140000>;
ARM: dts: meson8b: odroidc1: Fix the pwm regulator supply properties [ Upstream commit 876228e9f935f19c7afc7ba394d17e2ec9143b65 ] After enabling CONFIG_REGULATOR_DEBUG=y we observe below debug logs. Changes help link VCCK and VDDEE pwm regulator to 5V regulator supply instead of dummy regulator. [ 7.117140] pwm-regulator regulator-vcck: Looking up pwm-supply from device tree [ 7.117153] pwm-regulator regulator-vcck: Looking up pwm-supply property in node /regulator-vcck failed [ 7.117184] VCCK: supplied by regulator-dummy [ 7.117194] regulator-dummy: could not add device link regulator.8: -ENOENT [ 7.117266] VCCK: 860 <--> 1140 mV at 986 mV, enabled [ 7.118498] VDDEE: will resolve supply early: pwm [ 7.118515] pwm-regulator regulator-vddee: Looking up pwm-supply from device tree [ 7.118526] pwm-regulator regulator-vddee: Looking up pwm-supply property in node /regulator-vddee failed [ 7.118553] VDDEE: supplied by regulator-dummy [ 7.118563] regulator-dummy: could not add device link regulator.9: -ENOENT Fixes: 524d96083b66 ("ARM: dts: meson8b: odroidc1: add the CPU voltage regulator") Fixes: 8bdf38be712d ("ARM: dts: meson8b: odroidc1: add the VDDEE regulator") Tested-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Cc: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: Anand Moon <linux.amoon@gmail.com> Reviewed-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> [narmstrong: fixed typo in commit s/observer/observe/] Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Link: https://lore.kernel.org/r/20210705112358.3554-2-linux.amoon@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-05 20:23:53 +09:00
pwm-supply = <&p5v0>;
pwms = <&pwm_cd 1 12218 0>;
pwm-dutycycle-range = <91 0>;
regulator-boot-on;
regulator-always-on;
};
vdd_rtc: regulator-vdd-rtc {
/*
* Torex Semiconductor XC6215 configured for a fixed output of
* 0.9V.
*/
compatible = "regulator-fixed";
regulator-name = "VDD_RTC";
regulator-min-microvolt = <900000>;
regulator-max-microvolt = <900000>;
vin-supply = <&vcc_3v3>;
};
};
&cpu0 {
cpu-supply = <&vcck>;
};
&efuse {
ethernet_mac_address: mac@1b4 {
reg = <0x1b4 0x6>;
};
};
&ethmac {
status = "okay";
pinctrl-0 = <&eth_rgmii_pins>;
pinctrl-names = "default";
phy-mode = "rgmii";
phy-handle = <&eth_phy>;
amlogic,tx-delay-ns = <4>;
nvmem-cells = <&ethernet_mac_address>;
nvmem-cell-names = "mac-address";
mdio {
compatible = "snps,dwmac-mdio";
#address-cells = <1>;
#size-cells = <0>;
/* Realtek RTL8211F (0x001cc916) */
eth_phy: ethernet-phy@0 {
reg = <0>;
ARM: dts: meson: switch to the generic Ethernet PHY reset bindings The snps,reset-gpio bindings are deprecated in favour of the generic "Ethernet PHY reset" bindings. Replace snps,reset-gpio from the &ethmac node with reset-gpios in the ethernet-phy node. The old snps,reset-active-low property is now encoded directly as GPIO flag inside the reset-gpios property. snps,reset-delays-us is converted to reset-assert-us and reset-deassert-us. reset-assert-us is the second cell from snps,reset-delays-us while reset-deassert-us was the third cell. Instead of blindly copying the old values (which seems strange since they gave the PHY one second to come out of reset) over this also updates the delays based on the datasheets: - RTL8211F PHY on the Odroid-C1 and MXIII-Plus needs a 10ms assert delay (the datasheet mentions: "For a complete PHY reset, this pin must be asserted low for at least 10ms") and a 30ms deassert delay (the datasheet mentions: "Wait for a further 30ms (for internal circuits settling time) before accessing the PHY register"). The old settings used 10ms for assert and 1000ms for deassert. - IP101GR PHY on the EC-100 and MXQ needs a 10ms assert delay (the datasheet mentions: "Trst | Reset period | 10ms") and a 10ms deassert delay as well (the datasheet mentions: "Tclk_MII_rdy | MII/RMII clock output ready after reset released | 10ms")). The old settings used 10ms for assert and 1000ms for deassert. No functional changes intended. Reviewed-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: Kevin Hilman <khilman@baylibre.com>
2019-06-15 19:38:30 +09:00
reset-assert-us = <10000>;
reset-deassert-us = <80000>;
ARM: dts: meson: switch to the generic Ethernet PHY reset bindings The snps,reset-gpio bindings are deprecated in favour of the generic "Ethernet PHY reset" bindings. Replace snps,reset-gpio from the &ethmac node with reset-gpios in the ethernet-phy node. The old snps,reset-active-low property is now encoded directly as GPIO flag inside the reset-gpios property. snps,reset-delays-us is converted to reset-assert-us and reset-deassert-us. reset-assert-us is the second cell from snps,reset-delays-us while reset-deassert-us was the third cell. Instead of blindly copying the old values (which seems strange since they gave the PHY one second to come out of reset) over this also updates the delays based on the datasheets: - RTL8211F PHY on the Odroid-C1 and MXIII-Plus needs a 10ms assert delay (the datasheet mentions: "For a complete PHY reset, this pin must be asserted low for at least 10ms") and a 30ms deassert delay (the datasheet mentions: "Wait for a further 30ms (for internal circuits settling time) before accessing the PHY register"). The old settings used 10ms for assert and 1000ms for deassert. - IP101GR PHY on the EC-100 and MXQ needs a 10ms assert delay (the datasheet mentions: "Trst | Reset period | 10ms") and a 10ms deassert delay as well (the datasheet mentions: "Tclk_MII_rdy | MII/RMII clock output ready after reset released | 10ms")). The old settings used 10ms for assert and 1000ms for deassert. No functional changes intended. Reviewed-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Signed-off-by: Kevin Hilman <khilman@baylibre.com>
2019-06-15 19:38:30 +09:00
reset-gpios = <&gpio GPIOH_4 GPIO_ACTIVE_LOW>;
interrupt-parent = <&gpio_intc>;
/* GPIOH_3 */
interrupts = <17 IRQ_TYPE_LEVEL_LOW>;
};
};
};
&gpio {
gpio-line-names = /* Bank GPIOX */
"J2 Header Pin 35", "J2 Header Pin 36",
"J2 Header Pin 32", "J2 Header Pin 31",
"J2 Header Pin 29", "J2 Header Pin 18",
"J2 Header Pin 22", "J2 Header Pin 16",
"J2 Header Pin 23", "J2 Header Pin 21",
"J2 Header Pin 19", "J2 Header Pin 33",
"J2 Header Pin 8", "J2 Header Pin 10",
"J2 Header Pin 15", "J2 Header Pin 13",
"J2 Header Pin 24", "J2 Header Pin 26",
/* Bank GPIOY */
"Revision (upper)", "Revision (lower)",
"J2 Header Pin 7", "", "J2 Header Pin 12",
"J2 Header Pin 11", "", "", "",
"TFLASH_VDD_EN", "", "",
/* Bank GPIODV */
"VCCK_PWM (PWM_C)", "I2CA_SDA", "I2CA_SCL",
"I2CB_SDA", "I2CB_SCL", "VDDEE_PWM (PWM_D)",
"",
/* Bank GPIOH */
"HDMI_HPD", "HDMI_I2C_SDA", "HDMI_I2C_SCL",
"ETH_PHY_INTR", "ETH_PHY_NRST", "ETH_TXD1",
"ETH_TXD0", "ETH_TXD3", "ETH_TXD2",
"ETH_RGMII_TX_CLK",
/* Bank CARD */
"SD_DATA1 (SDB_D1)", "SD_DATA0 (SDB_D0)",
"SD_CLK", "SD_CMD", "SD_DATA3 (SDB_D3)",
"SD_DATA2 (SDB_D2)", "SD_CDN (SD_DET_N)",
/* Bank BOOT */
"SDC_D0 (EMMC)", "SDC_D1 (EMMC)",
"SDC_D2 (EMMC)", "SDC_D3 (EMMC)",
"SDC_D4 (EMMC)", "SDC_D5 (EMMC)",
"SDC_D6 (EMMC)", "SDC_D7 (EMMC)",
"SDC_CLK (EMMC)", "SDC_RSTn (EMMC)",
"SDC_CMD (EMMC)", "BOOT_SEL", "", "", "",
"", "", "", "",
/* Bank DIF */
"ETH_RXD1", "ETH_RXD0", "ETH_RX_DV",
"RGMII_RX_CLK", "ETH_RXD3", "ETH_RXD2",
"ETH_TXEN", "ETH_PHY_REF_CLK_25MOUT",
"ETH_MDC", "ETH_MDIO";
};
&gpio_ao {
gpio-line-names = "UART TX", "UART RX", "",
"TF_3V3N_1V8_EN", "USB_HUB_RST_N",
"USB_OTG_PWREN", "J7 Header Pin 2",
"IR_IN", "J7 Header Pin 4",
"J7 Header Pin 6", "J7 Header Pin 5",
"J7 Header Pin 7", "HDMI_CEC",
"SYS_LED", "", "";
/*
* WARNING: The USB Hub on the Odroid-C1/C1+ needs a reset signal
* to be turned high in order to be detected by the USB Controller.
* This signal should be handled by a USB specific power sequence
* in order to reset the Hub when USB bus is powered down.
*/
usb-hub {
gpio-hog;
gpios = <GPIOAO_4 GPIO_ACTIVE_HIGH>;
output-high;
line-name = "usb-hub-reset";
};
};
&ir_receiver {
status = "okay";
pinctrl-0 = <&ir_recv_pins>;
pinctrl-names = "default";
};
&mali {
mali-supply = <&vddee>;
};
&saradc {
status = "okay";
vref-supply = <&vcc_1v8>;
};
&sdio {
status = "okay";
pinctrl-0 = <&sd_b_pins>;
pinctrl-names = "default";
/* SD card */
sd_card_slot: slot@1 {
compatible = "mmc-slot";
reg = <1>;
status = "okay";
bus-width = <4>;
no-sdio;
cap-mmc-highspeed;
cap-sd-highspeed;
disable-wp;
cd-gpios = <&gpio CARD_6 GPIO_ACTIVE_LOW>;
vmmc-supply = <&tflash_vdd>;
vqmmc-supply = <&tf_io>;
};
};
&pwm_cd {
status = "okay";
pinctrl-0 = <&pwm_c1_pins>, <&pwm_d_pins>;
pinctrl-names = "default";
clocks = <&clkc CLKID_XTAL>, <&clkc CLKID_XTAL>;
clock-names = "clkin0", "clkin1";
};
&rtc {
/* needs to be enabled manually when a battery is connected */
clocks = <&rtc32k_xtal>;
vdd-supply = <&vdd_rtc>;
};
&uart_AO {
status = "okay";
pinctrl-0 = <&uart_ao_a_pins>;
pinctrl-names = "default";
};
&usb1_phy {
status = "okay";
};
&usb1 {
status = "okay";
};