linux-brain/arch/mips/kernel/ptrace.c

951 lines
22 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1992 Ross Biro
* Copyright (C) Linus Torvalds
* Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
* Copyright (C) 1996 David S. Miller
* Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
* Copyright (C) 1999 MIPS Technologies, Inc.
* Copyright (C) 2000 Ulf Carlsson
*
* At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
* binaries.
*/
#include <linux/compiler.h>
#include <linux/context_tracking.h>
#include <linux/elf.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/regset.h>
#include <linux/smp.h>
#include <linux/security.h>
#include <linux/stddef.h>
#include <linux/tracehook.h>
#include <linux/audit.h>
#include <linux/seccomp.h>
#include <linux/ftrace.h>
#include <asm/byteorder.h>
#include <asm/cpu.h>
#include <asm/cpu-info.h>
#include <asm/dsp.h>
#include <asm/fpu.h>
#include <asm/mipsregs.h>
#include <asm/mipsmtregs.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/syscall.h>
#include <asm/uaccess.h>
#include <asm/bootinfo.h>
#include <asm/reg.h>
#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>
static void init_fp_ctx(struct task_struct *target)
{
/* If FP has been used then the target already has context */
if (tsk_used_math(target))
return;
/* Begin with data registers set to all 1s... */
memset(&target->thread.fpu.fpr, ~0, sizeof(target->thread.fpu.fpr));
/* FCSR has been preset by `mips_set_personality_nan'. */
/*
* Record that the target has "used" math, such that the context
* just initialised, and any modifications made by the caller,
* aren't discarded.
*/
set_stopped_child_used_math(target);
}
/*
* Called by kernel/ptrace.c when detaching..
*
* Make sure single step bits etc are not set.
*/
void ptrace_disable(struct task_struct *child)
{
/* Don't load the watchpoint registers for the ex-child. */
clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
}
/*
2016-10-28 16:21:03 +09:00
* Poke at FCSR according to its mask. Set the Cause bits even
* if a corresponding Enable bit is set. This will be noticed at
* the time the thread is switched to and SIGFPE thrown accordingly.
*/
static void ptrace_setfcr31(struct task_struct *child, u32 value)
{
u32 fcr31;
u32 mask;
fcr31 = child->thread.fpu.fcr31;
mask = boot_cpu_data.fpu_msk31;
child->thread.fpu.fcr31 = (value & ~mask) | (fcr31 & mask);
}
/*
* Read a general register set. We always use the 64-bit format, even
* for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
* Registers are sign extended to fill the available space.
*/
int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data)
{
struct pt_regs *regs;
int i;
if (!access_ok(VERIFY_WRITE, data, 38 * 8))
return -EIO;
regs = task_pt_regs(child);
for (i = 0; i < 32; i++)
__put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]);
__put_user((long)regs->lo, (__s64 __user *)&data->lo);
__put_user((long)regs->hi, (__s64 __user *)&data->hi);
__put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
__put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr);
__put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status);
__put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause);
return 0;
}
/*
* Write a general register set. As for PTRACE_GETREGS, we always use
* the 64-bit format. On a 32-bit kernel only the lower order half
* (according to endianness) will be used.
*/
int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data)
{
struct pt_regs *regs;
int i;
if (!access_ok(VERIFY_READ, data, 38 * 8))
return -EIO;
regs = task_pt_regs(child);
for (i = 0; i < 32; i++)
__get_user(regs->regs[i], (__s64 __user *)&data->regs[i]);
__get_user(regs->lo, (__s64 __user *)&data->lo);
__get_user(regs->hi, (__s64 __user *)&data->hi);
__get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
/* badvaddr, status, and cause may not be written. */
return 0;
}
int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
{
int i;
if (!access_ok(VERIFY_WRITE, data, 33 * 8))
return -EIO;
if (tsk_used_math(child)) {
union fpureg *fregs = get_fpu_regs(child);
for (i = 0; i < 32; i++)
__put_user(get_fpr64(&fregs[i], 0),
i + (__u64 __user *)data);
} else {
for (i = 0; i < 32; i++)
__put_user((__u64) -1, i + (__u64 __user *) data);
}
__put_user(child->thread.fpu.fcr31, data + 64);
__put_user(boot_cpu_data.fpu_id, data + 65);
return 0;
}
int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
{
union fpureg *fregs;
u64 fpr_val;
u32 value;
int i;
if (!access_ok(VERIFY_READ, data, 33 * 8))
return -EIO;
init_fp_ctx(child);
fregs = get_fpu_regs(child);
for (i = 0; i < 32; i++) {
__get_user(fpr_val, i + (__u64 __user *)data);
set_fpr64(&fregs[i], 0, fpr_val);
}
__get_user(value, data + 64);
ptrace_setfcr31(child, value);
/* FIR may not be written. */
return 0;
}
int ptrace_get_watch_regs(struct task_struct *child,
struct pt_watch_regs __user *addr)
{
enum pt_watch_style style;
int i;
if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
return -EIO;
if (!access_ok(VERIFY_WRITE, addr, sizeof(struct pt_watch_regs)))
return -EIO;
#ifdef CONFIG_32BIT
style = pt_watch_style_mips32;
#define WATCH_STYLE mips32
#else
style = pt_watch_style_mips64;
#define WATCH_STYLE mips64
#endif
__put_user(style, &addr->style);
__put_user(boot_cpu_data.watch_reg_use_cnt,
&addr->WATCH_STYLE.num_valid);
for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
__put_user(child->thread.watch.mips3264.watchlo[i],
&addr->WATCH_STYLE.watchlo[i]);
__put_user(child->thread.watch.mips3264.watchhi[i] &
(MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW),
&addr->WATCH_STYLE.watchhi[i]);
__put_user(boot_cpu_data.watch_reg_masks[i],
&addr->WATCH_STYLE.watch_masks[i]);
}
for (; i < 8; i++) {
__put_user(0, &addr->WATCH_STYLE.watchlo[i]);
__put_user(0, &addr->WATCH_STYLE.watchhi[i]);
__put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
}
return 0;
}
int ptrace_set_watch_regs(struct task_struct *child,
struct pt_watch_regs __user *addr)
{
int i;
int watch_active = 0;
unsigned long lt[NUM_WATCH_REGS];
u16 ht[NUM_WATCH_REGS];
if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
return -EIO;
if (!access_ok(VERIFY_READ, addr, sizeof(struct pt_watch_regs)))
return -EIO;
/* Check the values. */
for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
__get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
#ifdef CONFIG_32BIT
if (lt[i] & __UA_LIMIT)
return -EINVAL;
#else
if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
if (lt[i] & 0xffffffff80000000UL)
return -EINVAL;
} else {
if (lt[i] & __UA_LIMIT)
return -EINVAL;
}
#endif
__get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
if (ht[i] & ~MIPS_WATCHHI_MASK)
return -EINVAL;
}
/* Install them. */
for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
if (lt[i] & MIPS_WATCHLO_IRW)
watch_active = 1;
child->thread.watch.mips3264.watchlo[i] = lt[i];
/* Set the G bit. */
child->thread.watch.mips3264.watchhi[i] = ht[i];
}
if (watch_active)
set_tsk_thread_flag(child, TIF_LOAD_WATCH);
else
clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
return 0;
}
/* regset get/set implementations */
#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
static int gpr32_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct pt_regs *regs = task_pt_regs(target);
u32 uregs[ELF_NGREG] = {};
unsigned i;
for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
/* k0/k1 are copied as zero. */
if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
continue;
uregs[i] = regs->regs[i - MIPS32_EF_R0];
}
uregs[MIPS32_EF_LO] = regs->lo;
uregs[MIPS32_EF_HI] = regs->hi;
uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
sizeof(uregs));
}
static int gpr32_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct pt_regs *regs = task_pt_regs(target);
u32 uregs[ELF_NGREG];
unsigned start, num_regs, i;
int err;
start = pos / sizeof(u32);
num_regs = count / sizeof(u32);
if (start + num_regs > ELF_NGREG)
return -EIO;
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
sizeof(uregs));
if (err)
return err;
for (i = start; i < num_regs; i++) {
/*
* Cast all values to signed here so that if this is a 64-bit
* kernel, the supplied 32-bit values will be sign extended.
*/
switch (i) {
case MIPS32_EF_R1 ... MIPS32_EF_R25:
/* k0/k1 are ignored. */
case MIPS32_EF_R28 ... MIPS32_EF_R31:
regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i];
break;
case MIPS32_EF_LO:
regs->lo = (s32)uregs[i];
break;
case MIPS32_EF_HI:
regs->hi = (s32)uregs[i];
break;
case MIPS32_EF_CP0_EPC:
regs->cp0_epc = (s32)uregs[i];
break;
}
}
return 0;
}
#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
#ifdef CONFIG_64BIT
static int gpr64_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct pt_regs *regs = task_pt_regs(target);
u64 uregs[ELF_NGREG] = {};
unsigned i;
for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
/* k0/k1 are copied as zero. */
if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
continue;
uregs[i] = regs->regs[i - MIPS64_EF_R0];
}
uregs[MIPS64_EF_LO] = regs->lo;
uregs[MIPS64_EF_HI] = regs->hi;
uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
sizeof(uregs));
}
static int gpr64_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct pt_regs *regs = task_pt_regs(target);
u64 uregs[ELF_NGREG];
unsigned start, num_regs, i;
int err;
start = pos / sizeof(u64);
num_regs = count / sizeof(u64);
if (start + num_regs > ELF_NGREG)
return -EIO;
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
sizeof(uregs));
if (err)
return err;
for (i = start; i < num_regs; i++) {
switch (i) {
case MIPS64_EF_R1 ... MIPS64_EF_R25:
/* k0/k1 are ignored. */
case MIPS64_EF_R28 ... MIPS64_EF_R31:
regs->regs[i - MIPS64_EF_R0] = uregs[i];
break;
case MIPS64_EF_LO:
regs->lo = uregs[i];
break;
case MIPS64_EF_HI:
regs->hi = uregs[i];
break;
case MIPS64_EF_CP0_EPC:
regs->cp0_epc = uregs[i];
break;
}
}
return 0;
}
#endif /* CONFIG_64BIT */
static int fpr_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
unsigned i;
int err;
u64 fpr_val;
/* XXX fcr31 */
if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t))
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu,
0, sizeof(elf_fpregset_t));
for (i = 0; i < NUM_FPU_REGS; i++) {
fpr_val = get_fpr64(&target->thread.fpu.fpr[i], 0);
err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&fpr_val, i * sizeof(elf_fpreg_t),
(i + 1) * sizeof(elf_fpreg_t));
if (err)
return err;
}
return 0;
}
static int fpr_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
unsigned i;
int err;
u64 fpr_val;
/* XXX fcr31 */
init_fp_ctx(target);
if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t))
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu,
0, sizeof(elf_fpregset_t));
BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
for (i = 0; i < NUM_FPU_REGS && count >= sizeof(elf_fpreg_t); i++) {
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&fpr_val, i * sizeof(elf_fpreg_t),
(i + 1) * sizeof(elf_fpreg_t));
if (err)
return err;
set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val);
}
return 0;
}
enum mips_regset {
REGSET_GPR,
REGSET_FPR,
};
struct pt_regs_offset {
const char *name;
int offset;
};
#define REG_OFFSET_NAME(reg, r) { \
.name = #reg, \
.offset = offsetof(struct pt_regs, r) \
}
#define REG_OFFSET_END { \
.name = NULL, \
.offset = 0 \
}
static const struct pt_regs_offset regoffset_table[] = {
REG_OFFSET_NAME(r0, regs[0]),
REG_OFFSET_NAME(r1, regs[1]),
REG_OFFSET_NAME(r2, regs[2]),
REG_OFFSET_NAME(r3, regs[3]),
REG_OFFSET_NAME(r4, regs[4]),
REG_OFFSET_NAME(r5, regs[5]),
REG_OFFSET_NAME(r6, regs[6]),
REG_OFFSET_NAME(r7, regs[7]),
REG_OFFSET_NAME(r8, regs[8]),
REG_OFFSET_NAME(r9, regs[9]),
REG_OFFSET_NAME(r10, regs[10]),
REG_OFFSET_NAME(r11, regs[11]),
REG_OFFSET_NAME(r12, regs[12]),
REG_OFFSET_NAME(r13, regs[13]),
REG_OFFSET_NAME(r14, regs[14]),
REG_OFFSET_NAME(r15, regs[15]),
REG_OFFSET_NAME(r16, regs[16]),
REG_OFFSET_NAME(r17, regs[17]),
REG_OFFSET_NAME(r18, regs[18]),
REG_OFFSET_NAME(r19, regs[19]),
REG_OFFSET_NAME(r20, regs[20]),
REG_OFFSET_NAME(r21, regs[21]),
REG_OFFSET_NAME(r22, regs[22]),
REG_OFFSET_NAME(r23, regs[23]),
REG_OFFSET_NAME(r24, regs[24]),
REG_OFFSET_NAME(r25, regs[25]),
REG_OFFSET_NAME(r26, regs[26]),
REG_OFFSET_NAME(r27, regs[27]),
REG_OFFSET_NAME(r28, regs[28]),
REG_OFFSET_NAME(r29, regs[29]),
REG_OFFSET_NAME(r30, regs[30]),
REG_OFFSET_NAME(r31, regs[31]),
REG_OFFSET_NAME(c0_status, cp0_status),
REG_OFFSET_NAME(hi, hi),
REG_OFFSET_NAME(lo, lo),
#ifdef CONFIG_CPU_HAS_SMARTMIPS
REG_OFFSET_NAME(acx, acx),
#endif
REG_OFFSET_NAME(c0_badvaddr, cp0_badvaddr),
REG_OFFSET_NAME(c0_cause, cp0_cause),
REG_OFFSET_NAME(c0_epc, cp0_epc),
#ifdef CONFIG_CPU_CAVIUM_OCTEON
REG_OFFSET_NAME(mpl0, mpl[0]),
REG_OFFSET_NAME(mpl1, mpl[1]),
REG_OFFSET_NAME(mpl2, mpl[2]),
REG_OFFSET_NAME(mtp0, mtp[0]),
REG_OFFSET_NAME(mtp1, mtp[1]),
REG_OFFSET_NAME(mtp2, mtp[2]),
#endif
REG_OFFSET_END,
};
/**
* regs_query_register_offset() - query register offset from its name
* @name: the name of a register
*
* regs_query_register_offset() returns the offset of a register in struct
* pt_regs from its name. If the name is invalid, this returns -EINVAL;
*/
int regs_query_register_offset(const char *name)
{
const struct pt_regs_offset *roff;
for (roff = regoffset_table; roff->name != NULL; roff++)
if (!strcmp(roff->name, name))
return roff->offset;
return -EINVAL;
}
#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
static const struct user_regset mips_regsets[] = {
[REGSET_GPR] = {
.core_note_type = NT_PRSTATUS,
.n = ELF_NGREG,
.size = sizeof(unsigned int),
.align = sizeof(unsigned int),
.get = gpr32_get,
.set = gpr32_set,
},
[REGSET_FPR] = {
.core_note_type = NT_PRFPREG,
.n = ELF_NFPREG,
.size = sizeof(elf_fpreg_t),
.align = sizeof(elf_fpreg_t),
.get = fpr_get,
.set = fpr_set,
},
};
static const struct user_regset_view user_mips_view = {
.name = "mips",
.e_machine = ELF_ARCH,
.ei_osabi = ELF_OSABI,
.regsets = mips_regsets,
.n = ARRAY_SIZE(mips_regsets),
};
#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
#ifdef CONFIG_64BIT
static const struct user_regset mips64_regsets[] = {
[REGSET_GPR] = {
.core_note_type = NT_PRSTATUS,
.n = ELF_NGREG,
.size = sizeof(unsigned long),
.align = sizeof(unsigned long),
.get = gpr64_get,
.set = gpr64_set,
},
[REGSET_FPR] = {
.core_note_type = NT_PRFPREG,
.n = ELF_NFPREG,
.size = sizeof(elf_fpreg_t),
.align = sizeof(elf_fpreg_t),
.get = fpr_get,
.set = fpr_set,
},
};
static const struct user_regset_view user_mips64_view = {
.name = "mips64",
.e_machine = ELF_ARCH,
.ei_osabi = ELF_OSABI,
.regsets = mips64_regsets,
.n = ARRAY_SIZE(mips64_regsets),
};
MIPS: Fix an n32 core file generation regset support regression commit 547da673173de51f73887377eb275304775064ad upstream. Fix a commit 7aeb753b5353 ("MIPS: Implement task_user_regset_view.") regression, then activated by commit 6a9c001b7ec3 ("MIPS: Switch ELF core dumper to use regsets.)", that caused n32 processes to dump o32 core files by failing to set the EF_MIPS_ABI2 flag in the ELF core file header's `e_flags' member: $ file tls-core tls-core: ELF 32-bit MSB executable, MIPS, N32 MIPS64 rel2 version 1 (SYSV), [...] $ ./tls-core Aborted (core dumped) $ file core core: ELF 32-bit MSB core file MIPS, MIPS-I version 1 (SYSV), SVR4-style $ Previously the flag was set as the result of a: statement placed in arch/mips/kernel/binfmt_elfn32.c, however in the regset case, i.e. when CORE_DUMP_USE_REGSET is set, ELF_CORE_EFLAGS is no longer used by `fill_note_info' in fs/binfmt_elf.c, and instead the `->e_flags' member of the regset view chosen is. We have the views defined in arch/mips/kernel/ptrace.c, however only an o32 and an n64 one, and the latter is used for n32 as well. Consequently an o32 core file is incorrectly dumped from n32 processes (the ELF32 vs ELF64 class is chosen elsewhere, and the 32-bit one is correctly selected for n32). Correct the issue then by defining an n32 regset view and using it as appropriate. Issue discovered in GDB testing. Fixes: 7aeb753b5353 ("MIPS: Implement task_user_regset_view.") Signed-off-by: Maciej W. Rozycki <macro@mips.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Djordje Todorovic <djordje.todorovic@rt-rk.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/17617/ Signed-off-by: James Hogan <jhogan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-08 04:09:20 +09:00
#ifdef CONFIG_MIPS32_N32
static const struct user_regset_view user_mipsn32_view = {
.name = "mipsn32",
.e_flags = EF_MIPS_ABI2,
.e_machine = ELF_ARCH,
.ei_osabi = ELF_OSABI,
.regsets = mips64_regsets,
.n = ARRAY_SIZE(mips64_regsets),
};
#endif /* CONFIG_MIPS32_N32 */
#endif /* CONFIG_64BIT */
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
{
#ifdef CONFIG_32BIT
return &user_mips_view;
#else
#ifdef CONFIG_MIPS32_O32
if (test_tsk_thread_flag(task, TIF_32BIT_REGS))
return &user_mips_view;
MIPS: Fix an n32 core file generation regset support regression commit 547da673173de51f73887377eb275304775064ad upstream. Fix a commit 7aeb753b5353 ("MIPS: Implement task_user_regset_view.") regression, then activated by commit 6a9c001b7ec3 ("MIPS: Switch ELF core dumper to use regsets.)", that caused n32 processes to dump o32 core files by failing to set the EF_MIPS_ABI2 flag in the ELF core file header's `e_flags' member: $ file tls-core tls-core: ELF 32-bit MSB executable, MIPS, N32 MIPS64 rel2 version 1 (SYSV), [...] $ ./tls-core Aborted (core dumped) $ file core core: ELF 32-bit MSB core file MIPS, MIPS-I version 1 (SYSV), SVR4-style $ Previously the flag was set as the result of a: statement placed in arch/mips/kernel/binfmt_elfn32.c, however in the regset case, i.e. when CORE_DUMP_USE_REGSET is set, ELF_CORE_EFLAGS is no longer used by `fill_note_info' in fs/binfmt_elf.c, and instead the `->e_flags' member of the regset view chosen is. We have the views defined in arch/mips/kernel/ptrace.c, however only an o32 and an n64 one, and the latter is used for n32 as well. Consequently an o32 core file is incorrectly dumped from n32 processes (the ELF32 vs ELF64 class is chosen elsewhere, and the 32-bit one is correctly selected for n32). Correct the issue then by defining an n32 regset view and using it as appropriate. Issue discovered in GDB testing. Fixes: 7aeb753b5353 ("MIPS: Implement task_user_regset_view.") Signed-off-by: Maciej W. Rozycki <macro@mips.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Djordje Todorovic <djordje.todorovic@rt-rk.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/17617/ Signed-off-by: James Hogan <jhogan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-08 04:09:20 +09:00
#endif
#ifdef CONFIG_MIPS32_N32
if (test_tsk_thread_flag(task, TIF_32BIT_ADDR))
return &user_mipsn32_view;
#endif
return &user_mips64_view;
#endif
}
long arch_ptrace(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
int ret;
void __user *addrp = (void __user *) addr;
void __user *datavp = (void __user *) data;
unsigned long __user *datalp = (void __user *) data;
switch (request) {
/* when I and D space are separate, these will need to be fixed. */
case PTRACE_PEEKTEXT: /* read word at location addr. */
case PTRACE_PEEKDATA:
ret = generic_ptrace_peekdata(child, addr, data);
break;
/* Read the word at location addr in the USER area. */
case PTRACE_PEEKUSR: {
struct pt_regs *regs;
union fpureg *fregs;
unsigned long tmp = 0;
regs = task_pt_regs(child);
ret = 0; /* Default return value. */
switch (addr) {
case 0 ... 31:
tmp = regs->regs[addr];
break;
case FPR_BASE ... FPR_BASE + 31:
if (!tsk_used_math(child)) {
/* FP not yet used */
tmp = -1;
break;
}
fregs = get_fpu_regs(child);
#ifdef CONFIG_32BIT
if (test_thread_flag(TIF_32BIT_FPREGS)) {
/*
* The odd registers are actually the high
* order bits of the values stored in the even
* registers - unless we're using r2k_switch.S.
*/
tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE],
addr & 1);
break;
}
#endif
tmp = get_fpr32(&fregs[addr - FPR_BASE], 0);
break;
case PC:
tmp = regs->cp0_epc;
break;
case CAUSE:
tmp = regs->cp0_cause;
break;
case BADVADDR:
tmp = regs->cp0_badvaddr;
break;
case MMHI:
tmp = regs->hi;
break;
case MMLO:
tmp = regs->lo;
break;
#ifdef CONFIG_CPU_HAS_SMARTMIPS
case ACX:
tmp = regs->acx;
break;
#endif
case FPC_CSR:
tmp = child->thread.fpu.fcr31;
break;
case FPC_EIR:
/* implementation / version register */
tmp = boot_cpu_data.fpu_id;
break;
case DSP_BASE ... DSP_BASE + 5: {
dspreg_t *dregs;
if (!cpu_has_dsp) {
tmp = 0;
ret = -EIO;
goto out;
}
dregs = __get_dsp_regs(child);
tmp = (unsigned long) (dregs[addr - DSP_BASE]);
break;
}
case DSP_CONTROL:
if (!cpu_has_dsp) {
tmp = 0;
ret = -EIO;
goto out;
}
tmp = child->thread.dsp.dspcontrol;
break;
default:
tmp = 0;
ret = -EIO;
goto out;
}
ret = put_user(tmp, datalp);
break;
}
/* when I and D space are separate, this will have to be fixed. */
case PTRACE_POKETEXT: /* write the word at location addr. */
case PTRACE_POKEDATA:
ret = generic_ptrace_pokedata(child, addr, data);
break;
case PTRACE_POKEUSR: {
struct pt_regs *regs;
ret = 0;
regs = task_pt_regs(child);
switch (addr) {
case 0 ... 31:
regs->regs[addr] = data;
break;
case FPR_BASE ... FPR_BASE + 31: {
union fpureg *fregs = get_fpu_regs(child);
init_fp_ctx(child);
#ifdef CONFIG_32BIT
if (test_thread_flag(TIF_32BIT_FPREGS)) {
/*
* The odd registers are actually the high
* order bits of the values stored in the even
* registers - unless we're using r2k_switch.S.
*/
set_fpr32(&fregs[(addr & ~1) - FPR_BASE],
addr & 1, data);
break;
}
#endif
set_fpr64(&fregs[addr - FPR_BASE], 0, data);
break;
}
case PC:
regs->cp0_epc = data;
break;
case MMHI:
regs->hi = data;
break;
case MMLO:
regs->lo = data;
break;
#ifdef CONFIG_CPU_HAS_SMARTMIPS
case ACX:
regs->acx = data;
break;
#endif
case FPC_CSR:
init_fp_ctx(child);
ptrace_setfcr31(child, data);
break;
case DSP_BASE ... DSP_BASE + 5: {
dspreg_t *dregs;
if (!cpu_has_dsp) {
ret = -EIO;
break;
}
dregs = __get_dsp_regs(child);
dregs[addr - DSP_BASE] = data;
break;
}
case DSP_CONTROL:
if (!cpu_has_dsp) {
ret = -EIO;
break;
}
child->thread.dsp.dspcontrol = data;
break;
default:
/* The rest are not allowed. */
ret = -EIO;
break;
}
break;
}
case PTRACE_GETREGS:
ret = ptrace_getregs(child, datavp);
break;
case PTRACE_SETREGS:
ret = ptrace_setregs(child, datavp);
break;
case PTRACE_GETFPREGS:
ret = ptrace_getfpregs(child, datavp);
break;
case PTRACE_SETFPREGS:
ret = ptrace_setfpregs(child, datavp);
break;
case PTRACE_GET_THREAD_AREA:
ret = put_user(task_thread_info(child)->tp_value, datalp);
break;
case PTRACE_GET_WATCH_REGS:
ret = ptrace_get_watch_regs(child, addrp);
break;
case PTRACE_SET_WATCH_REGS:
ret = ptrace_set_watch_regs(child, addrp);
break;
default:
ret = ptrace_request(child, request, addr, data);
break;
}
out:
return ret;
}
/*
* Notification of system call entry/exit
* - triggered by current->work.syscall_trace
*/
asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall)
{
user_exit();
current_thread_info()->syscall = syscall;
if (test_thread_flag(TIF_SYSCALL_TRACE) &&
tracehook_report_syscall_entry(regs))
return -1;
if (secure_computing(NULL) == -1)
return -1;
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
trace_sys_enter(regs, regs->regs[2]);
audit_syscall_entry(syscall, regs->regs[4], regs->regs[5],
regs->regs[6], regs->regs[7]);
return syscall;
}
/*
* Notification of system call entry/exit
* - triggered by current->work.syscall_trace
*/
asmlinkage void syscall_trace_leave(struct pt_regs *regs)
{
/*
* We may come here right after calling schedule_user()
* or do_notify_resume(), in which case we can be in RCU
* user mode.
*/
user_exit();
Audit: push audit success and retcode into arch ptrace.h The audit system previously expected arches calling to audit_syscall_exit to supply as arguments if the syscall was a success and what the return code was. Audit also provides a helper AUDITSC_RESULT which was supposed to simplify things by converting from negative retcodes to an audit internal magic value stating success or failure. This helper was wrong and could indicate that a valid pointer returned to userspace was a failed syscall. The fix is to fix the layering foolishness. We now pass audit_syscall_exit a struct pt_reg and it in turns calls back into arch code to collect the return value and to determine if the syscall was a success or failure. We also define a generic is_syscall_success() macro which determines success/failure based on if the value is < -MAX_ERRNO. This works for arches like x86 which do not use a separate mechanism to indicate syscall failure. We make both the is_syscall_success() and regs_return_value() static inlines instead of macros. The reason is because the audit function must take a void* for the regs. (uml calls theirs struct uml_pt_regs instead of just struct pt_regs so audit_syscall_exit can't take a struct pt_regs). Since the audit function takes a void* we need to use static inlines to cast it back to the arch correct structure to dereference it. The other major change is that on some arches, like ia64, MIPS and ppc, we change regs_return_value() to give us the negative value on syscall failure. THE only other user of this macro, kretprobe_example.c, won't notice and it makes the value signed consistently for the audit functions across all archs. In arch/sh/kernel/ptrace_64.c I see that we were using regs[9] in the old audit code as the return value. But the ptrace_64.h code defined the macro regs_return_value() as regs[3]. I have no idea which one is correct, but this patch now uses the regs_return_value() function, so it now uses regs[3]. For powerpc we previously used regs->result but now use the regs_return_value() function which uses regs->gprs[3]. regs->gprs[3] is always positive so the regs_return_value(), much like ia64 makes it negative before calling the audit code when appropriate. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: H. Peter Anvin <hpa@zytor.com> [for x86 portion] Acked-by: Tony Luck <tony.luck@intel.com> [for ia64] Acked-by: Richard Weinberger <richard@nod.at> [for uml] Acked-by: David S. Miller <davem@davemloft.net> [for sparc] Acked-by: Ralf Baechle <ralf@linux-mips.org> [for mips] Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> [for ppc]
2012-01-04 04:23:06 +09:00
audit_syscall_exit(regs);
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
trace_sys_exit(regs, regs_return_value(regs));
if (test_thread_flag(TIF_SYSCALL_TRACE))
tracehook_report_syscall_exit(regs, 0);
user_enter();
}