linux-brain/kernel/module_signing.c

79 lines
2.0 KiB
C
Raw Normal View History

/* Module signature checker
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <keys/system_keyring.h>
#include <crypto/public_key.h>
#include "module-internal.h"
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
/*
* Module signature information block.
*
* The constituents of the signature section are, in order:
*
* - Signer's name
* - Key identifier
* - Signature data
* - Information block
*/
struct module_signature {
u8 algo; /* Public-key crypto algorithm [0] */
u8 hash; /* Digest algorithm [0] */
u8 id_type; /* Key identifier type [PKEY_ID_PKCS7] */
u8 signer_len; /* Length of signer's name [0] */
u8 key_id_len; /* Length of key identifier [0] */
u8 __pad[3];
__be32 sig_len; /* Length of signature data */
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
};
/*
* Verify the signature on a module.
*/
int mod_verify_sig(const void *mod, unsigned long *_modlen)
{
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
struct module_signature ms;
size_t modlen = *_modlen, sig_len;
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
pr_devel("==>%s(,%zu)\n", __func__, modlen);
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
if (modlen <= sizeof(ms))
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
return -EBADMSG;
memcpy(&ms, mod + (modlen - sizeof(ms)), sizeof(ms));
modlen -= sizeof(ms);
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
sig_len = be32_to_cpu(ms.sig_len);
if (sig_len >= modlen)
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
return -EBADMSG;
modlen -= sig_len;
*_modlen = modlen;
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
if (ms.id_type != PKEY_ID_PKCS7) {
pr_err("Module is not signed with expected PKCS#7 message\n");
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
return -ENOPKG;
}
if (ms.algo != 0 ||
ms.hash != 0 ||
ms.signer_len != 0 ||
ms.key_id_len != 0 ||
ms.__pad[0] != 0 ||
ms.__pad[1] != 0 ||
ms.__pad[2] != 0) {
pr_err("PKCS#7 signature info has unexpected non-zero params\n");
return -EBADMSG;
}
MODSIGN: Implement module signature checking Check the signature on the module against the keys compiled into the kernel or available in a hardware key store. Currently, only RSA keys are supported - though that's easy enough to change, and the signature is expected to contain raw components (so not a PGP or PKCS#7 formatted blob). The signature blob is expected to consist of the following pieces in order: (1) The binary identifier for the key. This is expected to match the SubjectKeyIdentifier from an X.509 certificate. Only X.509 type identifiers are currently supported. (2) The signature data, consisting of a series of MPIs in which each is in the format of a 2-byte BE word sizes followed by the content data. (3) A 12 byte information block of the form: struct module_signature { enum pkey_algo algo : 8; enum pkey_hash_algo hash : 8; enum pkey_id_type id_type : 8; u8 __pad; __be32 id_length; __be32 sig_length; }; The three enums are defined in crypto/public_key.h. 'algo' contains the public-key algorithm identifier (0->DSA, 1->RSA). 'hash' contains the digest algorithm identifier (0->MD4, 1->MD5, 2->SHA1, etc.). 'id_type' contains the public-key identifier type (0->PGP, 1->X.509). '__pad' should be 0. 'id_length' should contain in the binary identifier length in BE form. 'sig_length' should contain in the signature data length in BE form. The lengths are in BE order rather than CPU order to make dealing with cross-compilation easier. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor Kconfig fix)
2012-09-26 18:11:03 +09:00
PKCS#7: Appropriately restrict authenticated attributes and content type A PKCS#7 or CMS message can have per-signature authenticated attributes that are digested as a lump and signed by the authorising key for that signature. If such attributes exist, the content digest isn't itself signed, but rather it is included in a special authattr which then contributes to the signature. Further, we already require the master message content type to be pkcs7_signedData - but there's also a separate content type for the data itself within the SignedData object and this must be repeated inside the authattrs for each signer [RFC2315 9.2, RFC5652 11.1]. We should really validate the authattrs if they exist or forbid them entirely as appropriate. To this end: (1) Alter the PKCS#7 parser to reject any message that has more than one signature where at least one signature has authattrs and at least one that does not. (2) Validate authattrs if they are present and strongly restrict them. Only the following authattrs are permitted and all others are rejected: (a) contentType. This is checked to be an OID that matches the content type in the SignedData object. (b) messageDigest. This must match the crypto digest of the data. (c) signingTime. If present, we check that this is a valid, parseable UTCTime or GeneralTime and that the date it encodes fits within the validity window of the matching X.509 cert. (d) S/MIME capabilities. We don't check the contents. (e) Authenticode SP Opus Info. We don't check the contents. (f) Authenticode Statement Type. We don't check the contents. The message is rejected if (a) or (b) are missing. If the message is an Authenticode type, the message is rejected if (e) is missing; if not Authenticode, the message is rejected if (d) - (f) are present. The S/MIME capabilities authattr (d) unfortunately has to be allowed to support kernels already signed by the pesign program. This only affects kexec. sign-file suppresses them (CMS_NOSMIMECAP). The message is also rejected if an authattr is given more than once or if it contains more than one element in its set of values. (3) Add a parameter to pkcs7_verify() to select one of the following restrictions and pass in the appropriate option from the callers: (*) VERIFYING_MODULE_SIGNATURE This requires that the SignedData content type be pkcs7-data and forbids authattrs. sign-file sets CMS_NOATTR. We could be more flexible and permit authattrs optionally, but only permit minimal content. (*) VERIFYING_FIRMWARE_SIGNATURE This requires that the SignedData content type be pkcs7-data and requires authattrs. In future, this will require an attribute holding the target firmware name in addition to the minimal set. (*) VERIFYING_UNSPECIFIED_SIGNATURE This requires that the SignedData content type be pkcs7-data but allows either no authattrs or only permits the minimal set. (*) VERIFYING_KEXEC_PE_SIGNATURE This only supports the Authenticode SPC_INDIRECT_DATA content type and requires at least an SpcSpOpusInfo authattr in addition to the minimal set. It also permits an SPC_STATEMENT_TYPE authattr (and an S/MIME capabilities authattr because the pesign program doesn't remove these). (*) VERIFYING_KEY_SIGNATURE (*) VERIFYING_KEY_SELF_SIGNATURE These are invalid in this context but are included for later use when limiting the use of X.509 certs. (4) The pkcs7_test key type is given a module parameter to select between the above options for testing purposes. For example: echo 1 >/sys/module/pkcs7_test_key/parameters/usage keyctl padd pkcs7_test foo @s </tmp/stuff.pkcs7 will attempt to check the signature on stuff.pkcs7 as if it contains a firmware blob (1 being VERIFYING_FIRMWARE_SIGNATURE). Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Marcel Holtmann <marcel@holtmann.org> Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
2015-08-05 23:22:27 +09:00
return system_verify_data(mod, modlen, mod + modlen, sig_len,
VERIFYING_MODULE_SIGNATURE);
}