linux-brain/net/rds/ib_rdma.c

632 lines
16 KiB
C
Raw Permalink Normal View History

/*
* Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/rculist.h>
#include <linux/llist.h>
#include "rds_single_path.h"
#include "ib_mr.h"
struct workqueue_struct *rds_ib_mr_wq;
static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
{
struct rds_ib_device *rds_ibdev;
struct rds_ib_ipaddr *i_ipaddr;
rcu_read_lock();
list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
if (i_ipaddr->ipaddr == ipaddr) {
refcount_inc(&rds_ibdev->refcount);
rcu_read_unlock();
return rds_ibdev;
}
}
}
rcu_read_unlock();
return NULL;
}
static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
{
struct rds_ib_ipaddr *i_ipaddr;
i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
if (!i_ipaddr)
return -ENOMEM;
i_ipaddr->ipaddr = ipaddr;
spin_lock_irq(&rds_ibdev->spinlock);
list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
spin_unlock_irq(&rds_ibdev->spinlock);
return 0;
}
static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
{
struct rds_ib_ipaddr *i_ipaddr;
struct rds_ib_ipaddr *to_free = NULL;
spin_lock_irq(&rds_ibdev->spinlock);
list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
if (i_ipaddr->ipaddr == ipaddr) {
list_del_rcu(&i_ipaddr->list);
to_free = i_ipaddr;
break;
}
}
spin_unlock_irq(&rds_ibdev->spinlock);
if (to_free)
kfree_rcu(to_free, rcu);
}
int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev,
struct in6_addr *ipaddr)
{
struct rds_ib_device *rds_ibdev_old;
rds_ibdev_old = rds_ib_get_device(ipaddr->s6_addr32[3]);
if (!rds_ibdev_old)
return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]);
if (rds_ibdev_old != rds_ibdev) {
rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr->s6_addr32[3]);
RDS/IB: add refcount tracking to struct rds_ib_device The RDS IB client .remove callback used to free the rds_ibdev for the given device unconditionally. This could race other users of the struct. This patch adds refcounting so that we only free the rds_ibdev once all of its users are done. Many rds_ibdev users are tied to connections. We give the connection a reference and change these users to reference the device in the connection instead of looking it up in the IB client data. The only user of the IB client data remaining is the first lookup of the device as connections are built up. Incrementing the reference count of a device found in the IB client data could race with final freeing so we use an RCU grace period to make sure that freeing won't happen until those lookups are done. MRs need the rds_ibdev to get at the pool that they're freed in to. They exist outside a connection and many MRs can reference different devices from one socket, so it was natural to have each MR hold a reference. MR refs can be dropped from interrupt handlers and final device teardown can block so we push it off to a work struct. Pool teardown had to be fixed to cancel its pending work instead of deadlocking waiting for all queued work, including itself, to finish. MRs get their reference from the global device list, which gets a reference. It is left unprotected by locks and remains racy. A simple global lock would be a significant bottleneck. More scalable (complicated) locking should be done carefully in a later patch. Signed-off-by: Zach Brown <zach.brown@oracle.com>
2010-05-19 07:48:51 +09:00
rds_ib_dev_put(rds_ibdev_old);
return rds_ib_add_ipaddr(rds_ibdev, ipaddr->s6_addr32[3]);
RDS/IB: add refcount tracking to struct rds_ib_device The RDS IB client .remove callback used to free the rds_ibdev for the given device unconditionally. This could race other users of the struct. This patch adds refcounting so that we only free the rds_ibdev once all of its users are done. Many rds_ibdev users are tied to connections. We give the connection a reference and change these users to reference the device in the connection instead of looking it up in the IB client data. The only user of the IB client data remaining is the first lookup of the device as connections are built up. Incrementing the reference count of a device found in the IB client data could race with final freeing so we use an RCU grace period to make sure that freeing won't happen until those lookups are done. MRs need the rds_ibdev to get at the pool that they're freed in to. They exist outside a connection and many MRs can reference different devices from one socket, so it was natural to have each MR hold a reference. MR refs can be dropped from interrupt handlers and final device teardown can block so we push it off to a work struct. Pool teardown had to be fixed to cancel its pending work instead of deadlocking waiting for all queued work, including itself, to finish. MRs get their reference from the global device list, which gets a reference. It is left unprotected by locks and remains racy. A simple global lock would be a significant bottleneck. More scalable (complicated) locking should be done carefully in a later patch. Signed-off-by: Zach Brown <zach.brown@oracle.com>
2010-05-19 07:48:51 +09:00
}
rds_ib_dev_put(rds_ibdev_old);
return 0;
}
void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
{
struct rds_ib_connection *ic = conn->c_transport_data;
/* conn was previously on the nodev_conns_list */
spin_lock_irq(&ib_nodev_conns_lock);
BUG_ON(list_empty(&ib_nodev_conns));
BUG_ON(list_empty(&ic->ib_node));
list_del(&ic->ib_node);
spin_lock(&rds_ibdev->spinlock);
list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
spin_unlock(&rds_ibdev->spinlock);
spin_unlock_irq(&ib_nodev_conns_lock);
ic->rds_ibdev = rds_ibdev;
refcount_inc(&rds_ibdev->refcount);
}
void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
{
struct rds_ib_connection *ic = conn->c_transport_data;
/* place conn on nodev_conns_list */
spin_lock(&ib_nodev_conns_lock);
spin_lock_irq(&rds_ibdev->spinlock);
BUG_ON(list_empty(&ic->ib_node));
list_del(&ic->ib_node);
spin_unlock_irq(&rds_ibdev->spinlock);
list_add_tail(&ic->ib_node, &ib_nodev_conns);
spin_unlock(&ib_nodev_conns_lock);
ic->rds_ibdev = NULL;
RDS/IB: add refcount tracking to struct rds_ib_device The RDS IB client .remove callback used to free the rds_ibdev for the given device unconditionally. This could race other users of the struct. This patch adds refcounting so that we only free the rds_ibdev once all of its users are done. Many rds_ibdev users are tied to connections. We give the connection a reference and change these users to reference the device in the connection instead of looking it up in the IB client data. The only user of the IB client data remaining is the first lookup of the device as connections are built up. Incrementing the reference count of a device found in the IB client data could race with final freeing so we use an RCU grace period to make sure that freeing won't happen until those lookups are done. MRs need the rds_ibdev to get at the pool that they're freed in to. They exist outside a connection and many MRs can reference different devices from one socket, so it was natural to have each MR hold a reference. MR refs can be dropped from interrupt handlers and final device teardown can block so we push it off to a work struct. Pool teardown had to be fixed to cancel its pending work instead of deadlocking waiting for all queued work, including itself, to finish. MRs get their reference from the global device list, which gets a reference. It is left unprotected by locks and remains racy. A simple global lock would be a significant bottleneck. More scalable (complicated) locking should be done carefully in a later patch. Signed-off-by: Zach Brown <zach.brown@oracle.com>
2010-05-19 07:48:51 +09:00
rds_ib_dev_put(rds_ibdev);
}
void rds_ib_destroy_nodev_conns(void)
{
struct rds_ib_connection *ic, *_ic;
LIST_HEAD(tmp_list);
/* avoid calling conn_destroy with irqs off */
spin_lock_irq(&ib_nodev_conns_lock);
list_splice(&ib_nodev_conns, &tmp_list);
spin_unlock_irq(&ib_nodev_conns_lock);
list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
rds_conn_destroy(ic->conn);
}
void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
{
struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
iinfo->rdma_mr_max = pool_1m->max_items;
iinfo->rdma_mr_size = pool_1m->fmr_attr.max_pages;
}
#if IS_ENABLED(CONFIG_IPV6)
void rds6_ib_get_mr_info(struct rds_ib_device *rds_ibdev,
struct rds6_info_rdma_connection *iinfo6)
{
struct rds_ib_mr_pool *pool_1m = rds_ibdev->mr_1m_pool;
iinfo6->rdma_mr_max = pool_1m->max_items;
iinfo6->rdma_mr_size = pool_1m->fmr_attr.max_pages;
}
#endif
struct rds_ib_mr *rds_ib_reuse_mr(struct rds_ib_mr_pool *pool)
{
struct rds_ib_mr *ibmr = NULL;
struct llist_node *ret;
unsigned long flags;
spin_lock_irqsave(&pool->clean_lock, flags);
ret = llist_del_first(&pool->clean_list);
spin_unlock_irqrestore(&pool->clean_lock, flags);
if (ret) {
ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
if (pool->pool_type == RDS_IB_MR_8K_POOL)
rds_ib_stats_inc(s_ib_rdma_mr_8k_reused);
else
rds_ib_stats_inc(s_ib_rdma_mr_1m_reused);
}
return ibmr;
}
void rds_ib_sync_mr(void *trans_private, int direction)
{
struct rds_ib_mr *ibmr = trans_private;
struct rds_ib_device *rds_ibdev = ibmr->device;
switch (direction) {
case DMA_FROM_DEVICE:
ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
break;
case DMA_TO_DEVICE:
ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
break;
}
}
void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
{
struct rds_ib_device *rds_ibdev = ibmr->device;
if (ibmr->sg_dma_len) {
ib_dma_unmap_sg(rds_ibdev->dev,
ibmr->sg, ibmr->sg_len,
DMA_BIDIRECTIONAL);
ibmr->sg_dma_len = 0;
}
/* Release the s/g list */
if (ibmr->sg_len) {
unsigned int i;
for (i = 0; i < ibmr->sg_len; ++i) {
struct page *page = sg_page(&ibmr->sg[i]);
/* FIXME we need a way to tell a r/w MR
* from a r/o MR */
WARN_ON(!page->mapping && irqs_disabled());
set_page_dirty(page);
put_page(page);
}
kfree(ibmr->sg);
ibmr->sg = NULL;
ibmr->sg_len = 0;
}
}
void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
{
unsigned int pinned = ibmr->sg_len;
__rds_ib_teardown_mr(ibmr);
if (pinned) {
struct rds_ib_mr_pool *pool = ibmr->pool;
atomic_sub(pinned, &pool->free_pinned);
}
}
static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
{
unsigned int item_count;
item_count = atomic_read(&pool->item_count);
if (free_all)
return item_count;
return 0;
}
/*
* given an llist of mrs, put them all into the list_head for more processing
*/
static unsigned int llist_append_to_list(struct llist_head *llist,
struct list_head *list)
{
struct rds_ib_mr *ibmr;
struct llist_node *node;
struct llist_node *next;
unsigned int count = 0;
node = llist_del_all(llist);
while (node) {
next = node->next;
ibmr = llist_entry(node, struct rds_ib_mr, llnode);
list_add_tail(&ibmr->unmap_list, list);
node = next;
count++;
}
return count;
}
/*
* this takes a list head of mrs and turns it into linked llist nodes
* of clusters. Each cluster has linked llist nodes of
* MR_CLUSTER_SIZE mrs that are ready for reuse.
*/
static void list_to_llist_nodes(struct list_head *list,
struct llist_node **nodes_head,
struct llist_node **nodes_tail)
{
struct rds_ib_mr *ibmr;
struct llist_node *cur = NULL;
struct llist_node **next = nodes_head;
list_for_each_entry(ibmr, list, unmap_list) {
cur = &ibmr->llnode;
*next = cur;
next = &cur->next;
}
*next = NULL;
*nodes_tail = cur;
}
/*
* Flush our pool of MRs.
* At a minimum, all currently unused MRs are unmapped.
* If the number of MRs allocated exceeds the limit, we also try
* to free as many MRs as needed to get back to this limit.
*/
int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
int free_all, struct rds_ib_mr **ibmr_ret)
{
struct rds_ib_mr *ibmr;
struct llist_node *clean_nodes;
struct llist_node *clean_tail;
LIST_HEAD(unmap_list);
unsigned long unpinned = 0;
unsigned int nfreed = 0, dirty_to_clean = 0, free_goal;
if (pool->pool_type == RDS_IB_MR_8K_POOL)
rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_flush);
else
rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_flush);
if (ibmr_ret) {
DEFINE_WAIT(wait);
while (!mutex_trylock(&pool->flush_lock)) {
ibmr = rds_ib_reuse_mr(pool);
if (ibmr) {
*ibmr_ret = ibmr;
finish_wait(&pool->flush_wait, &wait);
goto out_nolock;
}
prepare_to_wait(&pool->flush_wait, &wait,
TASK_UNINTERRUPTIBLE);
if (llist_empty(&pool->clean_list))
schedule();
ibmr = rds_ib_reuse_mr(pool);
if (ibmr) {
*ibmr_ret = ibmr;
finish_wait(&pool->flush_wait, &wait);
goto out_nolock;
}
}
finish_wait(&pool->flush_wait, &wait);
} else
mutex_lock(&pool->flush_lock);
if (ibmr_ret) {
ibmr = rds_ib_reuse_mr(pool);
if (ibmr) {
*ibmr_ret = ibmr;
goto out;
}
}
/* Get the list of all MRs to be dropped. Ordering matters -
* we want to put drop_list ahead of free_list.
*/
dirty_to_clean = llist_append_to_list(&pool->drop_list, &unmap_list);
dirty_to_clean += llist_append_to_list(&pool->free_list, &unmap_list);
if (free_all) {
unsigned long flags;
spin_lock_irqsave(&pool->clean_lock, flags);
llist_append_to_list(&pool->clean_list, &unmap_list);
spin_unlock_irqrestore(&pool->clean_lock, flags);
}
free_goal = rds_ib_flush_goal(pool, free_all);
if (list_empty(&unmap_list))
goto out;
if (pool->use_fastreg)
rds_ib_unreg_frmr(&unmap_list, &nfreed, &unpinned, free_goal);
else
rds_ib_unreg_fmr(&unmap_list, &nfreed, &unpinned, free_goal);
if (!list_empty(&unmap_list)) {
unsigned long flags;
list_to_llist_nodes(&unmap_list, &clean_nodes, &clean_tail);
net: rds: fix memory leak in rds_ib_flush_mr_pool When the following tests last for several hours, the problem will occur. Server: rds-stress -r 1.1.1.16 -D 1M Client: rds-stress -r 1.1.1.14 -s 1.1.1.16 -D 1M -T 30 The following will occur. " Starting up.... tsks tx/s rx/s tx+rx K/s mbi K/s mbo K/s tx us/c rtt us cpu % 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 " >From vmcore, we can find that clean_list is NULL. >From the source code, rds_mr_flushd calls rds_ib_mr_pool_flush_worker. Then rds_ib_mr_pool_flush_worker calls " rds_ib_flush_mr_pool(pool, 0, NULL); " Then in function " int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **ibmr_ret) " ibmr_ret is NULL. In the source code, " ... list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail); if (ibmr_ret) *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode); /* more than one entry in llist nodes */ if (clean_nodes->next) llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list); ... " When ibmr_ret is NULL, llist_entry is not executed. clean_nodes->next instead of clean_nodes is added in clean_list. So clean_nodes is discarded. It can not be used again. The workqueue is executed periodically. So more and more clean_nodes are discarded. Finally the clean_list is NULL. Then this problem will occur. Fixes: 1bc144b62524 ("net, rds, Replace xlist in net/rds/xlist.h with llist") Signed-off-by: Zhu Yanjun <yanjun.zhu@oracle.com> Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-06 17:00:03 +09:00
if (ibmr_ret) {
*ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
net: rds: fix memory leak in rds_ib_flush_mr_pool When the following tests last for several hours, the problem will occur. Server: rds-stress -r 1.1.1.16 -D 1M Client: rds-stress -r 1.1.1.14 -s 1.1.1.16 -D 1M -T 30 The following will occur. " Starting up.... tsks tx/s rx/s tx+rx K/s mbi K/s mbo K/s tx us/c rtt us cpu % 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 " >From vmcore, we can find that clean_list is NULL. >From the source code, rds_mr_flushd calls rds_ib_mr_pool_flush_worker. Then rds_ib_mr_pool_flush_worker calls " rds_ib_flush_mr_pool(pool, 0, NULL); " Then in function " int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **ibmr_ret) " ibmr_ret is NULL. In the source code, " ... list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail); if (ibmr_ret) *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode); /* more than one entry in llist nodes */ if (clean_nodes->next) llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list); ... " When ibmr_ret is NULL, llist_entry is not executed. clean_nodes->next instead of clean_nodes is added in clean_list. So clean_nodes is discarded. It can not be used again. The workqueue is executed periodically. So more and more clean_nodes are discarded. Finally the clean_list is NULL. Then this problem will occur. Fixes: 1bc144b62524 ("net, rds, Replace xlist in net/rds/xlist.h with llist") Signed-off-by: Zhu Yanjun <yanjun.zhu@oracle.com> Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-06 17:00:03 +09:00
clean_nodes = clean_nodes->next;
}
/* more than one entry in llist nodes */
if (clean_nodes) {
spin_lock_irqsave(&pool->clean_lock, flags);
net: rds: fix memory leak in rds_ib_flush_mr_pool When the following tests last for several hours, the problem will occur. Server: rds-stress -r 1.1.1.16 -D 1M Client: rds-stress -r 1.1.1.14 -s 1.1.1.16 -D 1M -T 30 The following will occur. " Starting up.... tsks tx/s rx/s tx+rx K/s mbi K/s mbo K/s tx us/c rtt us cpu % 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00 " >From vmcore, we can find that clean_list is NULL. >From the source code, rds_mr_flushd calls rds_ib_mr_pool_flush_worker. Then rds_ib_mr_pool_flush_worker calls " rds_ib_flush_mr_pool(pool, 0, NULL); " Then in function " int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **ibmr_ret) " ibmr_ret is NULL. In the source code, " ... list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail); if (ibmr_ret) *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode); /* more than one entry in llist nodes */ if (clean_nodes->next) llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list); ... " When ibmr_ret is NULL, llist_entry is not executed. clean_nodes->next instead of clean_nodes is added in clean_list. So clean_nodes is discarded. It can not be used again. The workqueue is executed periodically. So more and more clean_nodes are discarded. Finally the clean_list is NULL. Then this problem will occur. Fixes: 1bc144b62524 ("net, rds, Replace xlist in net/rds/xlist.h with llist") Signed-off-by: Zhu Yanjun <yanjun.zhu@oracle.com> Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-06 17:00:03 +09:00
llist_add_batch(clean_nodes, clean_tail,
&pool->clean_list);
spin_unlock_irqrestore(&pool->clean_lock, flags);
}
}
atomic_sub(unpinned, &pool->free_pinned);
atomic_sub(dirty_to_clean, &pool->dirty_count);
atomic_sub(nfreed, &pool->item_count);
out:
mutex_unlock(&pool->flush_lock);
if (waitqueue_active(&pool->flush_wait))
wake_up(&pool->flush_wait);
out_nolock:
return 0;
}
struct rds_ib_mr *rds_ib_try_reuse_ibmr(struct rds_ib_mr_pool *pool)
{
struct rds_ib_mr *ibmr = NULL;
int iter = 0;
while (1) {
ibmr = rds_ib_reuse_mr(pool);
if (ibmr)
return ibmr;
if (atomic_inc_return(&pool->item_count) <= pool->max_items)
break;
atomic_dec(&pool->item_count);
if (++iter > 2) {
if (pool->pool_type == RDS_IB_MR_8K_POOL)
rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_depleted);
else
rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_depleted);
break;
}
/* We do have some empty MRs. Flush them out. */
if (pool->pool_type == RDS_IB_MR_8K_POOL)
rds_ib_stats_inc(s_ib_rdma_mr_8k_pool_wait);
else
rds_ib_stats_inc(s_ib_rdma_mr_1m_pool_wait);
rds_ib_flush_mr_pool(pool, 0, &ibmr);
if (ibmr)
return ibmr;
}
return NULL;
}
static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
{
struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
rds_ib_flush_mr_pool(pool, 0, NULL);
}
void rds_ib_free_mr(void *trans_private, int invalidate)
{
struct rds_ib_mr *ibmr = trans_private;
struct rds_ib_mr_pool *pool = ibmr->pool;
struct rds_ib_device *rds_ibdev = ibmr->device;
rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
/* Return it to the pool's free list */
if (rds_ibdev->use_fastreg)
rds_ib_free_frmr_list(ibmr);
else
rds_ib_free_fmr_list(ibmr);
atomic_add(ibmr->sg_len, &pool->free_pinned);
atomic_inc(&pool->dirty_count);
/* If we've pinned too many pages, request a flush */
if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
atomic_read(&pool->dirty_count) >= pool->max_items / 5)
queue_delayed_work(rds_ib_mr_wq, &pool->flush_worker, 10);
if (invalidate) {
if (likely(!in_interrupt())) {
rds_ib_flush_mr_pool(pool, 0, NULL);
} else {
/* We get here if the user created a MR marked
* as use_once and invalidate at the same time.
*/
queue_delayed_work(rds_ib_mr_wq,
&pool->flush_worker, 10);
}
}
RDS/IB: add refcount tracking to struct rds_ib_device The RDS IB client .remove callback used to free the rds_ibdev for the given device unconditionally. This could race other users of the struct. This patch adds refcounting so that we only free the rds_ibdev once all of its users are done. Many rds_ibdev users are tied to connections. We give the connection a reference and change these users to reference the device in the connection instead of looking it up in the IB client data. The only user of the IB client data remaining is the first lookup of the device as connections are built up. Incrementing the reference count of a device found in the IB client data could race with final freeing so we use an RCU grace period to make sure that freeing won't happen until those lookups are done. MRs need the rds_ibdev to get at the pool that they're freed in to. They exist outside a connection and many MRs can reference different devices from one socket, so it was natural to have each MR hold a reference. MR refs can be dropped from interrupt handlers and final device teardown can block so we push it off to a work struct. Pool teardown had to be fixed to cancel its pending work instead of deadlocking waiting for all queued work, including itself, to finish. MRs get their reference from the global device list, which gets a reference. It is left unprotected by locks and remains racy. A simple global lock would be a significant bottleneck. More scalable (complicated) locking should be done carefully in a later patch. Signed-off-by: Zach Brown <zach.brown@oracle.com>
2010-05-19 07:48:51 +09:00
rds_ib_dev_put(rds_ibdev);
}
void rds_ib_flush_mrs(void)
{
struct rds_ib_device *rds_ibdev;
down_read(&rds_ib_devices_lock);
list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
if (rds_ibdev->mr_8k_pool)
rds_ib_flush_mr_pool(rds_ibdev->mr_8k_pool, 0, NULL);
if (rds_ibdev->mr_1m_pool)
rds_ib_flush_mr_pool(rds_ibdev->mr_1m_pool, 0, NULL);
}
up_read(&rds_ib_devices_lock);
}
void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
RDS: RDMA: Fix the NULL-ptr deref in rds_ib_get_mr Registration of a memory region(MR) through FRMR/fastreg(unlike FMR) needs a connection/qp. With a proxy qp, this dependency on connection will be removed, but that needs more infrastructure patches, which is a work in progress. As an intermediate fix, the get_mr returns EOPNOTSUPP when connection details are not populated. The MR registration through sendmsg() will continue to work even with fast registration, since connection in this case is formed upfront. This patch fixes the following crash: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 4244 Comm: syzkaller468044 Not tainted 4.16.0-rc6+ #361 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: 0018:ffff8801b059f890 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffff8801b07e1300 RCX: ffffffff8562d96e RDX: 000000000000000d RSI: 0000000000000001 RDI: 0000000000000068 RBP: ffff8801b059f8b8 R08: ffffed0036274244 R09: ffff8801b13a1200 R10: 0000000000000004 R11: ffffed0036274243 R12: ffff8801b13a1200 R13: 0000000000000001 R14: ffff8801ca09fa9c R15: 0000000000000000 FS: 00007f4d050af700(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f4d050aee78 CR3: 00000001b0d9b006 CR4: 00000000001606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __rds_rdma_map+0x710/0x1050 net/rds/rdma.c:271 rds_get_mr_for_dest+0x1d4/0x2c0 net/rds/rdma.c:357 rds_setsockopt+0x6cc/0x980 net/rds/af_rds.c:347 SYSC_setsockopt net/socket.c:1849 [inline] SyS_setsockopt+0x189/0x360 net/socket.c:1828 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 RIP: 0033:0x4456d9 RSP: 002b:00007f4d050aedb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00000000006dac3c RCX: 00000000004456d9 RDX: 0000000000000007 RSI: 0000000000000114 RDI: 0000000000000004 RBP: 00000000006dac38 R08: 00000000000000a0 R09: 0000000000000000 R10: 0000000020000380 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fffbfb36d6f R14: 00007f4d050af9c0 R15: 0000000000000005 Code: fa 48 c1 ea 03 80 3c 02 00 0f 85 cc 01 00 00 4c 8b bb 80 04 00 00 48 b8 00 00 00 00 00 fc ff df 49 8d 7f 68 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 9c 01 00 00 4d 8b 7f 68 48 b8 00 00 00 00 00 RIP: rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: ffff8801b059f890 ---[ end trace 7e1cea13b85473b0 ]--- Reported-by: syzbot+b51c77ef956678a65834@syzkaller.appspotmail.com Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: Avinash Repaka <avinash.repaka@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-25 12:31:58 +09:00
struct rds_sock *rs, u32 *key_ret,
struct rds_connection *conn)
{
struct rds_ib_device *rds_ibdev;
struct rds_ib_mr *ibmr = NULL;
RDS: RDMA: Fix the NULL-ptr deref in rds_ib_get_mr Registration of a memory region(MR) through FRMR/fastreg(unlike FMR) needs a connection/qp. With a proxy qp, this dependency on connection will be removed, but that needs more infrastructure patches, which is a work in progress. As an intermediate fix, the get_mr returns EOPNOTSUPP when connection details are not populated. The MR registration through sendmsg() will continue to work even with fast registration, since connection in this case is formed upfront. This patch fixes the following crash: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 4244 Comm: syzkaller468044 Not tainted 4.16.0-rc6+ #361 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: 0018:ffff8801b059f890 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffff8801b07e1300 RCX: ffffffff8562d96e RDX: 000000000000000d RSI: 0000000000000001 RDI: 0000000000000068 RBP: ffff8801b059f8b8 R08: ffffed0036274244 R09: ffff8801b13a1200 R10: 0000000000000004 R11: ffffed0036274243 R12: ffff8801b13a1200 R13: 0000000000000001 R14: ffff8801ca09fa9c R15: 0000000000000000 FS: 00007f4d050af700(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f4d050aee78 CR3: 00000001b0d9b006 CR4: 00000000001606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __rds_rdma_map+0x710/0x1050 net/rds/rdma.c:271 rds_get_mr_for_dest+0x1d4/0x2c0 net/rds/rdma.c:357 rds_setsockopt+0x6cc/0x980 net/rds/af_rds.c:347 SYSC_setsockopt net/socket.c:1849 [inline] SyS_setsockopt+0x189/0x360 net/socket.c:1828 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 RIP: 0033:0x4456d9 RSP: 002b:00007f4d050aedb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00000000006dac3c RCX: 00000000004456d9 RDX: 0000000000000007 RSI: 0000000000000114 RDI: 0000000000000004 RBP: 00000000006dac38 R08: 00000000000000a0 R09: 0000000000000000 R10: 0000000020000380 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fffbfb36d6f R14: 00007f4d050af9c0 R15: 0000000000000005 Code: fa 48 c1 ea 03 80 3c 02 00 0f 85 cc 01 00 00 4c 8b bb 80 04 00 00 48 b8 00 00 00 00 00 fc ff df 49 8d 7f 68 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 9c 01 00 00 4d 8b 7f 68 48 b8 00 00 00 00 00 RIP: rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: ffff8801b059f890 ---[ end trace 7e1cea13b85473b0 ]--- Reported-by: syzbot+b51c77ef956678a65834@syzkaller.appspotmail.com Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: Avinash Repaka <avinash.repaka@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-25 12:31:58 +09:00
struct rds_ib_connection *ic = NULL;
int ret;
rds_ibdev = rds_ib_get_device(rs->rs_bound_addr.s6_addr32[3]);
if (!rds_ibdev) {
ret = -ENODEV;
goto out;
}
RDS: RDMA: Fix the NULL-ptr deref in rds_ib_get_mr Registration of a memory region(MR) through FRMR/fastreg(unlike FMR) needs a connection/qp. With a proxy qp, this dependency on connection will be removed, but that needs more infrastructure patches, which is a work in progress. As an intermediate fix, the get_mr returns EOPNOTSUPP when connection details are not populated. The MR registration through sendmsg() will continue to work even with fast registration, since connection in this case is formed upfront. This patch fixes the following crash: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 4244 Comm: syzkaller468044 Not tainted 4.16.0-rc6+ #361 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: 0018:ffff8801b059f890 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffff8801b07e1300 RCX: ffffffff8562d96e RDX: 000000000000000d RSI: 0000000000000001 RDI: 0000000000000068 RBP: ffff8801b059f8b8 R08: ffffed0036274244 R09: ffff8801b13a1200 R10: 0000000000000004 R11: ffffed0036274243 R12: ffff8801b13a1200 R13: 0000000000000001 R14: ffff8801ca09fa9c R15: 0000000000000000 FS: 00007f4d050af700(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f4d050aee78 CR3: 00000001b0d9b006 CR4: 00000000001606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __rds_rdma_map+0x710/0x1050 net/rds/rdma.c:271 rds_get_mr_for_dest+0x1d4/0x2c0 net/rds/rdma.c:357 rds_setsockopt+0x6cc/0x980 net/rds/af_rds.c:347 SYSC_setsockopt net/socket.c:1849 [inline] SyS_setsockopt+0x189/0x360 net/socket.c:1828 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 RIP: 0033:0x4456d9 RSP: 002b:00007f4d050aedb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00000000006dac3c RCX: 00000000004456d9 RDX: 0000000000000007 RSI: 0000000000000114 RDI: 0000000000000004 RBP: 00000000006dac38 R08: 00000000000000a0 R09: 0000000000000000 R10: 0000000020000380 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fffbfb36d6f R14: 00007f4d050af9c0 R15: 0000000000000005 Code: fa 48 c1 ea 03 80 3c 02 00 0f 85 cc 01 00 00 4c 8b bb 80 04 00 00 48 b8 00 00 00 00 00 fc ff df 49 8d 7f 68 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 9c 01 00 00 4d 8b 7f 68 48 b8 00 00 00 00 00 RIP: rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: ffff8801b059f890 ---[ end trace 7e1cea13b85473b0 ]--- Reported-by: syzbot+b51c77ef956678a65834@syzkaller.appspotmail.com Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: Avinash Repaka <avinash.repaka@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-25 12:31:58 +09:00
if (conn)
ic = conn->c_transport_data;
if (!rds_ibdev->mr_8k_pool || !rds_ibdev->mr_1m_pool) {
ret = -ENODEV;
goto out;
}
if (rds_ibdev->use_fastreg)
ibmr = rds_ib_reg_frmr(rds_ibdev, ic, sg, nents, key_ret);
else
ibmr = rds_ib_reg_fmr(rds_ibdev, sg, nents, key_ret);
RDS: RDMA: Fix the NULL-ptr deref in rds_ib_get_mr Registration of a memory region(MR) through FRMR/fastreg(unlike FMR) needs a connection/qp. With a proxy qp, this dependency on connection will be removed, but that needs more infrastructure patches, which is a work in progress. As an intermediate fix, the get_mr returns EOPNOTSUPP when connection details are not populated. The MR registration through sendmsg() will continue to work even with fast registration, since connection in this case is formed upfront. This patch fixes the following crash: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 4244 Comm: syzkaller468044 Not tainted 4.16.0-rc6+ #361 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: 0018:ffff8801b059f890 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffff8801b07e1300 RCX: ffffffff8562d96e RDX: 000000000000000d RSI: 0000000000000001 RDI: 0000000000000068 RBP: ffff8801b059f8b8 R08: ffffed0036274244 R09: ffff8801b13a1200 R10: 0000000000000004 R11: ffffed0036274243 R12: ffff8801b13a1200 R13: 0000000000000001 R14: ffff8801ca09fa9c R15: 0000000000000000 FS: 00007f4d050af700(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f4d050aee78 CR3: 00000001b0d9b006 CR4: 00000000001606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __rds_rdma_map+0x710/0x1050 net/rds/rdma.c:271 rds_get_mr_for_dest+0x1d4/0x2c0 net/rds/rdma.c:357 rds_setsockopt+0x6cc/0x980 net/rds/af_rds.c:347 SYSC_setsockopt net/socket.c:1849 [inline] SyS_setsockopt+0x189/0x360 net/socket.c:1828 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 RIP: 0033:0x4456d9 RSP: 002b:00007f4d050aedb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00000000006dac3c RCX: 00000000004456d9 RDX: 0000000000000007 RSI: 0000000000000114 RDI: 0000000000000004 RBP: 00000000006dac38 R08: 00000000000000a0 R09: 0000000000000000 R10: 0000000020000380 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fffbfb36d6f R14: 00007f4d050af9c0 R15: 0000000000000005 Code: fa 48 c1 ea 03 80 3c 02 00 0f 85 cc 01 00 00 4c 8b bb 80 04 00 00 48 b8 00 00 00 00 00 fc ff df 49 8d 7f 68 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 9c 01 00 00 4d 8b 7f 68 48 b8 00 00 00 00 00 RIP: rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: ffff8801b059f890 ---[ end trace 7e1cea13b85473b0 ]--- Reported-by: syzbot+b51c77ef956678a65834@syzkaller.appspotmail.com Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: Avinash Repaka <avinash.repaka@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-25 12:31:58 +09:00
if (IS_ERR(ibmr)) {
ret = PTR_ERR(ibmr);
pr_warn("RDS/IB: rds_ib_get_mr failed (errno=%d)\n", ret);
RDS: RDMA: Fix the NULL-ptr deref in rds_ib_get_mr Registration of a memory region(MR) through FRMR/fastreg(unlike FMR) needs a connection/qp. With a proxy qp, this dependency on connection will be removed, but that needs more infrastructure patches, which is a work in progress. As an intermediate fix, the get_mr returns EOPNOTSUPP when connection details are not populated. The MR registration through sendmsg() will continue to work even with fast registration, since connection in this case is formed upfront. This patch fixes the following crash: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 4244 Comm: syzkaller468044 Not tainted 4.16.0-rc6+ #361 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: 0018:ffff8801b059f890 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffff8801b07e1300 RCX: ffffffff8562d96e RDX: 000000000000000d RSI: 0000000000000001 RDI: 0000000000000068 RBP: ffff8801b059f8b8 R08: ffffed0036274244 R09: ffff8801b13a1200 R10: 0000000000000004 R11: ffffed0036274243 R12: ffff8801b13a1200 R13: 0000000000000001 R14: ffff8801ca09fa9c R15: 0000000000000000 FS: 00007f4d050af700(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f4d050aee78 CR3: 00000001b0d9b006 CR4: 00000000001606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __rds_rdma_map+0x710/0x1050 net/rds/rdma.c:271 rds_get_mr_for_dest+0x1d4/0x2c0 net/rds/rdma.c:357 rds_setsockopt+0x6cc/0x980 net/rds/af_rds.c:347 SYSC_setsockopt net/socket.c:1849 [inline] SyS_setsockopt+0x189/0x360 net/socket.c:1828 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 RIP: 0033:0x4456d9 RSP: 002b:00007f4d050aedb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00000000006dac3c RCX: 00000000004456d9 RDX: 0000000000000007 RSI: 0000000000000114 RDI: 0000000000000004 RBP: 00000000006dac38 R08: 00000000000000a0 R09: 0000000000000000 R10: 0000000020000380 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fffbfb36d6f R14: 00007f4d050af9c0 R15: 0000000000000005 Code: fa 48 c1 ea 03 80 3c 02 00 0f 85 cc 01 00 00 4c 8b bb 80 04 00 00 48 b8 00 00 00 00 00 fc ff df 49 8d 7f 68 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 9c 01 00 00 4d 8b 7f 68 48 b8 00 00 00 00 00 RIP: rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: ffff8801b059f890 ---[ end trace 7e1cea13b85473b0 ]--- Reported-by: syzbot+b51c77ef956678a65834@syzkaller.appspotmail.com Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: Avinash Repaka <avinash.repaka@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-25 12:31:58 +09:00
} else {
return ibmr;
}
RDS: RDMA: Fix the NULL-ptr deref in rds_ib_get_mr Registration of a memory region(MR) through FRMR/fastreg(unlike FMR) needs a connection/qp. With a proxy qp, this dependency on connection will be removed, but that needs more infrastructure patches, which is a work in progress. As an intermediate fix, the get_mr returns EOPNOTSUPP when connection details are not populated. The MR registration through sendmsg() will continue to work even with fast registration, since connection in this case is formed upfront. This patch fixes the following crash: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 4244 Comm: syzkaller468044 Not tainted 4.16.0-rc6+ #361 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: 0018:ffff8801b059f890 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffff8801b07e1300 RCX: ffffffff8562d96e RDX: 000000000000000d RSI: 0000000000000001 RDI: 0000000000000068 RBP: ffff8801b059f8b8 R08: ffffed0036274244 R09: ffff8801b13a1200 R10: 0000000000000004 R11: ffffed0036274243 R12: ffff8801b13a1200 R13: 0000000000000001 R14: ffff8801ca09fa9c R15: 0000000000000000 FS: 00007f4d050af700(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f4d050aee78 CR3: 00000001b0d9b006 CR4: 00000000001606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __rds_rdma_map+0x710/0x1050 net/rds/rdma.c:271 rds_get_mr_for_dest+0x1d4/0x2c0 net/rds/rdma.c:357 rds_setsockopt+0x6cc/0x980 net/rds/af_rds.c:347 SYSC_setsockopt net/socket.c:1849 [inline] SyS_setsockopt+0x189/0x360 net/socket.c:1828 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 RIP: 0033:0x4456d9 RSP: 002b:00007f4d050aedb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00000000006dac3c RCX: 00000000004456d9 RDX: 0000000000000007 RSI: 0000000000000114 RDI: 0000000000000004 RBP: 00000000006dac38 R08: 00000000000000a0 R09: 0000000000000000 R10: 0000000020000380 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fffbfb36d6f R14: 00007f4d050af9c0 R15: 0000000000000005 Code: fa 48 c1 ea 03 80 3c 02 00 0f 85 cc 01 00 00 4c 8b bb 80 04 00 00 48 b8 00 00 00 00 00 fc ff df 49 8d 7f 68 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 9c 01 00 00 4d 8b 7f 68 48 b8 00 00 00 00 00 RIP: rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: ffff8801b059f890 ---[ end trace 7e1cea13b85473b0 ]--- Reported-by: syzbot+b51c77ef956678a65834@syzkaller.appspotmail.com Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: Avinash Repaka <avinash.repaka@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-25 12:31:58 +09:00
out:
RDS/IB: add refcount tracking to struct rds_ib_device The RDS IB client .remove callback used to free the rds_ibdev for the given device unconditionally. This could race other users of the struct. This patch adds refcounting so that we only free the rds_ibdev once all of its users are done. Many rds_ibdev users are tied to connections. We give the connection a reference and change these users to reference the device in the connection instead of looking it up in the IB client data. The only user of the IB client data remaining is the first lookup of the device as connections are built up. Incrementing the reference count of a device found in the IB client data could race with final freeing so we use an RCU grace period to make sure that freeing won't happen until those lookups are done. MRs need the rds_ibdev to get at the pool that they're freed in to. They exist outside a connection and many MRs can reference different devices from one socket, so it was natural to have each MR hold a reference. MR refs can be dropped from interrupt handlers and final device teardown can block so we push it off to a work struct. Pool teardown had to be fixed to cancel its pending work instead of deadlocking waiting for all queued work, including itself, to finish. MRs get their reference from the global device list, which gets a reference. It is left unprotected by locks and remains racy. A simple global lock would be a significant bottleneck. More scalable (complicated) locking should be done carefully in a later patch. Signed-off-by: Zach Brown <zach.brown@oracle.com>
2010-05-19 07:48:51 +09:00
if (rds_ibdev)
rds_ib_dev_put(rds_ibdev);
RDS: RDMA: Fix the NULL-ptr deref in rds_ib_get_mr Registration of a memory region(MR) through FRMR/fastreg(unlike FMR) needs a connection/qp. With a proxy qp, this dependency on connection will be removed, but that needs more infrastructure patches, which is a work in progress. As an intermediate fix, the get_mr returns EOPNOTSUPP when connection details are not populated. The MR registration through sendmsg() will continue to work even with fast registration, since connection in this case is formed upfront. This patch fixes the following crash: kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] SMP KASAN Modules linked in: CPU: 1 PID: 4244 Comm: syzkaller468044 Not tainted 4.16.0-rc6+ #361 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: 0018:ffff8801b059f890 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffff8801b07e1300 RCX: ffffffff8562d96e RDX: 000000000000000d RSI: 0000000000000001 RDI: 0000000000000068 RBP: ffff8801b059f8b8 R08: ffffed0036274244 R09: ffff8801b13a1200 R10: 0000000000000004 R11: ffffed0036274243 R12: ffff8801b13a1200 R13: 0000000000000001 R14: ffff8801ca09fa9c R15: 0000000000000000 FS: 00007f4d050af700(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f4d050aee78 CR3: 00000001b0d9b006 CR4: 00000000001606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __rds_rdma_map+0x710/0x1050 net/rds/rdma.c:271 rds_get_mr_for_dest+0x1d4/0x2c0 net/rds/rdma.c:357 rds_setsockopt+0x6cc/0x980 net/rds/af_rds.c:347 SYSC_setsockopt net/socket.c:1849 [inline] SyS_setsockopt+0x189/0x360 net/socket.c:1828 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x42/0xb7 RIP: 0033:0x4456d9 RSP: 002b:00007f4d050aedb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 00000000006dac3c RCX: 00000000004456d9 RDX: 0000000000000007 RSI: 0000000000000114 RDI: 0000000000000004 RBP: 00000000006dac38 R08: 00000000000000a0 R09: 0000000000000000 R10: 0000000020000380 R11: 0000000000000246 R12: 0000000000000000 R13: 00007fffbfb36d6f R14: 00007f4d050af9c0 R15: 0000000000000005 Code: fa 48 c1 ea 03 80 3c 02 00 0f 85 cc 01 00 00 4c 8b bb 80 04 00 00 48 b8 00 00 00 00 00 fc ff df 49 8d 7f 68 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 9c 01 00 00 4d 8b 7f 68 48 b8 00 00 00 00 00 RIP: rds_ib_get_mr+0x5c/0x230 net/rds/ib_rdma.c:544 RSP: ffff8801b059f890 ---[ end trace 7e1cea13b85473b0 ]--- Reported-by: syzbot+b51c77ef956678a65834@syzkaller.appspotmail.com Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com> Signed-off-by: Avinash Repaka <avinash.repaka@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-07-25 12:31:58 +09:00
return ERR_PTR(ret);
}
void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
{
cancel_delayed_work_sync(&pool->flush_worker);
rds_ib_flush_mr_pool(pool, 1, NULL);
WARN_ON(atomic_read(&pool->item_count));
WARN_ON(atomic_read(&pool->free_pinned));
kfree(pool);
}
struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev,
int pool_type)
{
struct rds_ib_mr_pool *pool;
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
if (!pool)
return ERR_PTR(-ENOMEM);
pool->pool_type = pool_type;
init_llist_head(&pool->free_list);
init_llist_head(&pool->drop_list);
init_llist_head(&pool->clean_list);
spin_lock_init(&pool->clean_lock);
mutex_init(&pool->flush_lock);
init_waitqueue_head(&pool->flush_wait);
INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
if (pool_type == RDS_IB_MR_1M_POOL) {
/* +1 allows for unaligned MRs */
pool->fmr_attr.max_pages = RDS_MR_1M_MSG_SIZE + 1;
pool->max_items = rds_ibdev->max_1m_mrs;
} else {
/* pool_type == RDS_IB_MR_8K_POOL */
pool->fmr_attr.max_pages = RDS_MR_8K_MSG_SIZE + 1;
pool->max_items = rds_ibdev->max_8k_mrs;
}
pool->max_free_pinned = pool->max_items * pool->fmr_attr.max_pages / 4;
pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
pool->fmr_attr.page_shift = PAGE_SHIFT;
pool->max_items_soft = rds_ibdev->max_mrs * 3 / 4;
pool->use_fastreg = rds_ibdev->use_fastreg;
return pool;
}
int rds_ib_mr_init(void)
{
rds_ib_mr_wq = alloc_workqueue("rds_mr_flushd", WQ_MEM_RECLAIM, 0);
if (!rds_ib_mr_wq)
return -ENOMEM;
return 0;
}
/* By the time this is called all the IB devices should have been torn down and
* had their pools freed. As each pool is freed its work struct is waited on,
* so the pool flushing work queue should be idle by the time we get here.
*/
void rds_ib_mr_exit(void)
{
destroy_workqueue(rds_ib_mr_wq);
}