linux-brain/net/ipv6/xfrm6_tunnel.c

403 lines
9.7 KiB
C
Raw Permalink Normal View History

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 13 Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details [based] [from] [clk] [highbank] [c] you should have received a copy of the gnu general public license along with this program if not see http www gnu org licenses extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 355 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com> Reviewed-by: Steve Winslow <swinslow@gmail.com> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-19 22:51:43 +09:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C)2003,2004 USAGI/WIDE Project
*
* Authors Mitsuru KANDA <mk@linux-ipv6.org>
* YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
*
* Based on net/ipv4/xfrm4_tunnel.c
*/
#include <linux/module.h>
#include <linux/xfrm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/rculist.h>
#include <net/ip.h>
#include <net/xfrm.h>
#include <net/ipv6.h>
#include <linux/ipv6.h>
#include <linux/icmpv6.h>
#include <linux/mutex.h>
#include <net/netns/generic.h>
#define XFRM6_TUNNEL_SPI_BYADDR_HSIZE 256
#define XFRM6_TUNNEL_SPI_BYSPI_HSIZE 256
#define XFRM6_TUNNEL_SPI_MIN 1
#define XFRM6_TUNNEL_SPI_MAX 0xffffffff
struct xfrm6_tunnel_net {
struct hlist_head spi_byaddr[XFRM6_TUNNEL_SPI_BYADDR_HSIZE];
struct hlist_head spi_byspi[XFRM6_TUNNEL_SPI_BYSPI_HSIZE];
u32 spi;
};
netns: make struct pernet_operations::id unsigned int Make struct pernet_operations::id unsigned. There are 2 reasons to do so: 1) This field is really an index into an zero based array and thus is unsigned entity. Using negative value is out-of-bound access by definition. 2) On x86_64 unsigned 32-bit data which are mixed with pointers via array indexing or offsets added or subtracted to pointers are preffered to signed 32-bit data. "int" being used as an array index needs to be sign-extended to 64-bit before being used. void f(long *p, int i) { g(p[i]); } roughly translates to movsx rsi, esi mov rdi, [rsi+...] call g MOVSX is 3 byte instruction which isn't necessary if the variable is unsigned because x86_64 is zero extending by default. Now, there is net_generic() function which, you guessed it right, uses "int" as an array index: static inline void *net_generic(const struct net *net, int id) { ... ptr = ng->ptr[id - 1]; ... } And this function is used a lot, so those sign extensions add up. Patch snipes ~1730 bytes on allyesconfig kernel (without all junk messing with code generation): add/remove: 0/0 grow/shrink: 70/598 up/down: 396/-2126 (-1730) Unfortunately some functions actually grow bigger. This is a semmingly random artefact of code generation with register allocator being used differently. gcc decides that some variable needs to live in new r8+ registers and every access now requires REX prefix. Or it is shifted into r12, so [r12+0] addressing mode has to be used which is longer than [r8] However, overall balance is in negative direction: add/remove: 0/0 grow/shrink: 70/598 up/down: 396/-2126 (-1730) function old new delta nfsd4_lock 3886 3959 +73 tipc_link_build_proto_msg 1096 1140 +44 mac80211_hwsim_new_radio 2776 2808 +32 tipc_mon_rcv 1032 1058 +26 svcauth_gss_legacy_init 1413 1429 +16 tipc_bcbase_select_primary 379 392 +13 nfsd4_exchange_id 1247 1260 +13 nfsd4_setclientid_confirm 782 793 +11 ... put_client_renew_locked 494 480 -14 ip_set_sockfn_get 730 716 -14 geneve_sock_add 829 813 -16 nfsd4_sequence_done 721 703 -18 nlmclnt_lookup_host 708 686 -22 nfsd4_lockt 1085 1063 -22 nfs_get_client 1077 1050 -27 tcf_bpf_init 1106 1076 -30 nfsd4_encode_fattr 5997 5930 -67 Total: Before=154856051, After=154854321, chg -0.00% Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-17 10:58:21 +09:00
static unsigned int xfrm6_tunnel_net_id __read_mostly;
static inline struct xfrm6_tunnel_net *xfrm6_tunnel_pernet(struct net *net)
{
return net_generic(net, xfrm6_tunnel_net_id);
}
/*
* xfrm_tunnel_spi things are for allocating unique id ("spi")
* per xfrm_address_t.
*/
struct xfrm6_tunnel_spi {
struct hlist_node list_byaddr;
struct hlist_node list_byspi;
xfrm_address_t addr;
u32 spi;
refcount_t refcnt;
struct rcu_head rcu_head;
};
static DEFINE_SPINLOCK(xfrm6_tunnel_spi_lock);
static struct kmem_cache *xfrm6_tunnel_spi_kmem __read_mostly;
static inline unsigned int xfrm6_tunnel_spi_hash_byaddr(const xfrm_address_t *addr)
{
unsigned int h;
h = ipv6_addr_hash((const struct in6_addr *)addr);
h ^= h >> 16;
h ^= h >> 8;
h &= XFRM6_TUNNEL_SPI_BYADDR_HSIZE - 1;
return h;
}
static inline unsigned int xfrm6_tunnel_spi_hash_byspi(u32 spi)
{
return spi % XFRM6_TUNNEL_SPI_BYSPI_HSIZE;
}
static struct xfrm6_tunnel_spi *__xfrm6_tunnel_spi_lookup(struct net *net, const xfrm_address_t *saddr)
{
struct xfrm6_tunnel_net *xfrm6_tn = xfrm6_tunnel_pernet(net);
struct xfrm6_tunnel_spi *x6spi;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 10:06:00 +09:00
hlist_for_each_entry_rcu(x6spi,
&xfrm6_tn->spi_byaddr[xfrm6_tunnel_spi_hash_byaddr(saddr)],
list_byaddr) {
if (xfrm6_addr_equal(&x6spi->addr, saddr))
return x6spi;
}
return NULL;
}
__be32 xfrm6_tunnel_spi_lookup(struct net *net, const xfrm_address_t *saddr)
{
struct xfrm6_tunnel_spi *x6spi;
u32 spi;
rcu_read_lock_bh();
x6spi = __xfrm6_tunnel_spi_lookup(net, saddr);
spi = x6spi ? x6spi->spi : 0;
rcu_read_unlock_bh();
return htonl(spi);
}
EXPORT_SYMBOL(xfrm6_tunnel_spi_lookup);
static int __xfrm6_tunnel_spi_check(struct net *net, u32 spi)
{
struct xfrm6_tunnel_net *xfrm6_tn = xfrm6_tunnel_pernet(net);
struct xfrm6_tunnel_spi *x6spi;
int index = xfrm6_tunnel_spi_hash_byspi(spi);
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 10:06:00 +09:00
hlist_for_each_entry(x6spi,
&xfrm6_tn->spi_byspi[index],
list_byspi) {
if (x6spi->spi == spi)
return -1;
}
return index;
}
static u32 __xfrm6_tunnel_alloc_spi(struct net *net, xfrm_address_t *saddr)
{
struct xfrm6_tunnel_net *xfrm6_tn = xfrm6_tunnel_pernet(net);
u32 spi;
struct xfrm6_tunnel_spi *x6spi;
int index;
if (xfrm6_tn->spi < XFRM6_TUNNEL_SPI_MIN ||
xfrm6_tn->spi >= XFRM6_TUNNEL_SPI_MAX)
xfrm6_tn->spi = XFRM6_TUNNEL_SPI_MIN;
else
xfrm6_tn->spi++;
for (spi = xfrm6_tn->spi; spi <= XFRM6_TUNNEL_SPI_MAX; spi++) {
index = __xfrm6_tunnel_spi_check(net, spi);
if (index >= 0)
goto alloc_spi;
if (spi == XFRM6_TUNNEL_SPI_MAX)
break;
}
for (spi = XFRM6_TUNNEL_SPI_MIN; spi < xfrm6_tn->spi; spi++) {
index = __xfrm6_tunnel_spi_check(net, spi);
if (index >= 0)
goto alloc_spi;
}
spi = 0;
goto out;
alloc_spi:
xfrm6_tn->spi = spi;
x6spi = kmem_cache_alloc(xfrm6_tunnel_spi_kmem, GFP_ATOMIC);
if (!x6spi)
goto out;
memcpy(&x6spi->addr, saddr, sizeof(x6spi->addr));
x6spi->spi = spi;
refcount_set(&x6spi->refcnt, 1);
hlist_add_head_rcu(&x6spi->list_byspi, &xfrm6_tn->spi_byspi[index]);
index = xfrm6_tunnel_spi_hash_byaddr(saddr);
hlist_add_head_rcu(&x6spi->list_byaddr, &xfrm6_tn->spi_byaddr[index]);
out:
return spi;
}
__be32 xfrm6_tunnel_alloc_spi(struct net *net, xfrm_address_t *saddr)
{
struct xfrm6_tunnel_spi *x6spi;
u32 spi;
spin_lock_bh(&xfrm6_tunnel_spi_lock);
x6spi = __xfrm6_tunnel_spi_lookup(net, saddr);
if (x6spi) {
refcount_inc(&x6spi->refcnt);
spi = x6spi->spi;
} else
spi = __xfrm6_tunnel_alloc_spi(net, saddr);
spin_unlock_bh(&xfrm6_tunnel_spi_lock);
return htonl(spi);
}
EXPORT_SYMBOL(xfrm6_tunnel_alloc_spi);
static void x6spi_destroy_rcu(struct rcu_head *head)
{
kmem_cache_free(xfrm6_tunnel_spi_kmem,
container_of(head, struct xfrm6_tunnel_spi, rcu_head));
}
static void xfrm6_tunnel_free_spi(struct net *net, xfrm_address_t *saddr)
{
struct xfrm6_tunnel_net *xfrm6_tn = xfrm6_tunnel_pernet(net);
struct xfrm6_tunnel_spi *x6spi;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 10:06:00 +09:00
struct hlist_node *n;
spin_lock_bh(&xfrm6_tunnel_spi_lock);
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 10:06:00 +09:00
hlist_for_each_entry_safe(x6spi, n,
&xfrm6_tn->spi_byaddr[xfrm6_tunnel_spi_hash_byaddr(saddr)],
list_byaddr)
{
if (xfrm6_addr_equal(&x6spi->addr, saddr)) {
if (refcount_dec_and_test(&x6spi->refcnt)) {
hlist_del_rcu(&x6spi->list_byaddr);
hlist_del_rcu(&x6spi->list_byspi);
call_rcu(&x6spi->rcu_head, x6spi_destroy_rcu);
break;
}
}
}
spin_unlock_bh(&xfrm6_tunnel_spi_lock);
}
static int xfrm6_tunnel_output(struct xfrm_state *x, struct sk_buff *skb)
{
skb_push(skb, -skb_network_offset(skb));
return 0;
}
static int xfrm6_tunnel_input(struct xfrm_state *x, struct sk_buff *skb)
{
return skb_network_header(skb)[IP6CB(skb)->nhoff];
}
[INET]: Introduce tunnel4/tunnel6 Basically this patch moves the generic tunnel protocol stuff out of xfrm4_tunnel/xfrm6_tunnel and moves it into the new files of tunnel4.c and tunnel6 respectively. The reason for this is that the problem that Hugo uncovered is only the tip of the iceberg. The real problem is that when we removed the dependency of ipip on xfrm4_tunnel we didn't really consider the module case at all. For instance, as it is it's possible to build both ipip and xfrm4_tunnel as modules and if the latter is loaded then ipip simply won't load. After considering the alternatives I've decided that the best way out of this is to restore the dependency of ipip on the non-xfrm-specific part of xfrm4_tunnel. This is acceptable IMHO because the intention of the removal was really to be able to use ipip without the xfrm subsystem. This is still preserved by this patch. So now both ipip/xfrm4_tunnel depend on the new tunnel4.c which handles the arbitration between the two. The order of processing is determined by a simple integer which ensures that ipip gets processed before xfrm4_tunnel. The situation for ICMP handling is a little bit more complicated since we may not have enough information to determine who it's for. It's not a big deal at the moment since the xfrm ICMP handlers are basically no-ops. In future we can deal with this when we look at ICMP caching in general. The user-visible change to this is the removal of the TUNNEL Kconfig prompts. This makes sense because it can only be used through IPCOMP as it stands. The addition of the new modules shouldn't introduce any problems since module dependency will cause them to be loaded. Oh and I also turned some unnecessary pskb's in IPv6 related to this patch to skb's. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-28 18:12:13 +09:00
static int xfrm6_tunnel_rcv(struct sk_buff *skb)
{
struct net *net = dev_net(skb->dev);
const struct ipv6hdr *iph = ipv6_hdr(skb);
__be32 spi;
spi = xfrm6_tunnel_spi_lookup(net, (const xfrm_address_t *)&iph->saddr);
return xfrm6_rcv_spi(skb, IPPROTO_IPV6, spi, NULL);
}
[INET]: Introduce tunnel4/tunnel6 Basically this patch moves the generic tunnel protocol stuff out of xfrm4_tunnel/xfrm6_tunnel and moves it into the new files of tunnel4.c and tunnel6 respectively. The reason for this is that the problem that Hugo uncovered is only the tip of the iceberg. The real problem is that when we removed the dependency of ipip on xfrm4_tunnel we didn't really consider the module case at all. For instance, as it is it's possible to build both ipip and xfrm4_tunnel as modules and if the latter is loaded then ipip simply won't load. After considering the alternatives I've decided that the best way out of this is to restore the dependency of ipip on the non-xfrm-specific part of xfrm4_tunnel. This is acceptable IMHO because the intention of the removal was really to be able to use ipip without the xfrm subsystem. This is still preserved by this patch. So now both ipip/xfrm4_tunnel depend on the new tunnel4.c which handles the arbitration between the two. The order of processing is determined by a simple integer which ensures that ipip gets processed before xfrm4_tunnel. The situation for ICMP handling is a little bit more complicated since we may not have enough information to determine who it's for. It's not a big deal at the moment since the xfrm ICMP handlers are basically no-ops. In future we can deal with this when we look at ICMP caching in general. The user-visible change to this is the removal of the TUNNEL Kconfig prompts. This makes sense because it can only be used through IPCOMP as it stands. The addition of the new modules shouldn't introduce any problems since module dependency will cause them to be loaded. Oh and I also turned some unnecessary pskb's in IPv6 related to this patch to skb's. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-28 18:12:13 +09:00
static int xfrm6_tunnel_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
u8 type, u8 code, int offset, __be32 info)
{
/* xfrm6_tunnel native err handling */
switch (type) {
case ICMPV6_DEST_UNREACH:
switch (code) {
case ICMPV6_NOROUTE:
case ICMPV6_ADM_PROHIBITED:
case ICMPV6_NOT_NEIGHBOUR:
case ICMPV6_ADDR_UNREACH:
case ICMPV6_PORT_UNREACH:
default:
break;
}
break;
case ICMPV6_PKT_TOOBIG:
break;
case ICMPV6_TIME_EXCEED:
switch (code) {
case ICMPV6_EXC_HOPLIMIT:
break;
case ICMPV6_EXC_FRAGTIME:
default:
break;
}
break;
case ICMPV6_PARAMPROB:
switch (code) {
case ICMPV6_HDR_FIELD: break;
case ICMPV6_UNK_NEXTHDR: break;
case ICMPV6_UNK_OPTION: break;
}
break;
default:
break;
}
[INET]: Introduce tunnel4/tunnel6 Basically this patch moves the generic tunnel protocol stuff out of xfrm4_tunnel/xfrm6_tunnel and moves it into the new files of tunnel4.c and tunnel6 respectively. The reason for this is that the problem that Hugo uncovered is only the tip of the iceberg. The real problem is that when we removed the dependency of ipip on xfrm4_tunnel we didn't really consider the module case at all. For instance, as it is it's possible to build both ipip and xfrm4_tunnel as modules and if the latter is loaded then ipip simply won't load. After considering the alternatives I've decided that the best way out of this is to restore the dependency of ipip on the non-xfrm-specific part of xfrm4_tunnel. This is acceptable IMHO because the intention of the removal was really to be able to use ipip without the xfrm subsystem. This is still preserved by this patch. So now both ipip/xfrm4_tunnel depend on the new tunnel4.c which handles the arbitration between the two. The order of processing is determined by a simple integer which ensures that ipip gets processed before xfrm4_tunnel. The situation for ICMP handling is a little bit more complicated since we may not have enough information to determine who it's for. It's not a big deal at the moment since the xfrm ICMP handlers are basically no-ops. In future we can deal with this when we look at ICMP caching in general. The user-visible change to this is the removal of the TUNNEL Kconfig prompts. This makes sense because it can only be used through IPCOMP as it stands. The addition of the new modules shouldn't introduce any problems since module dependency will cause them to be loaded. Oh and I also turned some unnecessary pskb's in IPv6 related to this patch to skb's. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-28 18:12:13 +09:00
return 0;
}
static int xfrm6_tunnel_init_state(struct xfrm_state *x)
{
if (x->props.mode != XFRM_MODE_TUNNEL)
return -EINVAL;
if (x->encap)
return -EINVAL;
x->props.header_len = sizeof(struct ipv6hdr);
return 0;
}
static void xfrm6_tunnel_destroy(struct xfrm_state *x)
{
struct net *net = xs_net(x);
xfrm6_tunnel_free_spi(net, (xfrm_address_t *)&x->props.saddr);
}
static const struct xfrm_type xfrm6_tunnel_type = {
.description = "IP6IP6",
.owner = THIS_MODULE,
.proto = IPPROTO_IPV6,
.init_state = xfrm6_tunnel_init_state,
.destructor = xfrm6_tunnel_destroy,
.input = xfrm6_tunnel_input,
.output = xfrm6_tunnel_output,
};
static struct xfrm6_tunnel xfrm6_tunnel_handler __read_mostly = {
.handler = xfrm6_tunnel_rcv,
[INET]: Introduce tunnel4/tunnel6 Basically this patch moves the generic tunnel protocol stuff out of xfrm4_tunnel/xfrm6_tunnel and moves it into the new files of tunnel4.c and tunnel6 respectively. The reason for this is that the problem that Hugo uncovered is only the tip of the iceberg. The real problem is that when we removed the dependency of ipip on xfrm4_tunnel we didn't really consider the module case at all. For instance, as it is it's possible to build both ipip and xfrm4_tunnel as modules and if the latter is loaded then ipip simply won't load. After considering the alternatives I've decided that the best way out of this is to restore the dependency of ipip on the non-xfrm-specific part of xfrm4_tunnel. This is acceptable IMHO because the intention of the removal was really to be able to use ipip without the xfrm subsystem. This is still preserved by this patch. So now both ipip/xfrm4_tunnel depend on the new tunnel4.c which handles the arbitration between the two. The order of processing is determined by a simple integer which ensures that ipip gets processed before xfrm4_tunnel. The situation for ICMP handling is a little bit more complicated since we may not have enough information to determine who it's for. It's not a big deal at the moment since the xfrm ICMP handlers are basically no-ops. In future we can deal with this when we look at ICMP caching in general. The user-visible change to this is the removal of the TUNNEL Kconfig prompts. This makes sense because it can only be used through IPCOMP as it stands. The addition of the new modules shouldn't introduce any problems since module dependency will cause them to be loaded. Oh and I also turned some unnecessary pskb's in IPv6 related to this patch to skb's. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-28 18:12:13 +09:00
.err_handler = xfrm6_tunnel_err,
.priority = 2,
};
static struct xfrm6_tunnel xfrm46_tunnel_handler __read_mostly = {
.handler = xfrm6_tunnel_rcv,
.err_handler = xfrm6_tunnel_err,
.priority = 2,
};
static int __net_init xfrm6_tunnel_net_init(struct net *net)
{
struct xfrm6_tunnel_net *xfrm6_tn = xfrm6_tunnel_pernet(net);
unsigned int i;
for (i = 0; i < XFRM6_TUNNEL_SPI_BYADDR_HSIZE; i++)
INIT_HLIST_HEAD(&xfrm6_tn->spi_byaddr[i]);
for (i = 0; i < XFRM6_TUNNEL_SPI_BYSPI_HSIZE; i++)
INIT_HLIST_HEAD(&xfrm6_tn->spi_byspi[i]);
xfrm6_tn->spi = 0;
return 0;
}
static void __net_exit xfrm6_tunnel_net_exit(struct net *net)
{
struct xfrm6_tunnel_net *xfrm6_tn = xfrm6_tunnel_pernet(net);
unsigned int i;
xfrm_flush_gc();
xfrm_state_flush(net, 0, false, true);
for (i = 0; i < XFRM6_TUNNEL_SPI_BYADDR_HSIZE; i++)
WARN_ON_ONCE(!hlist_empty(&xfrm6_tn->spi_byaddr[i]));
for (i = 0; i < XFRM6_TUNNEL_SPI_BYSPI_HSIZE; i++)
WARN_ON_ONCE(!hlist_empty(&xfrm6_tn->spi_byspi[i]));
}
static struct pernet_operations xfrm6_tunnel_net_ops = {
.init = xfrm6_tunnel_net_init,
.exit = xfrm6_tunnel_net_exit,
.id = &xfrm6_tunnel_net_id,
.size = sizeof(struct xfrm6_tunnel_net),
};
static int __init xfrm6_tunnel_init(void)
{
int rv;
xfrm6_tunnel_spi_kmem = kmem_cache_create("xfrm6_tunnel_spi",
sizeof(struct xfrm6_tunnel_spi),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (!xfrm6_tunnel_spi_kmem)
return -ENOMEM;
rv = register_pernet_subsys(&xfrm6_tunnel_net_ops);
if (rv < 0)
goto out_pernet;
rv = xfrm_register_type(&xfrm6_tunnel_type, AF_INET6);
if (rv < 0)
goto out_type;
rv = xfrm6_tunnel_register(&xfrm6_tunnel_handler, AF_INET6);
if (rv < 0)
goto out_xfrm6;
rv = xfrm6_tunnel_register(&xfrm46_tunnel_handler, AF_INET);
if (rv < 0)
goto out_xfrm46;
return 0;
out_xfrm46:
xfrm6_tunnel_deregister(&xfrm6_tunnel_handler, AF_INET6);
out_xfrm6:
xfrm_unregister_type(&xfrm6_tunnel_type, AF_INET6);
out_type:
unregister_pernet_subsys(&xfrm6_tunnel_net_ops);
out_pernet:
kmem_cache_destroy(xfrm6_tunnel_spi_kmem);
return rv;
}
static void __exit xfrm6_tunnel_fini(void)
{
xfrm6_tunnel_deregister(&xfrm46_tunnel_handler, AF_INET);
xfrm6_tunnel_deregister(&xfrm6_tunnel_handler, AF_INET6);
xfrm_unregister_type(&xfrm6_tunnel_type, AF_INET6);
unregister_pernet_subsys(&xfrm6_tunnel_net_ops);
/* Someone maybe has gotten the xfrm6_tunnel_spi.
* So need to wait it.
*/
rcu_barrier();
kmem_cache_destroy(xfrm6_tunnel_spi_kmem);
}
module_init(xfrm6_tunnel_init);
module_exit(xfrm6_tunnel_fini);
MODULE_LICENSE("GPL");
MODULE_ALIAS_XFRM_TYPE(AF_INET6, XFRM_PROTO_IPV6);